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Abstract. We introduce TOQL, a query language for querying time
information in ontologies. TOQL is a high level query language that
handles ontologies almost like relational databases. Queries are issued
as SQL-like statements involving time (i.e., time points or intervals)
or high-level ontology concepts that vary in time. Although indepen-
dent from TOQL, this work suggests a mechanism for representing time
evolving concepts in ontologies based on the four-dimensional perduran-
tist mechanism. However, TOQL prevents users from being familiar with
the representation of time in ontologies. To show proof of concept, an ap-
plication has been developed that supports translation and execution of
TOQL queries on temporal ontologies combined with a reasoning mech-
anism based on event calculus. A real world temporal ontology is also
implemented on which several TOQL example queries are processed and
discussed.

1 Introduction

Dealing with information that changes in time over the semantic web is a difficult
problem to deal with. Recent advances in semantic web technology suggest that
this can be achieved by adding the concepts of time and change in a rich seman-
tics ontology representation, allowing time to affect the status of the described
concepts [13, 6].

Ontologies offer the means for representing high level concepts, their prop-
erties and their interrelationships. Dynamic or temporal ontologies will in ad-
dition enable representation of time evolving information in ontologies through
e.g., versioning [8] or the four-dimensional perdurantist approach [15]. According
to this approach, all entities are perdurants: each entity is considered to be an
event and has a start and an end point. An entity can be seen as a “space-time
worm”, with the slices of the worm being temporal parts (time slices) of the
entity. A temporal ontology query language is then needed to support searching
for temporal concepts and time related information.

The current state of the art of ontology languages requires submitting a
textual, description logic (DL) query or SQL-like query [17]. However the logic



and syntax of such languages necessitates a tedious effort from users before being
able to write queries effectively. State-of-the-art ontology query languages such
as SeRQL [1] or SPARQL [11] have limited (if not at all) expressive power for
handling time in queries (their syntax does not support temporal operators).
The present work addresses all these issues.

We introduce TOQL (Temporal Ontology Querying Language), a high-level
query language for querying (time) information in ontologies. TOQL handles
ontologies almost like relational databases. Queries in TOQL are issued as SQL
statements involving time and high-level ontology concepts that (may) vary in
time. TOQL maintains the basic structure of an SQL language (SELECT -
FROM - WHERE) and treats the classes and the properties of an ontology
almost like tables and columns of a database. TOQL supports queries not only
on static information in the static part of the ontology (as conventional ontology
query languages do) but also supports queries on time evolving information
instantiated to the ontology (dynamic part). TOQL supports Allen operators
that allow comparisons between time intervals, and the operator AT that allows
comparisons between time points or time intervals.

Besides TOQL syntax, this work demonstrates, full query functionality on
ontologies in OWL. This includes query translation and execution of temporal
queries along with a mechanism for representing time evolving concepts in on-
tologies inspired by the four-dimensional perdurantist (4D fluent) approach [16].
However, TOQL syntax is independent of any temporal representation and can
work with any other mechanism (e.g., versioning). As such, the 4D fluent (per-
durantist) mechanism is not part of the language and it is not visible to the user
(so the user need not be familiar with peculiarities of the underlying mechanism
for time information representation).

In the accompanying implementation, TOQL queries are first translated into
equivalent statements in SeRQL which are then executed on the underlying OWL
temporal ontology. The query interpreter addresses information in the ontology
to generate a projection (in time) of the evolution of the acquired ontology
concepts. To show proof of concept, a real world temporal ontology (for enterprise
information) is also implemented on which several TOQL example queries are
discussed.

Related work in the field of knowledge representation is discussed in Section 2.
This includes, discussion on temporal and ontology query languages along with
issues related to representing time evolving information in ontologies. The TOQL
language is presented in Section 3 (a formal description of the language’s syntax
in BNF is given in [3]). The implementation of TOQL is discussed in Section 4,
followed by conclusions and issues for future work in Section 5. Several query
examples are also given and discussed throughout the work.

2 Background and Related Work

Several representation languages are defined for the Semantic Web, the most
important of them are referred to as the OWL-family [10] of ontology languages



(OWL-Full, OWL-DL and OWL-Lite) for ontology building and knowledge rep-
resentation. OWL-S [5] is an ontology for describing properties and capabilities
of web services. Within OWL-S, a sub-ontology, OWL-Time [6] has been devel-
oped that is much simpler and provides a vocabulary for expressing the most
needed time-related facts.

Dealing with information that changes over time is a critical problem in
Knowledge Representation (KR). Representation languages such as OWL, RDF
(which are based on description logics),the same as frame-based and object-
oriented languages (F-logic) are all based on binary relations. Binary relations
simply connect two instances (e.g., the employee with the company) without any
temporal information. Nevertheless, time representation using OWL is feasible,
although complicated [16].

2.1 Representation of Time

The OWL-Time temporal ontology describes the temporal content of Web pages
and the temporal properties of Web services. Apart from language constructs for
the representation of time in ontologies, there is still a need for mechanisms for
the representation of the evolution of concepts (events) in time.This is related
to the problem of the representation of time in temporal (relational and object
oriented) databases [18]. Existing methods are relying mostly on temporal Entity
Relation (ER) models [19] taking into account valid time (i.e., time interval
during which a relation holds), transaction time (i.e., time at which a database
entry is updated) or both. Also time is represented by time points, intervals or
finite sets of intervals. However, time representation in OWL differs because (a)
OWL semantics are not equivalent to ER model semantics (e.g., OWL adopts the
Open World Assumption while ER model adopts the Closed World Assumption)
and (b) relations in OWL are restricted to binary ones. Time representation in
Semantic Web can be achieved using Temporal Description logics, Reification,
Versioning or 4D-fluents.

Temporal Description Logics (TDL) extend Description Logics (DL) with ad-
ditional time representation operators and semantics such as “until” and“always
in the past”. Many TDLs have been proposed [20, 21] with the most expresive
of them being undecidable. Contrary to other approaches, temporal description
logics offer additional semantics and reasoning mechanisms and they don’t suf-
fer from data redundancy. All other approaches except TDLs require temporal
semantics to be defined using an additional set of rules combined with a reason-
ing mechanism, as we did in this work. TDLs disadvantage is that they require
extending OWL to represent time (by introducing additional operators and se-
mantics), while the other approaches can be implemented directly using OWL.

Reification is a general puprose technique for perpesenting n-ary relations
using a language such as OWL that permits only binary relations. Specifically,
an n-ary relation is represented as a new object that has all the arguments of
the n-ary relation as attributes. For example if the relation R holds between
objects A and B at time t, expressed as R(A,B,t), this is represented in OWL
using reification as an object R with attributes A,B and t. Reification suffers



from two disadvantages: (a) data redundancy, because a new object is created
whenever a temporal relation has to be represented (this is a problem common
to all approaches based on non temporal Description Logics such as OWL-DL)
and (b) offers limited OWL reasoning capabilities [16].

Versioning [8] suggests that the ontology has different versions (one per in-
stance of time). When a change takes place, a new version is created. Versioning
suffers from several disadvantages: (a) changes even on single attributes require
that a new version of the ontology be created leading to information redundancy
(b) searching for events occurred at time instances or during time intervals re-
quires exhaustive searches in multiple versions of the ontology,(c) it is not clear
how the relation between evolving classes is represented. Furthermore, ontology
languages such as OWL [10] are based on binary relations (relations connecting
two instances) with no time dimension.

The 4D-fluent (perdurantist) approach [15] shows how temporal information
can be represented effectively in OWL. Notice though that it still sufferers from
data redundancy. Concepts in time are represented as 4-dimensional objects
with the 4th dimension being the time. Time instances and time intervals are
represented as instances of a time interval class which in turn is related with
time concepts varying in time. Changes occur on the properties of the temporal
part of the ontology keeping the entities of the static part unchanged.

Fig. 1. Schematic representation of the concept of time determined ontology.

As illustrated in Figure 11 a development in time can only be described by a
series of snapshot ontologies each superimposing itself on the previous version of
the described reality (left). The 4D-fluent (perdurantist) ontology (on the right)
allows the concepts of time and change to become integral parts of the ontology.
In TOQL we opt for the later type of representation based on 4D fluents.

1 The figure is from “Annex1: Description of Work” document of project TOWL
http://www.towl.org



Following the approach by Welty and Fikes [15], to add the time dimension
to an ontology, classes TimeSlice and TimeInterval with properties tsTimeS-
liceOf and tsTimeInterval respectively are introduced. Class TimeSlice is the
domain class for entities representing temporal parts (i.e., “time slices”) and
class TimeInterval is the domain class of time intervals. A time interval holds
the temporal information of a time slice. Property tsTimeSliceOf connects an
instance of class TimeSlice with an entity, and property tsTimeInterval connects
an instance of class TimeSlice with an instance of class TimeInterval. Properties
having a time dimension are called fluent properties and connect instances of
class TimeSlice.
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Fig. 2. Dynamic Enterprise Ontology

Figure 2 illustrates the so called “Dynamic Enterprise Ontology” (“DEn On-
tology”) defined in this work: a temporal ontology with classes Employee with
datatype property employeeName, Company with datatype property company-
Name and Product with datatype properties price and productName. In this
example, CompanyName and EmployeeName are static properties (their val-
ues do not change in time), while properties produces, hasEmployee, product-
Name and price are dynamic (fluent) properties whose values may change in
time. Because they are fluent properties, their domain (and range) is of class
TimeSlice. EmployeeTimeSlice, CompanyTimeSlice and ProductTimeSlice are
instances of class TimeSlice and are provided to denote that the domain of
properties hasEmployee, produces, productName and price are time slices re-



stricted to be slices of a specific class. For example, the domain of property
productName is not class TimeSlice but it is restricted to instances that are
time slices of class Product. A knowledge base with the instances of the DEn
ontology used in the work can be found in [3] or can be downloaded from
http://www.intelligence.tuc.gr/∼petrakis/downloads/TOQL.zip.

2.2 Temporal Query Languages

The main goal of temporal query languages is to maintain simplicity of ex-
pression while the time dimension is added. Other desirable features include,
temporal upward compatibility (i.e., conventional queries and modifications on
temporal relations act on the current state), temporal aggregation (i.e., possibil-
ity to request the history of something), point and interval-based views of data,
expressive power and ease of implementation.

Examples of temporal query languages for temporal databases include TQuel
[14], TSQL2 [9] and ATSQL [4]. Query languages for handling time information
in ontologies (e.g., time evolving entities) besides TOQL, are not known to ex-
ist. Nevertheless, query languages for RDF and OWL ontological representations
are of particular interest as they form the basis for developing the new type of
temporal ontology query languages. SeRQL [1] and SPARQL [11] are good rep-
resentatives of this category of query languages. SPARQL [11] is a W3C recom-
mendation query language. SeRQL is a RDF/RDFS query language combining
features of other (query) languages (e.g., RQL [7], RDQL [12], N-Triples, N3).
Important features of SeRQL are: Graph transformation, RDF and XML Schema
data type support, expressive path expression syntax and optional path match-
ing. SeRQL supports comparison between date times and more query types than
SPARQL, which has limitations in the “where” clause, since it doesn’t support
nested queries.

3 TOQL: Syntax and Semantics

TOQL (Temporal Ontology Query Language) is an SQL-like language for OWL,
supporting the basic structure of SQL (SELECT - FROM - WHERE) and
treats classes and properties of an ontology almost like tables and columns of a
database. The new language takes into account differences in the type of rela-
tions in the two representations and also supports time operators: Allen opera-
tors (BEFORE, AFTER, EQUALS, MEETS, OVERLAPS, DURING, STARTS,
ENDS) and operators AT(time point) and AT(time point, time point). Allen op-
erators [2] compare datatype properties e.g., A.B like “x” before C.D like “y”.
The language also supports additional functionalities such as LIMIT, OFFSET
that limit the number of answers to be returned, and nested queries. A formal
description of the language’s syntax in BNF can be found in [3] (all keywords are
case insensitive). TOQL supports most of an SQL language syntax and clauses
(see cite[3] for a complete list), the most important of them being:

– SELECT: specifies the object property values to be returned.



– FROM: declares the class or classes to query from. Always follows SELECT.
– WHERE: includes logic operations and comparisons between object prop-

erty values that restrict the number of answers returned by the query. Always
follows FROM.

TOQL supports the following operators:

– AS: renames a class (in a FROM clause) or a property (in a SELECT
clause). Renaming of a class allows using more than one instances of a class
in a query (e.g., FROM Company AS C1, Company AS C2). Renaming of
a property allows changing its name in the results (e.g., SELECT Com-
pany.companyName AS Name).

– AND: connects two expressions involving properties (datatype or object
properties) in WHERE, returns objects satisfying both expresssions.

– OR: connects two expressions involving properties (datatype or object prop-
erties) in WHERE and returns objects satisfying at least one.

– LIKE: checks whether a datatype property value matches a specified string
in WHERE. Comparison is case sensitive.

