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Abstract. Mammographic analysis is a difficult task due to the com-
plexity of image interpretation. This results in diagnostic uncertainty,
thus provoking the need for assistance by computer decision-making
tools. Probabilistic modelling based on Bayesian networks is among the
suitable tools, as it allows for the formalization of the uncertainty about
parameters, models, and predictions in a statistical manner, yet such
that available background knowledge about characteristics of the do-
main can be taken into account. In this paper, we investigate a specific
class of Bayesian networks—causal independence models—for exploring
the dependencies between two breast image views. The proposed method
is based on a multi-stage scheme incorporating domain knowledge and
information obtained from two computer-aided detection systems. The
experiments with actual mammographic data demonstrate the potential
of the proposed two-view probabilistic system for supporting radiologists
in detecting breast cancer, both at a location and a patient level.

1 Introduction

The interpretation of screening mammograms is routine work for radiologists in-
volved in national breast-cancer screening programs. Although routine, it is still
a task fraught with difficulty with much space for improvement. The difficulty
of reading mammograms is due to a number of factors such as variations in fe-
male breast tissue, cancer appearance on a mammogram, and image quality. To
facilitate their screening work, radiologists are typically provided with two pro-
jections, or views, of each breast: mediolateral oblique (MLO), taken under 45◦

angle and showing part of the pectoral muscles, and craniocaudal (CC), taken
head to tail. If cancer is present, then it is expected to be observed in both views.
Observing that radiologists still miss too many cancer cases, offering them some
form of assistance, for example, through computer-aided detection (CAD) sys-
tems is important. However, without exploiting principles that radiologists have
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used successfully for decades, it is unlikely that CAD systems will ever outper-
form highly trained human interpreters. It is only recently that researchers have
started to study ways to incorporate such principle into CAD systems.

Bayesian networks are especially promising in bridging this gap between the
capabilities of humans and computer-aided interpretation, as they have the
virtue of supporting the explicit representation of expert knowledge, handle
uncertainty and missing information, and allow combining multiple types of
knowledge. One of the principles used by radiologists in analysing mammograms
is combining information obtained from different views of the same breast, which
provides the basis for the development of a model for two-view mammographic
analysis presented in this paper. The aim of the current study was two fold:

– to improve the breast cancer detection rate at a location and a patient level
in comparison to a single-view CAD system;

– to get more insight into the mechanisms underlying mammographic analysis,
which then can act as a basis for improvement of current CAD systems.

To achieve these goals, we developed a multi-stage system, using (i) a specific
class of Bayesian networks, called causal independence models, and (ii) knowl-
edge derived from an analysis of the way radiologists interpret mammograms.
The method here builds on our previous research presented in [1,2].

We adopt the following terminology from the breast cancer domain through-
out this paper. By lesion we refer to a physical cancerous object detected in a
patient; see Fig. 2. We call a contoured area on a mammogram a region, marked,
for example, manually by a human or detected automatically by a CAD sys-
tem. A region detected by a CAD system is described by a set of continuous
(real-valued) single-view features, e.g., size, location, contrast. By link we de-
note established correspondence, between two regions in MLO and CC views,
respectively. Every link is described by a set of multi-view features, such as con-
trast difference and location difference. The most recent mammographic exam
for a woman is called current, whereas the previous exam(s) are prior(s).

Previous research has already demonstrated the potential of exploring multi-
view dependencies to improve the automatic detection of breast cancer on mam-
mograms. The approaches in [3,4] focused on improving the lesion-based results,
mostly for prompting purposes, based on the distinction between true and false
positive links of regions in MLO and CC views. In other studies multi-view in-
formation was used to increase both lesion-based and exam-based performance,
i.e., fraction of true positive exams where an exam is true positive if cancer
is found in the MLO or CC views, in comparison to a single-view CAD sys-
tem ([5,6]). In contrast to the other research, which mostly explores neural net-
works or linear discriminant analysis, the probabilistic methodology proposed
in the current study has the advantage of providing not only strong predictive
power but also explicit modelling of expert knowledge and insight in the results
obtained–properties desired especially by medical domain experts.
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2 Causal Probabilistic Modelling

2.1 Bayesian Networks

A Bayesian network is defined as a pair BN = (G, P ), where G is an acyclic
directed graph (ADG) G = (V, E) and P is a joint probability distribution of
the random variables X . There exists a 1–1 correspondence between the nodes
in V and the random variables in X ; the (directed) edges, or arcs, E ⊆ (V × V )
correspond to direct causal relationships between the variables. We say that G
is an I–map of P if any independence represented in G, denoted by A ⊥⊥ GB | C,
with A, B, C ⊆ V mutually disjoint sets of nodes, is satisfied by P , i.e.,

A ⊥⊥ GB | C =⇒ XA ⊥⊥ P XB | XC ,

where A, B and C are sets of nodes of the ADG G and XA, XB and XC are
the corresponding sets of random variables, indexed by A, B, and C. The acyclic
directed graphical part of a Bayesian network G is by definition an I–map of
the associated joint probability distribution P . A Bayesian network BN offers
a compact representation of the joint probability distribution P in terms of
local conditional probability distributions (CPDs), by taking into account the
conditional independence information represented by the ADG.

