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Abstract. As more data-intensive applications emerge, advancevatrse-
mantics, such as ranking or skylines, have attracted aitereographic infor-
mation systems are such an application with massive sptial Our goal is to
efficiently support skyline queries over massive spatitd deo achieve this goal,
we first observe that the best known algoritM&, despite its claim, may fail
to deliver correct results. In contrast, we present a sirapteefficient algorithm
that computes the correct results. To validate the effectigs and efficiency of
our algorithm, we provide an extensive empirical comparisebour algorithm
andV$ in several aspects.

1 Introduction

With the advent of data-intensive applications, advanagatrysemantics, which en-
able efficient and intelligent access to a large scale datee been actively studied
lately. Geographic information systems (GIS) are such gi@dion, which aims at
supporting efficient access to massive spatial data, as fefhillustrates.

Example 1. Consider a hotel search scenario for a business trip to Sanmcisco, where
the user marks two locations of interest, e.g., the confereenue and an airport, as
Fig.[d(left) illustrates. Given these two query locatioihgyould be interesting to iden-
tify hotels that are close to both locations. To better thate this problem, Fid.] 1(right)
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Fig. 1. Hotel search scenario
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rearranges the hotels with respect to the distance to eaaly goint. From this fig-
ure, we can claim that hotel H3 is more desirable than H10almex H3 is closer to
both query points than H10 is. Such advanced retrievalabking the hotels using the
aggregate distance to the given query points, or by findigtine hotels, will enable
intelligent access to the underlying hotel datasets.

In particular, this paper focuses on supportikgine queries [12[3.4.5] to identify
the objects that are “not dominated” by any other objeasno other object is closer to
all the given query points simultaneously. For instancé&igq[(right), H3 is a skyline
object, while H10 is dominated by H3 and does not qualify dsyire object.

Skyline queries have gained attention lately, as formugasiuch queries is highly
intuitive, compared to ranking where users are requiredeatify ideal distance func-
tions to minimize. However, most of existing skyline algbms have not been devised
for spatial data and thus do not consider spatial relatipsdietween objects.

Our goal is to efficiently support skyline queries over splatata. This problem has
already been studied by Sharifzadeh and Shahabi [6] angtkesgnted two algorithms
for the problem, one of whichyS?, is known to be the most efficient solution thus
far. We claim, however, thatS* may fail to identify the correct results. In a clear
contrast, we propose an algorithm for the problem that cantify the exact results in
O(|P|(|S|log |CH(Q)| + log |P])) time, for the given sef’ of data points, sef) of
query points, se$' of spatial skylines, and theonvex hull of @, denoted by H(Q).

Our contributions can be summarized as follows:

— We study the spatial skyline query processing problem, vkitables intelligent
and efficient access to massive spatial data.

— We show that the best known algorithm is incomplete in thesséhat it may not
return all the skyline points.

— We propose a novel and correct spatial skyline query praagsdgorithm and
analyze its complexity.

— We extensively evaluate our framework using synthetic dathvalidate its effec-
tiveness.

The remainder of this paper is organized as follows. In 8ai we provide a brief
survey on related work. In Sectidh 3, we observe the drawbarcthe best known al-
gorithm as preliminaries and propose a new algorithm iniGeldt. Sectiolh b discusses
the details of our implementation of the proposed algorittm$ectio 6, we report our
evaluation results.

2 Related Work

This section provides a brief survey on work related to ({Jisk query processing and
(2) spatial query processing.

Skyline computation: Skyline queries were first studied as maximal vectorslin [1].
Later, Borzsonyi at el[]2] introduced skyline queriesimtabase applications. A num-
ber of different algorithms for skyline computation havebe@roposed. For example,
Tan et al. [[8] (progressive skyline computation using darjl structures), Kossmann



et al. [1] (nearest neighbor algorithm for skyline queryqessing), Papadias et all [4]
(branch and bound skyline (BBS) algorithm), Chomicki et[&]. (sort-filter-skyline
(SFS) algorithm leveraging pre-sorting lists), and Gogleeal. [8] (linear elimination-
sort for skyline (LESS) algorithm with attractive averaggse asymptotic complexity).
Recently, there have been active research efforts to aglthrescurse of dimensional-
ity” problem of skyline querieg]9,100,11] using inherentperties of skylines such as
skyline frequency, k-dominant skylines, andk-representative skylines. All these efforts,
however, do not consider spatial relationships betweemalgjects.

Spatial query processing:The most extensively studied spatial query mechanism
is ranking the neighboring objects by the distance to thglsiquery point[[12,13,14].
For multiple query points, Papadias et Al.|[15] studied iragby the “aggregate” dis-
tance, for a class of monotone functions aggregating thardises to multiple query
points. As these nearest neighbor queries require distancton, which is often cum-
bersome to define, another line of research studied skylieeygsemantics which do
not require such functions. For a spatial skyline query wiglingle query point, Huang
and Jensen [16] studied the problem of finding spatial looatthat are not dominated
with respect to theetwork distance to the query point. For such query with multiple
query points, Sharifzadeh and Shahabi [6] proposed tworithhgas that identify the
skyline locations to the given query points such that no olixeation is closer to all
query points. While the proposed problem enables intaitigecess to spatial data, we
later show that the solution proposed|in [6] is incorrecicdntrast, this paper presents
a correct exact algorithm.

3 Preliminaries

In this section, we introduce some geometric concepts @48l and’32), and define
our problem (Sectiofi_3/3). Then we discuss how the best kralgorithm fails to
identify the exact answers (Section|3.4).

3.1 Convex Hull

A subsetS of the plane ionvex if and only if for every two point®, ¢ € S the whole
line segmenpq is contained inS. Theconvex hull CH(S) of a setS is the intersection
of all convex sets that contairfs [17]. The upper chain of CH(S) is the part of the
boundary ofC#(S) from the leftmost point to the rightmost point in clockwiseler.
Thelower chain is the part of the boundary af#(S) from the rightmost point to the
leftmost point in counterclockwise order.

3.2 Voronoi Diagram and Delaunay Graph

For a setP of n distinct points in the plane, the Voronoi diagram Bf denoted by
Vor(P), is the subdivision of the plane intocells [17] . Each cell contains only one
point of P, which is called thesite of the cell. Any pointy in a cell is closer to the site
of the cell than any other site. The Delaunay graph of a peinPss the dual graph of
the Voronoi diagram of? [17]. Two points of P have an edge in the Delaunay graph if
and only if the Voronoi cells of these points share an edgéir{ P).



3.3 Problem Definition

In the spatial skyline query problem, we are given two poetssone is a seP of
data points, and the other is a ggtof query points. The points i and @ haved-
dimensional coordinate attributesltf space. The distance functidfp, q) returns the
Euclidean distance between a pair of popnéndg, which obeys the triangle inequality.
Before we set the goal of the problem, we need the followirfgdiens.

Definition 1. We say that p; spatially dominateg- if and only if d(p1,q) < d(p2,q)
for every ¢ € Q, and d(p1,q’) < d(p2,q’) for someq’ € Q.

Definition 2. A point p € P isa spatial skyline pointith respect to @ if and only if p
is not spatially dominated by any other point of P.

The goal of the problem is to retrieve all the spatial skyfpoints fromP with respect
to Q. We denote bys the set of spatial skyline points &f

3.4 Existing Approaches

Though there is a lot of work on skyline queries in literatditde has been known on
the skyline queries for spatial data. Recently, Sharifhaated Shahabl [6] studied the
spatial skyline query problem and proposed two algorithimas tomputeS: Branch-
and-Bound Spatial Skyline Algorithm &8?) and Voronoi-based Spatial Skyline Algo-
rithm (VS).

In VS?, they employed two well-known geometric structures, theonoi diagram
of P and theconvex hull of @, and claimed that these structures reflect the spatial
dominance to some extent, and therefore the algorithmeffilyi computess. In fact,
their experiments show th&#S’ runs2 ~ 3 times faster than B85%, andVS? is known
to be the most efficient solution thus far.

VS, however, may fail to find all the spatial skyline points: larhma 4 of [[6], to
verify VS they claimed that, for some € P, if all its Voronoi neighbors and all their
Voronoi neighbors are spatially dominated by other poiptis, not a spatial skyline.
ThereforeVS® simply marksp asdominated and does not consider it afterwards. But
this is not necessarily true.

Fig.[2 shows a counter example to their claim. There3agaery points ¢, q1, g2)
and9 data points. Note that all the data points, except thpge( andp,), are spatially
dominated by, or p;. That is, all the Voronoi neighbors pf are spatially dominated,
andVS? thus simply markg- as “dominated” and does not consider it again. However,
in fact, p» is a spatial skyline point, as th@sector ¢, (p1,p2) of p; andps, i.e, a
perpendicular line to the line segmemt, intersectH (Q). This implies that there is
a query point{.) closer top, and therefores is not spatially dominated by,, as we
will discuss more formally later in Lemnid 4. Similarly, is not spatially dominated
by po, becausé | (py, p2) intersectCH(Q). Since every bisecting line @f and other
points intersect§ (Q), we conclude thap, is a spatial skyline point.

Moreover, the asymptotic time complexity analysisv&® in [6] is incorrect. The
authors assumed implicitly th&®s? tests onlyO(|S|) points and claimed that it finds
in time O(|S|?|CH(Q)| + /| P|). However, a skyline point can have at mos?(|P|)



Fig. 3. A point can have many neighbors

Voronoi neighbors that are all spatially dominatecbpgs Fig[B illustrates. Since it also
calls|P| heap operations during the iteration, each of which take&P|, the correct
worst-case time complexity &fS* must beO(|P|(|S||CH(Q)| + log | P])).

4 Computing Spatial Skylines

We first propose a progressive algorithm for the spatialiskydroblem, which retrieves
all the spatial skyline points a? with respect ta), then we improve this algorithm by
using the Voronoi diagram of the dataset.

We assume the dimensionalifyof data and query points a@s= 2 for now, which
can be extended for arbitrary dimension (as we will discosSdictiod V).

Before we explain our algorithms, we show some propertiespafial skyline that
will be used later on. The following lemma is the contragosiof Definition[1.



Lemma 1. p; does not spatially dominate p» if and only if either d(p1,q) > d(p2, q)
for some g € @, or d(p1,q) = d(p2, ) for every ¢ € Q.

Lemma 2. Let p1, po and p3 be three data points such that p, spatially dominates ps.
If p; does not spatially dominate ps, it does not spatially dominate p, € P.

Proof. Sincep; does not spatially dominatg, either (1)d(ps, ¢’) < d(p1,q’) for some
q € Q,or(2)d(ps,q) < d(p1,q) foreveryq € Q by Lemmd1.

Case (1). By Delflid(p2, q) < d(ps, q) for everyq € Q. This implies thati(p,, ¢') <
d(ps,q') < d(p1,q). Thereforep; does not spatially dominage by Lemmd1.

Case (2). Sincg, spatially dominatess, there exists a point € @ satisfyingd(p2, ) <
d(ps, q), which implies thatl(ps, ¢) < d(p1, ¢). Thereforep,; does not spatially domi-
natep, by Lemmél.

Lemma 3. If some data point p; is not a spatial skyline point, there always exists a
spatial skyline point p, that spatially dominates p;.

Proof. Sincep; is not a spatial skyline point, there exists some data pbattspatially
dominatew;. Let P’ be the set of the data points that spatially domipatend letps

be the point which has the minimum sum of distances t@ &l ¢ among points in
P’. Then it is not difficult to see that for every poipite P’, there always exists some
query pointg such thati(ps, ¢) < d(p’, q). Thereforep, is not spatially dominated by
any point inP’. By Lemmal2,p, is not spatially dominated by any data point which
does not spatially dominatg. This means thags is not spatially dominated by any
other data points, sp; is a spatial skyline point.

We now move on to discuss how to use these properties to rgddiche time
required for each dominance test and (2) the number of doro@gests.

4.1 Efficient Spatial Dominance Test

Sharifzadeh and Shahabi [6] showed that we can determitialspa@minance by using
just the convex hull of) instead of all query points i@: If p € P is not dominated by
any other point inP with respect to the vertices 6fH(Q), thenp is a spatial skyline
point. In fact, we can interpret this property in a geometgtting as follows.

Lemma 4. The bisector of two data pointsintersects theinterior of CH(Q) if and only
if they do not spatially dominate each other.

Proof. If the bisector of two data points intersects the interiof€ &f(Q), then for each
of the data points, there exists a vertexCé{(Q) closer to it than the other. For exam-
ple, in Fig.[4, the bisector af; andp, intersectCH(Q), so at least one query point
is closer to one of each data point than the other. Therefieyedo not dominate each
other. If the bisector does not intersect the interiac€ Bf(Q), all the vertices o€ H(Q)
(therefore all the query points) are closer to one data ptbart the other. It means one
data point spatially dominates the other point.



Fig.4.CH(Q) intersect the bisector of two data points

As we can determine whether a line intersects the convexhatht inO(log [CH(Q)|)
time by using a binary search technique, the dominance &esbe done in the same
time.

Lemma 5. When CH(Q) is given, the dominance test for a pair of data points can be
t

donein O(log [CH(Q)|) time.

4.2 Bounding the Number of Dominance Test

To make the algorithm faster, we reduce the number of dorsmaests. Toward the
goal, for some vertey of CH(Q), we keep the sorted list of all the data points in the
ascending order of distance framWith this list, we can determine that, if a data point
p1 is located beforgs in A, thenp, does not spatially dominatg using Lemmall.
Therefore, together with Lemnia 3, it is sufficient to perfdira dominance test gn
only with the spatial skyline points that are located befoine A, as we formally state
below.

Lemma 6. For a data point p, if we have the set of all the spatial skyline points lo-
cated before p in A, we can determine whether p is a spatial skyline or not by O(|S|)
dominancetests.

If there are two data points with the same distance figrwe can break the tie
by computing the distances from another verteX®f(Q). Since no two points have
the same distance from three vertice€®f(Q), we only need to do this at most three
times.

We now present our algorithm for retrieving all the spatiglimes. As we can see,
the algorithm is surprisingly simple and easy to follow.

Algorithm Spatial Skyline
Input: P,Q



Output: S
1. initialize the array4 and the listS

2. compute th€H(Q)

3. A«thedistances from; € @) to every data point

4. sortAin ascending order

5. fori« 0to|P]—1

6 do if A[i] is not spatially dominated by

7 theninsertA[i] to S

8. return S

We now analyze the time complexity [@batialSkyling In line[d, the convex hull
can be constructed i0(|Q]log |Q|) time [17]. Line[4 takesO(|P|) time and sort-
ing in line[ can be done i®(|P|log |P|) time. In line[8, we perform the domi-
nance tesO(]S|) times, each of which take®(log |CH(Q)]|) time. As thefor loop
in lines from[® to[® repeatk”| times, the entire loop taked(|P||S||log [CH(Q)|)
time. Since|Q| < |P| in most realistic skyline models, the total time complexgy
O(|P[(|S[log [CH(Q)| + log [ P]))-

4.3 Bypassing Dominance Tests using the Voronoi Diagram

In this section, we discuss how we can further reduce donsmgasts by identifying a
subset of skyline results, which we ca#ied skylines, that can be identified as skyline
points with no dominant test. That is, before we perform tigerdthm[SpatialSkyling
we can quickly retrieve thiseed skylines to improve the performance of the algorithm
dramatically, by bypassing dominance tests on these sg/lin

To achieve this goal, we first discuss a relationship of thekoi diagramVor (P)
of a datasef” andCH(Q). Theorenill describes this relationship betw&en( P) and

CH(Q).

Theorem 1 (Seed Skyline)For given a set P of data points and a set Q of query
points, if the Voronoi cell V(p) of p € P intersects with the boundary of CH(Q) or
CH(Q) contains V(p), then p is a skyline point [[6].

Proof. See the proofs of Theorem 1 and 3[ih [6].

We now present an efficient algorithm to identify the seediskg, as the starting
point to perform the algorithfBpatialSkyling to identify the rest of the skyline points.

To retrieve seed skylines efficiently, we first find a Vororali that contains a vertex
of CH(Q) by using typical point location query[1L7] dfor(P). From this Voronoi cell,
we follow the edges of 74 (Q) and find the Voronoi cells that intersect the edges. Then
we find Voronoi cells that lie insidé#(Q) by traversing the Delaunay graph[17]. Our
enhanced algorithm works as follow. Let= (¢;, ¢;11) denote the-th edge along the
boundary oCH(Q).

Algorithm SeedSkyline
Input: P, Q
Output: Sseeq



initialize Seeq
computeC(Q) andVor(P)
find a Voronoi cellV(p) containinggo
fori«+ 0to |[CH(Q)| -1
find all the Voronoi cell®’(p) intersectingz; and inserp to Sgeeq
find all the Voronoi cell®’(p) lying in CH(Q) by traversing Delaunay graph and
insertp to Sseeq
return Sseeq

ouALNE

~

Note that, we can compu (Q) andVor(P) in O(|Q| log |Q|) time and inO(| P|log | P|)
time (line[2), respectively, and locate the Voronoi d&{p) containing the query point
qo in O(log | P|) time by point location query oNor(P) (line[3).

Fig. 5. Two Voronoi cells share the intersection

To find all the Voronoi cells intersecting an edgg = (go,q1) in (line [H), we
follow the procedure below (also illustrated in Eig 5). Wetficompute the intersection
r of eg with the boundary oV (p), which can be done in tim@(log | P|) using binary
search becausg(p) is a convex polygon and since we store its edges sorted aheng t
boundary, as we will discuss more later in Secfiod 5.1. Beealies on a boundary
edge shared by two neighboring Voronoi cells, we can getolirger to the neighboring
Voronoi cell V(p') in constant time from the Delaunay graph. We repeat thid weti
reach the other endpoigt. Then we proceed to the next convex hull edge= (q1, ¢2)
and repeat the above process until we find all the Vorona agkrsecting the boundary
of CH(Q).

Note that a Voronoi cell may contain an edged¥(Q) in its interior or inter-
sect several edges 6f{(Q) — the number of the intersection tests is thus bounded
by the larger ofO(]S|) and O(|CH(Q)]), i.e., at mostO(|S| + |[CH(Q)|). Combin-
ing the number and cost of intersection tests, the overatbtaaase time complex-
ity becomesO((|S| + [CH(Q)]) log|P|). Traversing Delaunay graph can be done in
O(]S]) time (line[8). Therefore the total time complexity[BéedSkylindis O((|S| +
[CH(Q)])log|P|) if CH(Q) andVor(P) are given.



By combining the algorithm&patialSkyling and[SeedSkyling we can retrieve all

spatial skyline points more efficiently than alone. Instead of test-
ing dominance for all data points we can find seed skylinesgiSeedSkyling and

then find the other skylines usiff§patialSkyling We present the combined algorithm
[EnhancedSpatial Skyling from this idea as follows.

Algorithm EnhancedSpatial Skyline
Input: P,Q

Output: S

1. initialize the array4 and the listS
2. compute th€H(Q)

3. S +{SedYINg P, Q)

4. A<«the distances frony € @ to every data point
5. sortA in ascending order

6. fori+ Oto|P|—1

7 do if Afi]is notin S

8 then if A[i] is not spatially dominated by
9. theninsertA[i] to S

10. return S

The asymptotic time complexity ffnhancedSpatialSkylindis the same as that[8patial Skyline
In practice, however, by bypassing the dominance test fat skylines, it shows better

performance thaBpatialSkyling

5 Implementation

In this section, we discuss the details of our implementatidhe proposed algorithms,
including how to compute and store the Voronoi diagram (@e&.1) and the query
convex hull (Sectiofi 5]2) to optimize the implementatiomof proposed algorithms.

5.1 Voronoi Diagrams

First, we discuss how we construct the Voronoi diagram aadtelaunay graph of the
data points. As both are extensively studied structuresyraljorithms and codes are
available, including ‘Qhull’[[18] which we adopt for our irf@mentation.

