Skip to main content

A Novel Multimodal Probability Model for Cluster Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5589))

Abstract

Cluster analysis is a tool for data analysis. It is a method for finding clusters of a data set with most similarity in the same group and most dissimilarity between different groups. In general, there are two ways, mixture distributions and classification maximum likelihood method, to use probability models for cluster analysis. However, the corresponding probability distributions to most clustering algorithms such as fuzzy c-means, possibilistic c-means, mode-seeking methods, etc., have not yet been found. In this paper, we construct a multimodal probability distribution model and then present the relationships between many clustering algorithms and the proposed model via the maximum likelihood estimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  2. Bryant, P.G., Williamson, J.A.: Asymptotic behavior of classification maximum likelihood estimates. Biometrica 65, 273–438 (1978)

    Article  MATH  Google Scholar 

  3. Celeux, G., Govaert, G.: Clustering criteria for discrete data and latent class models. Journal of classification 8, 157–176 (1991)

    Article  MATH  Google Scholar 

  4. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory 21, 32–40 (1975)

    Article  MATH  Google Scholar 

  5. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  MATH  Google Scholar 

  6. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Systems 1, 98–110 (1993)

    Article  Google Scholar 

  7. Lloyd, S.: Least squares quantization in pcm. Bell Telephone Laboratories Papers. Marray Hill (1957)

    Google Scholar 

  8. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkley (1967)

    Google Scholar 

  9. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to clustering. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  10. Scott, A.J., Symons, M.J.: Clustering methods based on likelihood ration criteria. Biometrics 27, 387–397 (1971)

    Article  Google Scholar 

  11. Bock, H.H.: Probability models and hypotheses testing in partitioning cluster analysis. In: Arabie, P., Hubert, L.J., Soete, G.D. (eds.) Clustering and Classification, pp. 377–453. World Scientific Publ., River Edge (1996)

    Chapter  Google Scholar 

  12. Yang, M.S.: On a class of fuzzy classification maximum likelihood procedures. Fuzzy Sets and Systems 57, 365–375 (1993)

    Article  MATH  Google Scholar 

  13. Yang, M.S., Wu, K.L.: A similarity-based robust clustering method. IEEE Trans. Pattern Anal. Machine Intelligence 26, 434–448 (2004)

    Article  Google Scholar 

  14. Yu, J.: General C-means clustering model. IEEE Trans. Pattern Anal. Machine Intelligence 27(8), 1197–1211 (2005)

    Article  Google Scholar 

  15. Windham, M.P.: Statistical models for cluster analysis. In: Diday, E., Lechevallier, Y. (eds.) Symbolic-numeric data analysis and learning, Commack, pp. 17–26. Nova Science, New York (1991)

    Google Scholar 

  16. Govaert, G.: Clustering model and metric with continuous data. In: Diday, E. (ed.) Learning symbolic and numeric knowledge, Commack, pp. 95–102. Nova Science, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, J., Yang, MS., Hao, P. (2009). A Novel Multimodal Probability Model for Cluster Analysis. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02962-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02961-5

  • Online ISBN: 978-3-642-02962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics