
ar
X

iv
:0

90
3.

30
72

v1
 [

cs
.D

B
]

18
 M

ar
 2

00
9

Spatial Skyline Queries:
An Efficient Geometric Algorithm

Wanbin Son, Mu-Woong Lee, Hee-Kap Ahn, and Seung-won Hwang

Pohang University of Science and Technology, Korea
{mnbiny, sigliel, heekap, swhwang@postech.ac.kr}

Abstract. As more data-intensive applications emerge, advanced retrieval se-
mantics, such as ranking or skylines, have attracted attention. Geographic infor-
mation systems are such an application with massive spatialdata. Our goal is to
efficiently support skyline queries over massive spatial data. To achieve this goal,
we first observe that the best known algorithmVS2, despite its claim, may fail
to deliver correct results. In contrast, we present a simpleand efficient algorithm
that computes the correct results. To validate the effectiveness and efficiency of
our algorithm, we provide an extensive empirical comparison of our algorithm
andVS2 in several aspects.

1 Introduction

With the advent of data-intensive applications, advanced query semantics, which en-
able efficient and intelligent access to a large scale data, have been actively studied
lately. Geographic information systems (GIS) are such an application, which aims at
supporting efficient access to massive spatial data, as Example 1 illustrates.

Example 1. Consider a hotel search scenario for a business trip to San Francisco, where
the user marks two locations of interest, e.g., the conference venue and an airport, as
Fig. 1(left) illustrates. Given these two query locations,it would be interesting to iden-
tify hotels that are close to both locations. To better illustrate this problem, Fig. 1(right)

location of hotels, the airport, and the venue

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10
Airport

Venue

0 1 2 3 4

1

2

3

4

distance to the airport

di
st

an
ce

 to
 th

e
co

nf
er

en
ce

 v
en

ue

H1
H2

H3

H4

H5

H6

H7

H8

H9

H10

Fig. 1. Hotel search scenario

http://arxiv.org/abs/0903.3072v1

rearranges the hotels with respect to the distance to each query point. From this fig-
ure, we can claim that hotel H3 is more desirable than H10, because H3 is closer to
both query points than H10 is. Such advanced retrieval, byranking the hotels using the
aggregate distance to the given query points, or by findingskyline hotels, will enable
intelligent access to the underlying hotel datasets.

In particular, this paper focuses on supportingskyline queries [1,2,3,4,5] to identify
the objects that are “not dominated” by any other objects,i.e., no other object is closer to
all the given query points simultaneously. For instance, inFig. 1(right), H3 is a skyline
object, while H10 is dominated by H3 and does not qualify as a skyline object.

Skyline queries have gained attention lately, as formulating such queries is highly
intuitive, compared to ranking where users are required to identify ideal distance func-
tions to minimize. However, most of existing skyline algorithms have not been devised
for spatial data and thus do not consider spatial relationships between objects.

Our goal is to efficiently support skyline queries over spatial data. This problem has
already been studied by Sharifzadeh and Shahabi [6] and theypresented two algorithms
for the problem, one of which,VS2, is known to be the most efficient solution thus
far. We claim, however, thatVS2 may fail to identify the correct results. In a clear
contrast, we propose an algorithm for the problem that can identify the exact results in
O(|P |(|S| log |CH(Q)| + log |P |)) time, for the given setP of data points, setQ of
query points, setS of spatial skylines, and theconvex hull of Q, denoted byCH(Q).

Our contributions can be summarized as follows:

– We study the spatial skyline query processing problem, which enables intelligent
and efficient access to massive spatial data.

– We show that the best known algorithm is incomplete in the sense that it may not
return all the skyline points.

– We propose a novel and correct spatial skyline query processing algorithm and
analyze its complexity.

– We extensively evaluate our framework using synthetic dataand validate its effec-
tiveness.

The remainder of this paper is organized as follows. In Section 2, we provide a brief
survey on related work. In Section 3, we observe the drawbacks in the best known al-
gorithm as preliminaries and propose a new algorithm in Section 4. Section 5 discusses
the details of our implementation of the proposed algorithm. In Section 6, we report our
evaluation results.

2 Related Work

This section provides a brief survey on work related to (1) skyline query processing and
(2) spatial query processing.

Skyline computation: Skyline queries were first studied as maximal vectors in [1].
Later, Börzsönyi at el. [2] introduced skyline queries indatabase applications. A num-
ber of different algorithms for skyline computation have been proposed. For example,
Tan et al. [3] (progressive skyline computation using auxiliary structures), Kossmann

et al. [7] (nearest neighbor algorithm for skyline query processing), Papadias et al. [4]
(branch and bound skyline (BBS) algorithm), Chomicki et al.[5] (sort-filter-skyline
(SFS) algorithm leveraging pre-sorting lists), and Godfrey et al. [8] (linear elimination-
sort for skyline (LESS) algorithm with attractive average-case asymptotic complexity).
Recently, there have been active research efforts to address the “curse of dimensional-
ity” problem of skyline queries [9,10,11] using inherent properties of skylines such as
skyline frequency, k-dominant skylines, andk-representative skylines. All these efforts,
however, do not consider spatial relationships between data objects.

Spatial query processing:The most extensively studied spatial query mechanism
is ranking the neighboring objects by the distance to the single query point [12,13,14].
For multiple query points, Papadias et al. [15] studied ranking by the “aggregate” dis-
tance, for a class of monotone functions aggregating the distances to multiple query
points. As these nearest neighbor queries require distancefunction, which is often cum-
bersome to define, another line of research studied skyline query semantics which do
not require such functions. For a spatial skyline query witha single query point, Huang
and Jensen [16] studied the problem of finding spatial locations that are not dominated
with respect to thenetwork distance to the query point. For such query with multiple
query points, Sharifzadeh and Shahabi [6] proposed two algorithms that identify the
skyline locations to the given query points such that no other location is closer to all
query points. While the proposed problem enables intelligent access to spatial data, we
later show that the solution proposed in [6] is incorrect. Incontrast, this paper presents
a correct exact algorithm.

3 Preliminaries

In this section, we introduce some geometric concepts (Section 3.1 and 3.2), and define
our problem (Section 3.3). Then we discuss how the best knownalgorithm fails to
identify the exact answers (Section 3.4).

3.1 Convex Hull

A subsetS of the plane isconvex if and only if for every two pointsp, q ∈ S the whole
line segmentpq is contained inS. Theconvex hull CH(S) of a setS is the intersection
of all convex sets that containsS [17]. The upper chain of CH(S) is the part of the
boundary ofCH(S) from the leftmost point to the rightmost point in clockwise order.
The lower chain is the part of the boundary ofCH(S) from the rightmost point to the
leftmost point in counterclockwise order.

3.2 Voronoi Diagram and Delaunay Graph

For a setP of n distinct points in the plane, the Voronoi diagram ofP , denoted by
Vor(P), is the subdivision of the plane inton cells [17] . Each cell contains only one
point ofP , which is called thesite of the cell. Any pointq in a cell is closer to the site
of the cell than any other site. The Delaunay graph of a point setP is the dual graph of
the Voronoi diagram ofP [17]. Two points ofP have an edge in the Delaunay graph if
and only if the Voronoi cells of these points share an edge inVor(P).

3.3 Problem Definition

In the spatial skyline query problem, we are given two point sets: one is a setP of
data points, and the other is a setQ of query points. The points inP andQ haved-
dimensional coordinate attributes inRd space. The distance functiond(p, q) returns the
Euclidean distance between a pair of pointsp andq, which obeys the triangle inequality.
Before we set the goal of the problem, we need the following definitions.

Definition 1. We say that p1 spatially dominatesp2 if and only if d(p1, q) ≤ d(p2, q)
for every q ∈ Q, and d(p1, q

′) < d(p2, q
′) for some q′ ∈ Q.

Definition 2. A point p ∈ P is a spatial skyline pointwith respect to Q if and only if p
is not spatially dominated by any other point of P .

The goal of the problem is to retrieve all the spatial skylinepoints fromP with respect
toQ. We denote byS the set of spatial skyline points ofP

3.4 Existing Approaches

Though there is a lot of work on skyline queries in literature, little has been known on
the skyline queries for spatial data. Recently, Sharifzadeh and Shahabi [6] studied the
spatial skyline query problem and proposed two algorithms that computeS: Branch-
and-Bound Spatial Skyline Algorithm (B2S2) and Voronoi-based Spatial Skyline Algo-
rithm (VS2).

In VS2, they employed two well-known geometric structures, theVoronoi diagram
of P and theconvex hull of Q, and claimed that these structures reflect the spatial
dominance to some extent, and therefore the algorithm efficiently computesS. In fact,
their experiments show thatVS2 runs2 ∼ 3 times faster than B2S2, andVS2 is known
to be the most efficient solution thus far.

VS2, however, may fail to find all the spatial skyline points: In Lemma 4 of [6], to
verify VS2 they claimed that, for somep ∈ P , if all its Voronoi neighbors and all their
Voronoi neighbors are spatially dominated by other points,p is not a spatial skyline.
ThereforeVS2 simply marksp asdominated and does not consider it afterwards. But
this is not necessarily true.

Fig. 2 shows a counter example to their claim. There are3 query points (q0, q1, q2)
and9 data points. Note that all the data points, except three (p0, p1 andp2), are spatially
dominated byp0 or p1. That is, all the Voronoi neighbors ofp2 are spatially dominated,
andVS2 thus simply marksp2 as “dominated” and does not consider it again. However,
in fact, p2 is a spatial skyline point, as thebisector ℓ⊥(p1, p2) of p1 and p2, i.e., a
perpendicular line to the line segmentpq, intersectsCH(Q). This implies that there is
a query point (q2) closer top2 and thereforep2 is not spatially dominated byp1, as we
will discuss more formally later in Lemma 4. Similarly,p2 is not spatially dominated
by p0, becauseℓ⊥(p0, p2) intersectsCH(Q). Since every bisecting line ofp2 and other
points intersectsCH(Q), we conclude thatp2 is a spatial skyline point.

Moreover, the asymptotic time complexity analysis ofVS2 in [6] is incorrect. The
authors assumed implicitly thatVS2 tests onlyO(|S|) points and claimed that it findsS
in timeO(|S|2|CH(Q)|+

√

|P |). However, a skyline pointp can have at mostO(|P |)

ℓ⊥(p1, p2)

ℓ⊥(p0, p2)

p2

p1

p0

q1

q2

q0

Fig. 2.VS2 fails to findp2 even thoughp2 is a spatial skyline point

p

Fig. 3.A point can have many neighbors

Voronoi neighbors that are all spatially dominated byp, as Fig. 3 illustrates. Since it also
calls |P | heap operations during the iteration, each of which takeslog |P |, the correct
worst-case time complexity ofVS2 must beO(|P |(|S||CH(Q)|+ log |P |)).

4 Computing Spatial Skylines

We first propose a progressive algorithm for the spatial skyline problem, which retrieves
all the spatial skyline points ofP with respect toQ, then we improve this algorithm by
using the Voronoi diagram of the dataset.

We assume the dimensionalityd of data and query points asd = 2 for now, which
can be extended for arbitrary dimension (as we will discuss in Section 7).

Before we explain our algorithms, we show some properties ofspatial skyline that
will be used later on. The following lemma is the contraposition of Definition 1.

Lemma 1. p1 does not spatially dominate p2 if and only if either d(p1, q) > d(p2, q)
for some q ∈ Q, or d(p1, q) = d(p2, q) for every q ∈ Q.

Lemma 2. Let p1, p2 and p3 be three data points such that p2 spatially dominates p3.
If p1 does not spatially dominate p3, it does not spatially dominate p2 ∈ P .

Proof. Sincep1 does not spatially dominatep3, either (1)d(p3, q′) < d(p1, q
′) for some

q′ ∈ Q, or (2)d(p3, q) ≤ d(p1, q) for everyq ∈ Q by Lemma 1.
Case (1). By Def 1,d(p2, q) ≤ d(p3, q) for everyq ∈ Q. This implies thatd(p2, q′) ≤
d(p3, q

′) < d(p1, q
′). Therefore,p1 does not spatially dominatep2 by Lemma 1.

Case (2). Sincep2 spatially dominatesp3, there exists a pointq ∈ Q satisfyingd(p2, q) <
d(p3, q), which implies thatd(p3, q) ≤ d(p1, q). Therefore,p1 does not spatially domi-
natep2 by Lemma 1.

Lemma 3. If some data point p1 is not a spatial skyline point, there always exists a
spatial skyline point p2 that spatially dominates p1.

Proof. Sincep1 is not a spatial skyline point, there exists some data point that spatially
dominatesp1. LetP ′ be the set of the data points that spatially dominatep1, and letp2
be the point which has the minimum sum of distances to allq ∈ Q among points in
P ′. Then it is not difficult to see that for every pointp′ ∈ P ′, there always exists some
query pointq such thatd(p2, q) < d(p′, q). Therefore,p2 is not spatially dominated by
any point inP ′. By Lemma 2,p2 is not spatially dominated by any data point which
does not spatially dominatep1. This means thatp2 is not spatially dominated by any
other data points, sop2 is a spatial skyline point.

We now move on to discuss how to use these properties to reduce(1) the time
required for each dominance test and (2) the number of dominance tests.

4.1 Efficient Spatial Dominance Test

Sharifzadeh and Shahabi [6] showed that we can determine spatial dominance by using
just the convex hull ofQ instead of all query points inQ: If p ∈ P is not dominated by
any other point inP with respect to the vertices ofCH(Q), thenp is a spatial skyline
point. In fact, we can interpret this property in a geometricsetting as follows.

Lemma 4. The bisector of two data points intersects the interior of CH(Q) if and only
if they do not spatially dominate each other.

Proof. If the bisector of two data points intersects the interior ofCH(Q), then for each
of the data points, there exists a vertex ofCH(Q) closer to it than the other. For exam-
ple, in Fig. 4, the bisector ofp1 andp2 intersectsCH(Q), so at least one query point
is closer to one of each data point than the other. Therefore they do not dominate each
other. If the bisector does not intersect the interior ofCH(Q), all the vertices ofCH(Q)
(therefore all the query points) are closer to one data pointthan the other. It means one
data point spatially dominates the other point.

q1

p1

p2
ℓ⊥(p1, p2)

Fig. 4.CH(Q) intersect the bisector of two data points

As we can determine whether a line intersects the convex hullor not inO(log |CH(Q)|)
time by using a binary search technique, the dominance test can be done in the same
time.

Lemma 5. When CH(Q) is given, the dominance test for a pair of data points can be
done in O(log |CH(Q)|) time.

4.2 Bounding the Number of Dominance Test

To make the algorithm faster, we reduce the number of dominance tests. Toward the
goal, for some vertexq of CH(Q), we keep the sorted listA of all the data points in the
ascending order of distance fromq. With this list, we can determine that, if a data point
p1 is located beforep2 in A, thenp2 does not spatially dominatep1 using Lemma 1.
Therefore, together with Lemma 3, it is sufficient to performthe dominance test onp
only with the spatial skyline points that are located beforep in A, as we formally state
below.

Lemma 6. For a data point p, if we have the set of all the spatial skyline points lo-
cated before p in A, we can determine whether p is a spatial skyline or not by O(|S|)
dominance tests.

If there are two data points with the same distance fromq, we can break the tie
by computing the distances from another vertex ofCH(Q). Since no two points have
the same distance from three vertices ofCH(Q), we only need to do this at most three
times.

We now present our algorithm for retrieving all the spatial skylines. As we can see,
the algorithm is surprisingly simple and easy to follow.

Algorithm SpatialSkyline
Input: P,Q

Output: S
1. initialize the arrayA and the listS
2. compute theCH(Q)
3. A←the distances fromq1 ∈ Q to every data point
4. sortA in ascending order
5. for i← 0 to |P | − 1
6. do if A[i] is not spatially dominated byS
7. then insertA[i] to S

8. return S

We now analyze the time complexity ofSpatialSkyline. In line 2, the convex hull
can be constructed inO(|Q| log |Q|) time [17]. Line 4 takesO(|P |) time and sort-
ing in line 5 can be done inO(|P | log |P |) time. In line 8, we perform the domi-
nance testO(|S|) times, each of which takesO(log |CH(Q)|) time. As thefor loop
in lines from 6 to 9 repeats|P | times, the entire loop takesO(|P ||S|| log |CH(Q)|)
time. Since|Q| < |P | in most realistic skyline models, the total time complexityis
O(|P |(|S| log |CH(Q)|+ log |P |)).

4.3 Bypassing Dominance Tests using the Voronoi Diagram

In this section, we discuss how we can further reduce dominance tests by identifying a
subset of skyline results, which we callseed skylines, that can be identified as skyline
points with no dominant test. That is, before we perform the algorithm SpatialSkyline,
we can quickly retrieve thisseed skylines to improve the performance of the algorithm
dramatically, by bypassing dominance tests on these skylines.

To achieve this goal, we first discuss a relationship of the Voronoi diagramVor(P)
of a datasetP andCH(Q). Theorem 1 describes this relationship betweenVor(P) and
CH(Q).

Theorem 1 (Seed Skyline).For given a set P of data points and a set Q of query
points, if the Voronoi cell V(p) of p ∈ P intersects with the boundary of CH(Q) or
CH(Q) contains V(p), then p is a skyline point [6].

Proof. See the proofs of Theorem 1 and 3 in [6].

We now present an efficient algorithm to identify the seed skylines, as the starting
point to perform the algorithmSpatialSkyline to identify the rest of the skyline points.

To retrieve seed skylines efficiently, we first find a Voronoi cell that contains a vertex
of CH(Q) by using typical point location query [17] onVor(P). From this Voronoi cell,
we follow the edges ofCH(Q) and find the Voronoi cells that intersect the edges. Then
we find Voronoi cells that lie insideCH(Q) by traversing the Delaunay graph [17]. Our
enhanced algorithm works as follow. Letei = (qi, qi+1) denote thei-th edge along the
boundary ofCH(Q).

Algorithm SeedSkyline
Input: P , Q
Output: Sseed

1. initializeSseed

2. computeCH(Q) andVor(P)
3. find a Voronoi cellV(p) containingq0
4. for i← 0 to |CH(Q)| − 1
5. find all the Voronoi cellsV(p) intersectingei and insertp to Sseed

6. find all the Voronoi cellsV(p) lying in CH(Q) by traversing Delaunay graph and
insertp to Sseed

7. return Sseed

Note that, we can computeCH(Q) andVor(P) inO(|Q| log |Q|) time and inO(|P | log |P |)
time (line 2), respectively, and locate the Voronoi cellV(p) containing the query point
q0 in O(log |P |) time by point location query onVor(P) (line 3).

p

r

p
′

e0

Fig. 5.Two Voronoi cells share the intersection

To find all the Voronoi cells intersecting an edgee0 = (q0, q1) in (line 5), we
follow the procedure below (also illustrated in Fig 5). We first compute the intersection
r of e0 with the boundary ofV(p), which can be done in timeO(log |P |) using binary
search becauseV(p) is a convex polygon and since we store its edges sorted along the
boundary, as we will discuss more later in Section 5.1. Becauser lies on a boundary
edge shared by two neighboring Voronoi cells, we can get the pointer to the neighboring
Voronoi cellV(p′) in constant time from the Delaunay graph. We repeat this until we
reach the other endpointq1. Then we proceed to the next convex hull edgee1 = (q1, q2)
and repeat the above process until we find all the Voronoi cells intersecting the boundary
of CH(Q).

Note that a Voronoi cell may contain an edge ofCH(Q) in its interior or inter-
sect several edges ofCH(Q) – the number of the intersection tests is thus bounded
by the larger ofO(|S|) andO(|CH(Q)|), i.e., at mostO(|S| + |CH(Q)|). Combin-
ing the number and cost of intersection tests, the overall worst-case time complex-
ity becomesO((|S| + |CH(Q)|) log |P |). Traversing Delaunay graph can be done in
O(|S|) time (line 6). Therefore the total time complexity ofSeedSkyline is O((|S| +
|CH(Q)|) log |P |) if CH(Q) andVor(P) are given.

By combining the algorithmsSpatialSkyline andSeedSkyline, we can retrieve all
spatial skyline points more efficiently than bySpatialSkyline alone. Instead of test-
ing dominance for all data points we can find seed skylines using SeedSkyline, and
then find the other skylines usingSpatialSkyline. We present the combined algorithm
EnhancedSpatialSkyline from this idea as follows.

Algorithm EnhancedSpatialSkyline
Input: P,Q

Output: S
1. initialize the arrayA and the listS
2. compute theCH(Q)
3. S ←SeedSkyline(P,Q)
4. A←the distances fromq1 ∈ Q to every data point
5. sortA in ascending order
6. for i← 0 to |P | − 1
7. do if A[i] is not in S

8. then if A[i] is not spatially dominated byS
9. then insertA[i] to S

10. return S

The asymptotic time complexity ofEnhancedSpatialSkyline is the same as that ofSpatialSkyline.
In practice, however, by bypassing the dominance test for seed skylines, it shows better
performance thanSpatialSkyline.

5 Implementation

In this section, we discuss the details of our implementation of the proposed algorithms,
including how to compute and store the Voronoi diagram (Section 5.1) and the query
convex hull (Section 5.2) to optimize the implementation ofour proposed algorithms.

5.1 Voronoi Diagrams

First, we discuss how we construct the Voronoi diagram and the Delaunay graph of the
data points. As both are extensively studied structures, many algorithms and codes are
available, including ‘Qhull’ [18] which we adopt for our implementation.

However, it is challenging to store the resulting diagram and graph in such a way
that the spatial skyline query computation can be optimized. Toward the goal, we store
the Voronoi cells and Delaunay graph edges as follows.

– cells:As each Voronoi cell is a convex region, we take advantage of this convexity
and store the vertices of each cell in increasing angular order from one point, which
preserves the adjacency of vertex pairs in the cell.

– edges:Every edge of Voronoi cell is shared by a neighboring Voronoicell. To
represent the Delaunay graph, for each edgevivi+1, from a vertexvi of a Voronoi
cell, we need to store the pointer to the neighboring cell sharing the edge.

Using this structure, we can exploit the convexity of a Voronoi region and the De-
launay graph discussed above, by reading only one Voronoi cell block from file. To find
a specific Voronoi cell block, we maintain a file pointer for each Voronoi cell block.

5.2 Convex Hull

To compute the convex hullCH(Q), we use theGraham’s scan algorithm [17]. By
using binary search technique, the dominance test can be done inO(log |CH(Q)|) time,
as discussed in Lemma 5. We implement the test as follows.

Remind that we denote the bisector of two data points,p1 andp2, by ℓ⊥(p1, p2).
As discussed in Section 4.1, we can determine the dominance of two data points by
testing whetherℓ⊥(p1, p2) intersectsCH(Q) or not. If ℓ⊥(p1, p2) intersectsCH(Q), at
least one vertex of the upper chain ofCH(Q) lies aboveℓ⊥(p1, p2), and one vertex of
the lower chain ofCH(Q) lies belowℓ⊥(p1, p2) (See Fig. 4). Letei andei+1 be two
edges of the upper chain sharing a vertexqi such thatℓ⊥(p1, p2) has a slope in between
the maximum and the minimum of the slopes ofei andei+1. If ℓ⊥(p1, p2) intersects
CH(Q), thenqi lies strictly aboveℓ⊥(p1, p2) by convexity ofCH(Q). We can use a
similar argument for the lower chain ofCH(Q). Because the upper and the lower chain
of CH(Q) is sorted in the increasing order of the slopes of edges, we can find these
two vertices by binary search on the slopes of edges. After finding these two vertices
in O(log |CH(Q)|), we can determine the dominance in constant time. WhenCH(Q)
is small, a linear search may outperform binary search, and we use linear search in this
case.

5.3 VS2

As a baseline to compare with our proposed algorithm, we useVS2 proposed in [6].
As the authors could not provide the code, we implement the algorithm using the same
implementation of R∗-tree [19] and the Voronoi diagram we used to implement our
proposed algorithm, to ensure the fairness in empirical comparison.

For constructing the convex hull, we share the same implementation used for our
proposed algorithms, except that, to accommodate the dominance test of complexity
O(|CH(Q)|) discussed in [6], we use linear scan.

In our implementation, R∗-tree is used to find the closest point to one query point.
The leaves of a R∗-tree index contain Voronoi cells which are packed by MBRs for
each, such that we can easily obtain candidate Voronoi cellscontaining a query point.

However, as shown in Section 3.4,VS2 may fail to find all the spatial skyline points
in some cases. Our implementation ofVS2 is revamped to eliminate these cases. Specif-
ically, we remove one condition. For somep ∈ P , if all its Voronoi neighbors and all
their Voronoi neighbors are spatially dominated by other points, then originalVS2 does
not testp ∈ P , but we implementVS2 to test this point for finding all skyline points.

5.4 Enhanced Spatial Skyline (ES)

Our enhanced algorithm works as follows. We compute the Voronoi diagram and the
Delaunay graph of the data points, and store them in the form of the file mentioned

q3

p

q1

q2

Fig. 6.Dominating region of a skyline object

in Section 5.1. To find the point closest to one query point, R∗-tree is used. ThenES
computes the Voronoi cells intersecting the boundary of thequery convex hull and find
all the Voronoi cells lying in the convex hull by traversing the Delaunay graph. As we
only need to see each Voronoi cell at most once during traversing the Delaunay graph
of the data points, we read it from the file when it is required and deallocate it from
memory after passing it by.

In this process, we restrict the region to search for the restof the skylines to the
bounding box containing|Q| circles for|Q| query points (Fig. 6). More precisely, we
set the bounding box as the intersection of all bounding boxes defined by the skyline
subset found so far. After that, we get a list of the candidates in this bounding box by
using R∗-tree. We sort the list in the ascending order of the candidates’ distances to a
query point and process them one by one in this order. When we find a new skyline
point, we reduce the size of the bounding box by taking the intersection of the current
bounding box with the bounding box of this new skyline point.During the process, if
some candidate point is not contained in the bounding box, then we can simply skip the
dominance test.

6 Experiments

In this section, we report our experiment settings (Section6.1) and evaluation results
to validate the efficiency of our framework (Section 6.2). Wecompared our algorithm
for spatial skylining withVS2 in several aspects. As datasets, we used both synthetic
datasets and a real dataset of points of interest (POI) in California.1

1 Available at http://www.cs.fsu.edu/˜lifeifei/SpatialDataset.htm

6.1 Experiment Settings

Synthetic dataset:A synthetic dataset contains up to one million uniformly distributed
random locations in a 2D space. The space of datasets is limited to a unit space,i.e.,
the upper and lower bound of all points are 0 and 1 for each dimension respectively.
More precisely, We used five synthetic datasets with 50K, 100K, 200K, 500K, and 1M
uniformly distributed points.

Using synthetic datasets, we investigated the effect of thenumber of points in a
query|Q|, distribution of the points in a queryσ, and cardinalities of the datasets|P |.
Parameters used in the experiments are summarized in Table 1.

Table 1.Parameters used for synthetic datasets

Parameter Setting (Default)
Dimensionality 2
Dataset cardinality 50K, 100K, 200K, 500K, 1M
Distribution of data points Independent
The number of points in a query 5, 10, 15, 20, 40
Standard deviation of points in a query 0.01, 0.02, 0.04, 0.06, 0.08

Queries were generated through the following steps: (1) We randomly generate a
center point then (2) generate the query points, normally distributed around the cen-
ter. In particular, for each dimension, we generate points that are normally distributed,
with mean as the center point and deviation as user-specifiedparameterσ, which varies
among 0.01, 0.02, 0.04, 0.06, and 0.08 as listed in Table 1. Wegenerated hundred
queries (each consisting of up to 40 query points) for each setting and measured aver-
age response times of all algorithms.

POI dataset: We also validate our proposed framework using real-life dataset. In
particular, we use a POI dataset, which consists of 104,770 locations of 63 different
categories in California. Fig. 7 shows the characteristicsof this POI dataset.

For this POI dataset, we investigated the effect of|Q| andσ. We similarly generated
the queries, by randomly picking one data point as a center point and generating query
points to be normally distributed around the center point, in the same way we generated
synthetic points. The reason why we pick the center point among data points, instead of
generating a random point, is to avoid generating queries toregions with no data points
(such as blank regions in Fig. 7. We generate hundred queriesfor each setting, varying
the number of query points in the range from 5 to 40 and the standard deviation from
0.01 to 0.08, just as in our synthetic data point generation.

We carry out our experiments on a Pentium IV PC running on Linux with Pentium
IV 3.2GHz CPU and 1GB memory, and all the algorithms were coded in C++.

6.2 Efficiency

We validate the efficiency of our framework, over varying|P |, |Q|, andσ.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 7.10,000 sampled points from the California’s POI dataset

100K 200K 500K 1M

10
−1

10
0

10
1

of data

R
es

po
ns

e
tim

e
(s

)

VS2
ES

0

20K

40K

60K

80K

100K

120K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

of data

I/O

50K 100K 200K 500K 1M

Voronoi cells
Index of Voronoi cells
Index of data points

50K 100K 200K 500K 1M
100K

 1M

 10M

 100M

200M

of data

D
om

in
an

ce
 te

st
s

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 8.Effect of the dataset cardinality for synthetic datasets

Fig. 8 shows the effect of the dataset cardinality to response time (Fig. 8a), I/O
cost, measured as the number of accessing (reading) Voronoicells and R∗-tree nodes,
(Fig. 8b), and the number of dominance tests (Fig. 8c).