However, it is challenging to store the resulting diagrard graph in such a way
that the spatial skyline query computation can be optimiZed/ard the goal, we store
the Voronoi cells and Delaunay graph edges as follows.

— cells: As each Voronoi cell is a convex region, we take advantagkisitbnvexity
and store the vertices of each cell in increasing angulardrdm one point, which
preserves the adjacency of vertex pairs in the cell.

— edges:Every edge of Voronoi cell is shared by a neighboring Vorocell. To
represent the Delaunay graph, for each e@ge; 1, from a vertexv; of a Voronoi
cell, we need to store the pointer to the neighboring celishahe edge.



Using this structure, we can exploit the convexity of a Varioregion and the De-
launay graph discussed above, by reading only one Vorotidiloek from file. To find
a specific Voronoi cell block, we maintain a file pointer focka/oronoi cell block.

5.2 Convex Hull

To compute the convex hull#(Q), we use theGraham's scan algorithm [17]. By
using binary search technique, the dominance test can leeid6rlog [CH(Q)|) time,
as discussed in Lemrha 5. We implement the test as follows.

Remind that we denote the bisector of two data poiptsandps, by ¢, (p1, p2).
As discussed in Sectidn 4.1, we can determine the dominaniveoadata points by
testing whethef | (pi1, p2) intersect€H(Q) or not. If £, (p1, p2) intersect€H(Q), at
least one vertex of the upper chain@#(Q) lies above/ (p1,p2), and one vertex of
the lower chain oCH(Q) lies below/, (p1, p2) (See Fig[}). Let; ande;;; be two
edges of the upper chain sharing a verteguch tha? | (p1, p2) has a slope in between
the maximum and the minimum of the slopesepfande; 1. If £, (p1,p2) intersects
CH(Q), theng; lies strictly above’, (p1,p2) by convexity ofCH(Q). We can use a
similar argument for the lower chain 6 (Q). Because the upper and the lower chain
of CH(Q) is sorted in the increasing order of the slopes of edges, wdicd these
two vertices by binary search on the slopes of edges. Aftdirfinthese two vertices
in O(log |CH(Q)|), we can determine the dominance in constant time. WI(Q)
is small, a linear search may outperform binary search, andse linear search in this
case.

53 V&2

As a baseline to compare with our proposed algorithm, weM®eproposed in[[5].

As the authors could not provide the code, we implement therdhm using the same
implementation of R-tree [19] and the Voronoi diagram we used to implement our
proposed algorithm, to ensure the fairness in empiricalpzaomon.

For constructing the convex hull, we share the same impléatien used for our
proposed algorithms, except that, to accommodate the doointest of complexity
O(|CH(Q)|) discussed in[6], we use linear scan.

In our implementation, Rtree is used to find the closest point to one query point.
The leaves of a Rtree index contain Voronoi cells which are packed by MBRs fo
each, such that we can easily obtain candidate Voronoi cefigining a query point.

However, as shown in Sectibn BMS? may fail to find all the spatial skyline points
in some cases. Our implementatiotMs is revamped to eliminate these cases. Specif-
ically, we remove one condition. For some= P, if all its Voronoi neighbors and alll
their Voronoi neighbors are spatially dominated by othen{sp then originaVS’ does
not testp € P, but we implemenVS? to test this point for finding all skyline points.

5.4 Enhanced Spatial Skyline ES)

Our enhanced algorithm works as follows. We compute the Mordiagram and the
Delaunay graph of the data points, and store them in the fdrtheofile mentioned



Fig. 6. Dominating region of a skyline object

in Sectio 5.1L. To find the point closest to one query poiritiige is used. ThekS
computes the Voronoi cells intersecting the boundary ofjtinery convex hull and find
all the Voronoi cells lying in the convex hull by traversintgtDelaunay graph. As we
only need to see each Voronoi cell at most once during trangethe Delaunay graph
of the data points, we read it from the file when it is required deallocate it from
memory after passing it by.