– LIKE “string” IGNORE CASE: checks whether a datatype property
value matches a specified string ignoring case.

Table 1 summarizes TOQL syntax:

Syntax

SELECT ... AS ...
FROM ... AS ...
WHERE ... LIKE ... AND ... LIKE “string” IGNORE CASE

Table 1. Generic TOQL syntax.

There are operation clauses connecting two (or more) queries in a nested
query:

– MINUS: returns query results retrieved by the first operand, excluding
results retrieved by the second operand.

– UNION: returns the union of results returned by both operands. Duplicate
answers are filtered out.

– UNION ALL: returns the union of results returned by both operands.
Duplicate answers are not filtered out.

– INTERSECT: returns the intersection of results retrieved by both operands.
– EXISTS: this is a unary operator that has a nested SELECT-query as its

operand. The operator is an existential quantifier that succeeds when the
nested query has at least one result.

– ALL: this is an operator that has a nested SELECT-query as one of its
operands. It always follows a comparison operator (i.e., “=”, “!=”, “<”,
“>”, “<=”, “>=”). It indicates that for every value of the nested query the
comparison must hold.



– ANY: has a nested SELECT-query as one of its operands. It always follows
a comparison operator (i.e., “=”, “!=”, “<”, “>”, “<=”, “>=”). It indicates
for at least one value of the nested query the comparison must hold.

– IN: has a nested SELECT-query as one of its operands. Allows set member-
ship checking. The set is defined by the nested SELECT-query.

Table 2 summarizes TOQL syntax with operator clauses:

Case 1 Case 2 Case 3 Case 4

Query Query Query Query
MINUS UNION UNION ALL INTERSECT
Query Query Query Query

Case 5 Case 6 Case 7 Case 8

SELECT ... SELECT ... SELECT ... SELECT ...
FROM ... FROM ... FROM ... FROM ...
WHERE EXISTS WHERE ... CO2 WHERE ... CO2 WHERE ...
(QUERY) ALL (Query) ANY (Query) IN (Query)

Table 2. TOQL syntax with operator clauses.

3.1 Dealing with Classes and Properties

In ontologies the basic terms are classes (also named concepts) and properties
(object or datatype). Classes represent concepts of the world. Properties repre-
sent relations between two concepts or between a concept and a value. Properties
relating two classes (concepts) are referred to as object properties, while prop-
erties relating a class with a value are referred to as datatype properties. As
an example of object property consider the relation between the Company and
the Employee. These two classes are connected with the object property hasEm-
ployee. As an example of datatype property consider the name of an Employee.
Class Employee is connected with a name (string value) with datatype property
employeeName.

TOQL not only uses SQL-like clauses and a similar syntax, but also treats
ontologies almost like relational databases. Tables representing concepts corre-
spond to classes and tables representing relations correspond to object prop-
erties. Attributes correspond to datatype properties. In addition, 1:1 and 1:N
relations correspond to object properties. Table 3 summarizes the mapping be-
tween database relations and ontology concepts used by TOQL.

In TOQL, classes are declared in FROM clauses just like SQL handles tables.
To access a datatype property of a class, the name of the class is followed by a
dot (“.”) and the name of the datatype property, just like SQL handles tables
and attributes:
2 CO: comparison operator can be any of “=”, “!=”, “<”, “>”, “<=”, “>=”



Relational Database Ontology

Table representing concept Class
Table representing N:N relation Object Property

1:N or 1:1 relation Object Property
Attribute Datatype Property

Table 3. Mapping between database relations and ontology concepts.

ClassName.DatatypePropertyName

To access object properties (properties connecting two classes), the name of the
domain class is followed by a dot (“.”), the name of the object property, double
dot (“:”) and finally the name of range class:

DomainClassName.objectPropertyName:RangeClassName

The following query can be used to access the names of companies producing
products called “x” in the ontology of Figure 2:

SELECT Company.companyName
FROM Company, Product
WHERE Company.produces:Product
AND Product.productName LIKE “x”

3.2 Dealing with Time

TOQL is a high level language, hiding from the users the implementation of
time at the ontology level. A temporal ontology consists of (a) the static part
where application classes, properties and their instances are defined and (b)
the dynamic part where the additional temporal classes (i.e., classes TimeS-
lice, TimeInterval), properties and instances of the above temporal classes and
fluent properties are defined (i.e., tsTimeSliceOf, tsTimeInterval). TOQL auto-
matically determines references to time related information.