From Fig. 8a, observe that our proposed algorithmES outperformsVS2 by an order
of magnitude. Similarly in Fig. 8c,ES performs a remarkably smaller number of domi-
nance tests thanVS2, by bypassing the dominance tests for the skylines whose Voronoi
cells intersect the boundary ofCH(Q). Such saving is more significant between sky-
lines, as the number of the dominance tests for skylines is significantly higher.

Fig. 8b shows the I/O costs of the three algorithms– Observe that, three algorithms
perform same number of I/Os on the index of Voronoi cells, because each algorithm
only uses the index to find a Voronoi cell containing a query point. To find non-seed
skylines,ES uses the index of data points, which incurs less I/Os (randomaccesses)
thanVS2. ES, though the size of each I/O (R∗-tree node) is larger than that ofVS2 (a
Voronoi cell), outperformsVS2 by reducing the “number” of I/Os, each of which incurs
a random access, the cost of which dominates the overall access cost, in our scenario of
performing many random accesses of smaller size.

Fig. 9 shows the effect of|Q| to response time, I/O cost, and the number of dom-
inance tests. We observe similar trends as in Fig. 8, except that the response time and
I/Os scale more gracefully over increasing|Q|. This can be explained by the fact that

5 10 15 20 40

10
0

10
1

of points in a query

R
es

po
ns

e
tim

e
(s

)

VS2
ES

0

20K

40K

60K

80K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

of points in a query

I/O

5 10 15 20 40

Voronoi cells
Index of Voronoi cells
Index of data points

5 10 15 20 40
2M

4M

10M

40M

100M

200M

of points in a query

D
om

in
an

ce
 te

st
s

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 9.Effect of the number of query points for synthetic datasets

all the three algorithms useCH(Q), instead of usingQ itself, the size of which grows
much slowly than that ofQ. For instance, even when|Q| is doubled, the size of convex
hull may not change much, if the deviationσ stays the same.

0.01 0.02 0.04 0.06 0.08
10

−1

10
0

10
1

Standard deviation of points in a query

R
es

po
ns

e
tim

e
(s

)

VS2
ES

0

20K

40K

60K

80K

100K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

Standard deviation of points in a query

I/O

0.01 0.02 0.04 0.06 0.08

Voronoi cells
Index of Voronoi cells
Index of data points

0.01 0.02 0.04 0.06 0.08
10K

 100K

 1M

 10M

 100M

200M

Standard deviation of query points

D
om

in
an

ce
 te

st
s

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 10.Effect ofσ of a query for synthetic datasets

Fig. 10 shows the effect ofσ. Similarly to prior results,ES significantly outperforms
VS2 in terms of response time, dominance tests, and I/Os whileVS2 outperforms our
algorithm when query points are crowded in a very small area.This phenomenon can
be explained asES performs more I/Os thanVS2 when the size ofCH(Q) is very small
(Fig. 10b). However,ES starts to outperformVS2 as the size ofCH(Q) grows.

The other slight difference to note is that the response times of the algorithms in-
crease relatively faster asσ increases, as the size ofCH(Q) may increase quadratically
asσ increases. For example, whenσ changes from0.04 to 0.08 (two-fold), the circle
area containing the points within the 95% confidence interval increases four-fold (i.e.,
quadratic), and also the area ofCH(Q) and the points insideCH(Q). As such points
are guaranteed to be skylines, this observation suggests why the number of skylines
increases quadratically asσ increases.

We perform the same sets of experiments on the POI dataset, varying the size of
query andσ, reported in Fig. 11 and 12 respectively. Our observations of these evalu-
ations are roughly consistent with the corresponding evaluation for synthetic datasets.
However, in these experiments, I/Os on Voronoi cells are dominant parts of the I/O
cost. The reason is that, as the cardinality of the dataset isrelatively smaller, the depth

5 10 15 20 40
10

−1

10
0

10
1

of points in a query

R
es

po
ns

e
tim

e
(s

)

VS2
ES

0

10K

20K

30K

40K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

of points in a query

I/O

5 10 15 20 40

Voronoi cells
Index of Voronoi cells
Index of data points

5 10 15 20 40
1M

2M

4M

 10M

20M

40M

of points in a query

D
om

in
an

ce
 te

st
s

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 11.Effect of the number of query points for the POI dataset

0.01 0.02 0.04 0.06 0.08
10

−2

10
−1

10
0

10
1

Standard deviation of points in a query

R
es

po
ns

e
tim

e
(s

)

VS2
ES

0

10K

20K

30K

40K

45K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

Standard deviation of points in a query

I/O

0.01 0.02 0.04 0.06 0.08

Voronoi cells
Index of Voronoi cells
Index of data points

0.01 0.02 0.04 0.06 0.08
20K

 100K

 1M

 10M

50M

Standard deviation of query points

D
om

in
an

ce
 te

st
s

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 12.Effect ofσ of a query for the POI dataset

of the R∗-tree is also small, thus incurring less index I/Os. A similar phenomenon can
be observed in Fig. 8b, when the dataset cardinality is small(50K).