2.2 Causal Independence Models

Causal independence arises when multiple causes (parent nodes) lead to a com-
mon effect (child node) through interaction of independent uncertain processes.
Causal independence models provide a way to specify interactions among ran-
dom variables in a compact fashion [7]. A definition of the notion of causal
independence is given following the one from [8].

The general structure of a causal-independence model is shown in Fig. 1; it
expresses the idea that causes C1, . . . , Cn influence a given common effect E
through intermediate variables I1, . . . , In; the intermediate variable Ij is con-
sidered to be a contribution of the cause variable Cj to the common effect E.
The interaction function f represents in which way the intermediate effects Ij ,
and indirectly also the causes Cj , interact. This function f is defined in such
way that when a relationship between the Ij ’s and E = true is satisfied, then
it holds that f(I1, . . . , In) = true; otherwise, it holds that f(I1, . . . , In) = false.

C1 C2 . . . Cn

I1 I2 . . . In

Ef

Fig. 1. Causal-independence model
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Note that each variable Ij is only dependent on its associated cause Cj and
the effect variable E. Furthermore, the graph structure expresses that the effect
variable E is conditionally independent of each cause Cj given the associated in-
termediate variable Ij . It is assumed that absent causes do not contribute to the
effect, i.e., P (Ij = true | Cj = false) = 0. As an example from the breast cancer
domain, we can consider the regions detected by a single-view CAD system as
cause variables and presence of breast cancer as the effect variable.

2.3 Exact and Threshold Functions

A natural class of interaction functions f are the symmetric Boolean functions
where the order of the arguments does not matter. There are 2n+1 of such
functions, with n the number of arguments; typical examples are the logical OR,
AND and XOR. In the breast cancer domain, for example, the order of regions
does not play a role in determining whether the breast is or is not cancerous.

A useful feature of symmetric Boolean functions is their decomposability in
terms of exact Boolean functions. The exact function ek checks whether there are
exactly k trues among its arguments, i.e., ek(I1, . . . , In) = true, if

∑n
j=1 Ij = k. In

decision making under uncertainty there is a natural tendency to aggregate avail-
able uncertain information until a threshold is passed. The threshold function τk

is a symmetric Boolean function that allows us to model this principle; it checks
whether there are at least k trues among its arguments, i.e., τk(I1, . . . , In) = true,
if

∑n
j=1 Ij ≥ k. Note that the logical OR function is a threshold function τk with

k = 1 and the AND function is a threshold function τk with k = n. The condi-
tional probability of the effect variable E given the causes C1, . . . , Cn in a noisy
threshold model with interaction function τk is given by:

Pτk
(e | C1, . . . , Cn) =

∑

k≤l≤n

∑

ek(I1,...,In)

n∏

j=1

P (Ij | Cj) . (1)

From Equation (1), it follows that Pτk
(e | C1, . . . , Cn) ≥ Pτk+1(e | C1, . . . , Cn),

for each k ≥ 0, i.e., with a lower value of threshold k the probability of the effect
e is non-decreasing. A more detailed description of exact and threshold functions
can be found in [8]. Causal independence models with threshold functions are
the basic elements for the model presented in the next section.

3 Causal Modelling for Mammographic Analysis

3.1 Two-View Analysis

The objective of a two-view mammographic analysis is to determine whether or
not a breast exhibits cancerous characteristics by establishing correspondences
between regions in the two breast views. Fig. 2 depicts the general multi-view
detection scheme used in this study.

A lesion (cancerous object) is represented by a circle in a view. Clearly, if a le-
sion is detected in both views, the breast is cancerous and the patient has breast
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A1 
B1

A2 B2

LINK11 
LINK12

LINK21

LINK22

MLO CC 

Fig. 2. Schematic representation of mammographic two-view analysis with automati-
cally detected regions. The circle represents a lesion (cancerous object).

cancer. An automatic single-view CAD system attempts to establish whether
there are regions that are suspicious for cancer in each view separately. In the
figure regions A1 and B1 have correctly been detected as lesions, i.e., these are
true positive (TP) regions, whereas regions A2 and B2 are false positive (FP)
regions. Since we deal with projections of the same physical object—the lesion—
correspondence between lesions is represented by a link (LINKij) between re-
gions in each view, Ai and Bj . To every link, a value LINKij = �ij is assigned,
where �ij ∈ {TPTP, TPFP, FPTP, FPFP}. For every region, breast, exam and
patient, a class with values of true (presence of cancer) or false is assumed to
be provided by pathology or a human expert.