To do this, TOQL:

– Retrieves the time slices associated with a class of the static ontology.
– Determines whether a property (object or datatype) in the query is a fluent

property (i.e., a property that connects time slices or a time slice with a
datatype) or not (i.e., a property that connects “static” classes or a “static”
class with a datatype).

– Uses the ontology’s dynamic part to answer the query, if a property specified
by the query is a fluent one. In case the fluent property is a functional one
(i.e. can have only one value at each instance of time) then the reasoner
described in Sec. 3.7 is used to answer the query. The rationale behind this



choice is that functional properties have unique values, which may change at
a later time as the result of events affecting them. For example, if the price
of product changes, then the new value substitutes any previously known
value, while non functional properties retain both older and newer values.

– Uses the ontology’s static part to answer the query, if a property specified
by the query is not a fluent one.

TOQL prevents users from being familiar with the representation of time in
ontologies. As an example consider the DEn Ontology of Figure 2. Typically
to retrieve companies that hired employees, one should be familiar with the 4D
fluent mechanism and ask for all time slices (instances) of class Company and all
time slices of class Employee and then query on the object property hasEmployee
that connects those instances. In TOQL (without implementing the high level
functionality described above), this is expressed as:

SELECT Company.companyName
FROM Company, Employee, TimeSlice AS T1 ,
TimeSlice AS T2
WHERE T1.tsTimeSliceOf:Company AND
T2.tsTimeSliceOf:Employee AND T1.hasEmployee:T2 AND
Employee.employeeName LIKE “x”

This is a rather complicated expression and requires the user to be familiar with
the implementation of time at the level of the ontology (the 4D fluent method
in this work). However, this is not necessary in TOQL and the same query can
be expressed as:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee
AND Employee.employeeName LIKE “x”

The second query is much more easy to write than the first one. Notice that the
object property hasEmployee is treated like its domain class Company and its
range class Employee.

3.3 Abstract ontology View

TOQL is a high level language independent from the actual representation of
time in an ontology. A user need only be aware of the so called “abstract ontology
view”. Classes and properties specific to the 4D fluent mechanism are excluded
from the abstract view. The fluent properties that connect time slices are con-
sidered to connect directly the static classes. Figure 3 illustrates the abstract
ontology view corresponding to the DEn ontology of Figure 2. Fluent properties
are shown in blue color.
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Fig. 3. Abstract ontology view corresponding to the DEn ontology of Figure 2.

3.4 Allen Operators

In TOQL, the implementation of ALLEN operators correspond to comparisons
between fluent properties. Fluent properties connect time slices and time slices
are associated with time intervals. Consequently, the implementation of Allen
operators correspond to comparisons between time intervals. The following op-
erators are supported in TOQL: BEFORE, AFTER, MEETS, METBY, OVER-
LAPS, OVERLAPPEDBY, DURING, CONTAINS, STARTS, STARTEDBY,
ENDS, ENDEDBY and EQUALS, representing the corresponding relations hold-
ing between two time intervals.

The following TOQL query retrieves the name of the company that hired
employee “x” and then employee “y”:

SELECT Company.companyName
FROM Company, Employee AS E1, Employee AS E2
WHERE Company.hasEmployee:E1 BEFORE Company.hasEmployee:E2
AND E1.employeeName like “x” AND E1.employeeName LIKE “y”

3.5 AT, TIME Operators

TOQL also introduces clause “AT” which compares a fluent property (i.e., the
time interval in which the property is true) with a time period (time interval)
or time point. Notice that the AT clause retrieves data explicitly defined in the
knowledge base. As an example, assume the DEn Ontology and consider that
at time point 5 the price of Product1 is 10 and that there is no information
about its price after time point 5. If a query asks for the price of Product1 at
time point 6 a reasonable answer would be 10 (the last known price in the KB).
Answering such queries effectively is achieved by combining TOQL with the
reasoner described in Sec. 3.7. In the current implementation:

– AT(time point) operation returns true if the time interval holds true at
the time specified.



– AT(start time point, end time point) operation returns true if the time
interval holds true for all the time interval.