7 Conclusion

We have studied spatial skyline query processing and presented an efficient and cor-
rect exact algorithm. We showed that our algorithm can identify the correct result in
O(|P |(|S| log |CH(Q)| + log |P |)) time, while the best known algorithm may fail to
compute the correct result. Lastly, we empirically validated our proposed algorithm.

So far we have assumed that the points lie in2-dimensional space, and shown how
to efficiently retrieve spatial skyline points using some geometric structures such as the
convex hull and the Voronoi diagram of points in the plane. Wenow turn our atten-
tion to higher dimensional skyline queries. All the definitions, lemmas, and algorithms
described in this paper generalize to higher dimensions: For the set ofn points ind-
dimensional space, the Voronoi diagram of them hasΘ(n⌈d/2⌉) combinatorial com-
plexity [20] and can be computed inO(n log n+ n⌈d/2⌉) time [21,22,23]. The convex
hull of those points hasΘ(n⌊d/2⌋) combinatorial complexity (by the so-calledUpper
Bound Theorem) and can be computed inΘ(n⌊d/2⌋) expected time [17]. The domi-
nance test, the intersection query of a line with a convex polygon used in Section 4.1,
can be generalized for higher dimensions, as intersection query of a hyperplane with
a convex polyhedron in higher dimensions. Similarly, the intersection of an edge with

the Voronoi diagram can also be generalized as the intersection of ad− 1-face with the
Voronoi diagram ind-dimensional space.

For future work, we will study how our algorithms can be extended to support
queries over urban road networks with additional constraints.

References

1. Kung, H.T., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors. In: Journal
of the Association for Computing Machinery

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE ’01: Proc. of the
17th International Conference on Data Engineering. (2001)421

3. Tan, K., Eng, P., Ooi, B.C.: Efficient progressive skylinecomputation. In: VLDB ’01: Proc.
of the 27th International Conference on Very Large Data Bases. (2001) 301–310

4. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD ’03: Proc. of the 2003 ACM SIGMOD International Conference on
Management of Data. (2003) 467–478

5. Chomicki, J., Godfery, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE ’07: Proc.
of the 23rd International Conference on Data Engineering. (2007)

6. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB ’06: Proc. of the 32nd
International Conference on Very Large Data Bases. (2006) 751–762

7. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for
skyline queries. In: VLDB ’02: Proc. of the 28th International Conference on Very Large
Data Bases. (2002) 275–286

8. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB
’05: Proc. of the 31st International Conference on Very Large Data Bases. (2005) 229–240

9. Chan, C.Y., Jagadish, H., Tan, K., Tung, A.K., Zhang, Z.: On high dimensional skylines. In:
EDBT ’06: Proc. of the 10th International Conference on Extending Database Technology.
(2006)

10. Chan, C.Y., Jagadish, H., Tan, K.L., Tung, A.K., Zhang, Z.: Finding k-dominant skylines in
high dimensional space. In: SIGMOD ’06: Proc. of the 2006 ACMSIGMOD International
Conference on Management of Data. (2006)

11. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars:The k most representative skyline
operator. In: ICDE ’07: Proc. of the 23rd International Conference on Data Engineering.
(2007) 86–95

12. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD ’95: Proc.
of the 1995 ACM SIGMOD international conference on Management of data. (1995) 71–79

13. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A cost model for nearest neighbor search
in high-dimensional data space. In: PODS ’97: Proc. of the 16th ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. (1997)78–86

14. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is ”nearest neighbor” mean-
ingful? In: ICDT ’99: Proc. of the 7th International Conference on Database Theory. (1999)
217–235

15. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in
spatial databases. Volume 30. (2005) 529–576

16. Huang, X., Jensen, C.S.: In-route skyline querying for location-based services. In: W2GIS.
(2004)

17. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry : Algo-
rithms and Applications. Third edn. Springer Verlag (2008)

18. : Qhull code for convex hull, delaunay triangulation, voronoi diagram, and halfspace inter-
section about a point. World Wide Web electronic publication (May 1995)

19. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.:The R∗-tree: An efficient and robust
access method for points and rectangles. In: SIGMOD ’90: Proc. of the 1990 ACM SIGMOD
international conference on Management of data. (1990) 322–331

20. Klee, V.: On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik34
(1980) 75–80

21. Chazelle, B.: An optimal convex hull algorithm and new results on cuttings. In: Proc. 32nd
Annu. IEEE Sympos. Found. Comput. Sci. (1991) 29–38

22. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II.
Discrete Comput. Geom.4 (1989) 387–421

23. Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete
Comput. Geom.6 (1991) 423–434

	Spatial Skyline Queries:An Efficient Geometric Algorithm
	Wan-Bin Son, Mu-Woong Lee, Hee-Kap Ahn, Seung-won Hwang