3.2 Probabilistic Model

The architecture of our model for two-view mammographic analysis is inspired by
the way radiologists analyse images. They do this by distinguishing several levels
in the interpretation process. At the lowest (image) level, radiologists look for
suspicious regions with cancer characteristics. If suspicious regions are observed
on both views of the same breast, then the (individual) suspiciousness of these
regions increases implying that a lesion is likely to be present. As a result, the
whole breast as well as the exam (patient) is considered suspicious for cancer.

The first steps—identifying suspicious regions and establishing links between
them on both views of the same breast—have already been tackled in previous
research conducted by our group. Here, we build upon the resulting systems to
model the following stages in the mammographic analysis as described above.
Fig. 3 presents an overview of the probabilistic model.

We start by modelling the two-view dependencies between the regions in MLO
and CC. For each of the four link values �ij we consider the links LINKij with
their respective set of multi-view features MVFeat and the correspondence
scores CorrSc(LINKij), CorrSc(LINKji) obtained from the system described in
[2]. We have used logistic regression to reliably compute the conditional probabil-
ity distribution P (LINKij = �ij | CorrSc(LINKij), CorrSc(LINKji),MVFeat).
Thus, for every link LINKij we obtain four probabilities corresponding to each
link value and every link probability is symmetric.
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Fig. 3. Multi-stage causal probabilistic model for two-view mammographic analysis

At the second stage, we compute the probability of a region being cancerous
given the link information about the regions in the complementary view. This is
done by combining link probabilities obtained from the first stage using a causal
independence model, where the link probabilities are the cause variables and the
region probability is the effect variable. In computing the probability of a region
of MLO being cancerous, we combine only the link probabilities for the classes
TPTP and TPFP as they correspond to a TP region of MLO. With respect
to a region of CC, the link classes considered are TPTP and FPTP. These link
probabilities interact through the XOR function, as only one of them can be true.
Next the logical OR is used to represent the knowledge that the probability of
a region being cancerous is true if at least one of the link probabilities is true.



Causal Probabilistic Modelling for Two-View Mammographic Analysis 401

At the third stage, we focus at the breast level where the region probabilities
from the respective MLO and CC views are combined using a causal indepen-
dence model with a threshold function. In the combining scheme, we also use
the suspiciousness measure for the region (NormSc(MLOi), NormSc(CCj)) com-
puted by the single-view CAD system ([2]), which is already a good indicator for
discriminating between normal and cancerous regions. By varying the threshold
k from 1 to m + n (the maximum number of regions in the breast), we try to
get insight into the causal interactions between the regions and the breast. One
can expect that models with small threshold values would be able to distinguish
well between cancerous and normal breasts whereas models with larger values of
k might not be able make the distinction. This expectation follows from the fact
that breast cancer in its early stages is mostly unifocal, i.e., located in a single
region, and not observed on multiple locations in the breast (view).

At the last stage, we combine the probabilities for the left and right breast and
their respective single-view measures for suspiciousness (NormSc(BREAST)) to
compute the probability for an exam being cancerous. Two combination func-
tions are used and compared: the logical OR and the MAX function.

Finally, having patients with more than one exam (current and prior(s) avail-
able), we compute the probability for the patient having cancer by taking the
probability of her current (most recent) exam, which is presumably most infor-
mative, i.e. P (Patient = cancerous) = P (CurrentExam = cancerous).

3.3 Data Description

The data set contains 392 (332 current + 60 prior) exams from which 218 (185
current + 33 prior) were cancerous. The exams of one patient were considered
as independent. All exams contained both MLO and CC views. All cancerous
breasts had one visible lesion in at least one view, which was verified by pathology
reports to be cancerous. Lesion contours were marked by a mammogram reader.

For each image (mammogram) we have a number of regions detected as sus-
picious by the single-view CAD system presented in [2]. This number varies
between 1 and 5 per image (2 and 10 per breast). For each region, based on
the ground-truth data, we have a class value of true (TP) if the detected region
hits a cancerous finding and false (FP) otherwise. Every region from MLO was
linked with every region in CC. Every link was described by a set of multi-view
features. For every link we assigned one of the four link class values depending
on the region class values. We assign binary classes of true (cancerous) and false
(normal) for a breast, exam and patient based on the ground-truth information.