In this process, we restrict the region to search for the atthe skylines to the
bounding box containing)| circles for|Q| query points (Figl6). More precisely, we
set the bounding box as the intersection of all bounding babedined by the skyline
subset found so far. After that, we get a list of the cand®latehis bounding box by
using R'-tree. We sort the list in the ascending order of the candglalistances to a
query point and process them one by one in this order. Whenngeafinew skyline
point, we reduce the size of the bounding box by taking therssction of the current
bounding box with the bounding box of this new skyline pobitiring the process, if
some candidate point is not contained in the bounding bex e can simply skip the
dominance test.

6 Experiments

In this section, we report our experiment settings (Sedidh and evaluation results

to validate the efficiency of our framework (Sectlonl6.2). ¥eéenpared our algorithm

for spatial skylining withVS? in several aspects. As datasets, we used both synthetic
datasets and a real dataset of points of interest (POI) iifo@za[]

! Available at http://www.cs.fsu.edu/ lifeifei/Spatizdfaset.htm



6.1 Experiment Settings

Synthetic dataset:A synthetic dataset contains up to one million uniformiytidsited
random locations in a 2D space. The space of datasets igdirota unit space,e.,
the upper and lower bound of all points are 0 and 1 for each mhina respectively.
More precisely, We used five synthetic datasets with 50KK1Q00K, 500K, and 1M
uniformly distributed points.

Using synthetic datasets, we investigated the effect ohtimaber of points in a
query|Q|, distribution of the points in a query, and cardinalities of the datasef3|.
Parameters used in the experiments are summarized in[Table 1

Table 1. Parameters used for synthetic datasets

Parameter Setting (Defaplt
Dimensionality 2

Dataset cardinality 50K, 100K, 200K, 500&M
Distribution of data points Independent

The number of points in a query 5, 10,29, 40

Standard deviation of points in a query 0.01, 0.02, 0.05,@®M8

Queries were generated through the following steps: (1) &delamly generate a
center point then (2) generate the query points, normally distributediad the cen-
ter. In particular, for each dimension, we generate pohs @are normally distributed,
with mean as the center point and deviation as user-spepdietnetet, which varies
among 0.01, 0.02, 0.04, 0.06, and 0.08 as listed in Table 1g&verated hundred
queries (each consisting of up to 40 query points) for eattlmgeand measured aver-
age response times of all algorithms.

POI dataset: We also validate our proposed framework using real-lifaskt. In
particular, we use a POI dataset, which consists of 104,@@#tibns of 63 different
categories in California. Fifl] 7 shows the characteristichis POl dataset.

For this POI dataset, we investigated the effedtfifando. We similarly generated
the queries, by randomly picking one data point as a ceniat pod generating query
points to be normally distributed around the center poimthe same way we generated
synthetic points. The reason why we pick the center pointrajata points, instead of
generating a random point, is to avoid generating queriesgions with no data points
(such as blank regions in Fig. 7. We generate hundred queriesch setting, varying
the number of query points in the range from 5 to 40 and thedstahdeviation from
0.01t0 0.08, just as in our synthetic data point generation.

We carry out our experiments on a Pentium IV PC running on Xiwith Pentium
IV 3.2GHz CPU and 1GB memory, and all the algorithms were dadeéC++.

6.2 Efficiency

We validate the efficiency of our framework, over varyidg, |Q|, ando.



o

——vs2 C_lvs2
100M| s
10"
2 f % 10M
2
100 ]
g £
& Y]
107
i g2 8¢ g8 By g Lo
100K 200K 500K i 50K 100K 200K 500K ™M 50K 100K 200K 500K M
# of data #of data # of data
(a) Response time (b) I/O0 (c) Dominance tests

Fig. 8. Effect of the dataset cardinality for synthetic datasets

Fig.[8 shows the effect of the dataset cardinality to respdimse (Fig.[8a), 1/0
cost, measured as the number of accessing (reading) Vocehsiand R-tree nodes,
(Fig.[8b), and the number of dominance tests (Hig. 8c).

From Fig[8a, observe that our proposed algorifBoutperforms/S? by an order
of magnitude. Similarly in Fid.J8d&S performs a remarkably smaller number of domi-
nance tests thavS?, by bypassing the dominance tests for the skylines whosendr
cells intersect the boundary 6f1(Q). Such saving is more significant between sky-
lines, as the number of the dominance tests for skylinegrsfgtantly higher.