3.4 Training, Evaluation and Results

The proposed model has been built, trained and tested using the Matlab-based
Bayesian Network Toolbox ([9]). The evaluation of the model is done using ten-
fold cross validation with the same data split as the one used in [2]. For every
split of the data, the test set is used only for testing and never for training at
different stages of the model. Thus, we used an unbiased evaluation procedure.
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Table 1. AUCs obtained from MV-CAD-Causal and MV-CAD-kNN at a link level

Link class
Current exams All exams

MV-CAD-Causal MV-CAD-kNN MV-CAD-Causal MV-CAD-kNN

TPTP 0.935 0.918 0.936 0.914
TPFP 0.838 0.660 0.844 0.650
FPTP 0.888 0.809 0.881 0.785
FPFP 0.887 0.829 0.874 0.824

Table 2. AUCs obtained from MV-CAD-Causal and SV-CAD at a breast level

k
Current exams All exams

MV-CAD-Causal SV-CAD MV-CAD-Causal SV-CAD

1 0.919
0.904

0.902
0.8952 0.917 0.899

3 0.872 0.859

Table 3. AUCs obtained from MV-CAD-Causal and SV-CAD at an exam level

k
Current exams All exams

MV-CAD-Causal
SV-CAD

MV-CAD-Causal
SV-CAD

MAX OR MAX OR

1 0.903 0.899
0.877

0.889 0.879
0.8652 0.897 0.892 0.884 0.882

3 0.897 0.891 0.883 0.877

At a link level the performance of our multi-view model is compared with the
multi-view model based on k-Nearest Neighbour (MV-CAD-kNN) presented in [2].
At a region, breast and exam level, the benchmark for comparison is the single-
view CAD system (SV-CAD). For the latter, the likelihood for a view, breast and
exam being cancerous is computed by taking the likelihood of the most suspi-
cious region. The comparison analysis is done using the (Free-response) Receiver
Operating Characteristic ((F)ROC) curve and the Area Under the Curve (AUC).
We next report the test results for all and current (patient) exams at all levels.

Link level. Table 1 presents the AUCs at a link level obtained from LinkModel
and MV-CAD-kNN. The results show that our link model outperforms MV-CAD-kNN
for all link values, with a considerable difference for the link types: TPFP, FPTP
and FPFP. Except the classification improvement, our method has the advan-
tage of making the links symmetric, i.e., for every two regions there is only one
probability per link class.

Region level. To evaluate the performance of both multi- and single-view CAD
systems at a region level we use the FROC curve which plots the lesion-detected
and localized fraction (y-coordinate) vs. the average number of false positives
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Fig. 4. FROC curves for the performance of MV-CAD-Causal and SV-CAD based on all
and current exams at a region level

per image (x-coordinate). Fig. 4 depicts the results for the multi- and single-
view CAD system for all and current exams. It is clear that taking two-view
information into account helps increasing the cancer detection rate while keeping
the number of false positives per image very low. This trend is even clearer for the
regions in the current exams. This is a desirable outcome for screening programs
where radiologists operate at high specificity (low false positive) rates because
of the very low cancer incidence rates.

Breast level. At this level, we compare the performance of BreastModel using
different threshold functions τk, where k = 1, . . . , 10 with respect to SV-CAD.
Table 2 presents the results for the three best multi-view models for all and cur-
rent exams. The results confirm our expectation–the correct detection of at least
one (k = 1) or two cancerous regions (k = 2) is sufficient to classify the breast
as cancerous. For these thresholds the multi-view CAD system outperforms the
single-view CAD system. For threshold functions with k ≥ 4 the performance
of BreastModel drops significantly reaching AUCs of 0.506 when k = 10 for all
and current exams. This result is in line with the domain knowledge and the
local nature of the early developing breast cancer.

Exam level. At the screening practice the most important question eventually
is whether or not a patient is suspicious for cancer and needs to be referred for
further examination. To answer this question, for the current comparison study,
we focus on the results obtained from the last stage of our model (ExamModel)
based on the best three BreastModel with k = 1, 2, 3; see Table 3. For all and
current exams, we observe overall improvement in the breast cancer detection
rate achieved by our two-view system. It is interesting to note that the causal
independence modelling in ExamModel helps improve the performance of the
exam model even if the performance of the breast model is less satisfactory
as for BreastModel with a threshold of k = 3. Furthermore, we notice that
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using MAX as a combination function for the breast probabilities leads to a
better distinction between cancerous and normal exams than using the logical
OR. A possible explanation might be that the latter tends to overestimate the
probability of normal exams by considering both breasts, whereas the MAX
function seems to be more appropriate given that in screening mammography
mostly one of the breasts is cancerous.

4 Conclusion

We presented a unified Bayesian network framework for two-view mammographic
analysis motivated by the radiologists’ practice and the organization of the do-
main. The foundation of the framework is based on the notion of causal inde-
pendence where the interaction between the variables is modelled by threshold
functions. The definition of link used in this paper better captures the corre-
spondences between the regions in both views, in comparison to our previous
approach ([1]), where we used binary links. Through experimental results we
showed that for lower thresholds the proposed two-view probabilistic model not
only is in line with the domain knowledge but also outperforms a single-view
CAD system by increasing the breast cancer detection rate for low false positive
rates, both at a location and a patient level.
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