Fig.[8b shows the I/0 costs of the three algorithms— Obsérate three algorithms
perform same number of I/Os on the index of Voronoi cells,dose each algorithm
only uses the index to find a Voronoi cell containing a querynpado find non-seed
skylines,ES uses the index of data points, which incurs less 1/0s (randooesses)
thanVS?. ES, though the size of each 1/O {Rree node) is larger than that ¥&° (a
Voronoi cell), outperform¥S? by reducing the “number” of 1/0s, each of which incurs
arandom access, the cost of which dominates the overakscost, in our scenario of
performing many random accesses of smaller size.

Fig.[d shows the effect dfy| to response time, 1/O cost, and the number of dom-
inance tests. We observe similar trends as in[Hig. 8, exbaptlie response time and
I/Os scale more gracefully over increasifigl. This can be explained by the fact that
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all the three algorithms ugg#(Q), instead of using? itself, the size of which grows
much slowly than that of). For instance, even whe®| is doubled, the size of convex
hull may not change much, if the deviatierstays the same.
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Fig. 10.Effect of o of a query for synthetic datasets

Fig.[10 shows the effect of. Similarly to prior resultsESsignificantly outperforms
VS in terms of response time, dominance tests, and 1/0s Wisteoutperforms our
algorithm when query points are crowded in a very small aféé phenomenon can
be explained aESperforms more 1/0s tha¥S? when the size of #(Q) is very small
(Fig.[10b). HoweverE=Sstarts to outperforivS’ as the size of H(Q) grows.

The other slight difference to note is that the responsegiaighe algorithms in-
crease relatively faster asincreases, as the size@H () may increase quadratically
aso increases. For example, wherchanges front).04 to 0.08 (two-fold), the circle
area containing the points within the 95% confidence intenaaeases four-foldi(e.,
quadratic), and also the area@#.(Q) and the points insidé?(Q). As such points
are guaranteed to be skylines, this observation suggestshehnumber of skylines
increases quadratically asincreases.

We perform the same sets of experiments on the POI datasgingdhe size of
query ands, reported in Figl_Il1l and 12 respectively. Our observatidribase evalu-
ations are roughly consistent with the corresponding exetln for synthetic datasets.
However, in these experiments, 1/0s on Voronoi cells are idant parts of the 1/0
cost. The reason is that, as the cardinality of the datasetatively smaller, the depth
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of the R'-tree is also small, thus incurring less index 1/0s. A simdaenomenon can
be observed in Fidl]8b, when the dataset cardinality is s{5@K).

7 Conclusion

We have studied spatial skyline query processing and ptegem efficient and cor-
rect exact algorithm. We showed that our algorithm can ifiettte correct result in
O(|P|(|S]1log |CH(Q)| + log|P])) time, while the best known algorithm may fail to
compute the correct result. Lastly, we empirically valathour proposed algorithm.

So far we have assumed that the points lie-dimensional space, and shown how
to efficiently retrieve spatial skyline points using somemetric structures such as the
convex hull and the Voronoi diagram of points in the plane. Mg& turn our atten-
tion to higher dimensional skyline queries. All the defimits, lemmas, and algorithms
described in this paper generalize to higher dimensionstheset ofn points ind-
dimensional space, the Voronoi diagram of them 84s?/2!) combinatorial com-
plexity [20] and can be computed @\(n log n + n/%/21) time [21[2Z,23]. The convex
hull of those points ha®(nl%/2]) combinatorial complexity (by the so-callédpper
Bound Theorem) and can be computed i®(n!4/2]) expected time[[17]. The domi-
nance test, the intersection query of a line with a conveyxgmi used in Sectidn 4.1,
can be generalized for higher dimensions, as intersectienycpf a hyperplane with
a convex polyhedron in higher dimensions. Similarly, theilisection of an edge with



the Voronoi diagram can also be generalized as the intéogenttad — 1-face with the
Voronoi diagram ind-dimensional space.

For future work, we will study how our algorithms can be exted to support
queries over urban road networks with additional constsain
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