The following TOQL query retrieves the name of the company employee “x”
was working for, from time=3 to time=5:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee AT(3,5)
AND Employee.employeeName LIKE “x”

Because TOQL is independent of the mechanism implementing time, there is no
way to directly access class TimeInterval (i.e., the class holding values of time).
In order for TOQL to return values of time, the keyword TIME is introduced.
It follows datatype or object properties and can be used only in SELECT. It
returns the start and end time point (if any) in which the property holds true
(the time interval in which the property is true). If no end point exists, it returns
only its start point. As an example, the following TOQL query retrieves the time
for which a company had employee “x”

SELECT Company.hasEmployee.TIME
FROM Company, Employee
WHERE Company.hasEmployee:Employee AND
Employee.employeeName LIKE “x”

3.6 Special Cases

This section describes TOQL special features. These are related to the way
TOQL deals with Class keys, wildcards (*) and Scope.

Dealing with keys: In relational databases each tuple is uniquely characterized
by a key. A key can refer to more than one attributes (compound key). Consider
a relational database that has the table Company and that this table uses the
attribute ID as key. To access this key, in SQL, a user should write:

SELECT Company.ID

In OWL, each class instance and each property have a unique name. This unique
name is considered to be equivalent to the unique key of relational databases.
The difference is that this unique name is not an ordinary datatype property,
and so it can not be accessed by writing the name of the class followed by a dot
“.” and the datatype property. In TOQL, the (unique) name of a class instance
is accessed using the name of the class itself (without reference to a property).
For example, to access the unique name of a company we write:

SELECT Company



Dealing with wildcards (*): In TOQL, wildcards can be used only in SELECT.
In SQL the presence of wildcard in SELECT implies that all the columns of
all the tables declared in clause FROM will be returned. If the wildcard follows
a table (tableName.*), all the columns of the specific table will be returned.
In TOQL the presence of wildcard in SELECT implies that all the datatype
properties of all the classes declared in FROM will be returned. If the wildcard
follows a class, the datatype properties of the specific class will be returned.
Notice that the class unique name is not returned (only its datatype properties
are returned). The following query retrieves companies producing product with
unique name “x”, as well as the product’s name.

SELECT *
FROM Company, Product
WHERE Company.hasProduct:Product
AND Product LIKE “x”

Dealing with scope: TOQL supports set combination operations in queries as well
as nested queries. Both set operations and nested queries imply that a TOQL
query may be composed of more than one subqueries. Each subquery has its own
class declarations, class and property usage and this introduces the need for the
handling of scopes.

Queries combined by set operators have different scopes. Classes declared in
any of them are local to this query and are not visible to the others. The following
query retrieves names of “Company 1” and also names of “Company 2” from
the DEn Ontology:

SELECT C1.companyName
FROM Company As C1
WHERE C1 like “Company 1”
UNION
SELECT C1.companyName
FROM Company As C1
WHERE C1 like “Company 2”

This TOQL expression specifies two separate queries combined by the set oper-
ator UNION. Each subquery has a different scope: classes declared in the first
subquery are not visible to the second one. Even if the same class is used by the
second subquery, it must be redeclared.

In TOQL, a nested query inherits all the classes declared in the query it is
nested into. A nested query can use these classes, but cannot (re)declare any of
them. The following nested TOQL query (a second query follows clause ANY)
retrieves products whose price is at least 10 and not smaller than than the price



of any other product. Both subqueries use class Product but with different names
(P1 and P2 respectively) otherwise a semantic error will be reported.

SELECT P1
FROM Product As P1
WHERE P1.price >= 10 AND NOT
P1.price < ANY
(SELECT P2.value FROM Product As P2)

3.7 Reasoning in TOQL

TOQL can be used to access temporal information that is explicitly represented
in a temporal ontology, but cannot provide answers on information that can
be inferred from existing information. For example if the price of a product at
time t is p, TOQL should be able to infer that the price of the product re-
mains the same since the last time it was changed. This is exactly the problem
the TOQL reasoner is dealing with. The reasoner implements an action the-
ory based on Event Calculus [22]. Event calculus records the events that have
taken place. It comprises of events (or actions), fluents and time points. Table
4 illustrates the predicates of Simple Event Calculus. Time points are natural
numbers which means that time is ordered, discrete and unbounded. A fluent
is a predicate of the form “fluentName1(objectID1)” and the same is an action
“actionName1(objectID1,objectID2)”.

Predicate Meaning

Initiates(A, f, x, t) if action A is executed at time t,
then f will have value x at time point t

Terminates(A, f, x, t) if action A is executed at time t,
then f will not have value x after the time point t

HoldsAt(f, x, t) fluent f has value x at time point t

Initially(f, x) fluent f has value x in the beginning

HappensAt(A, t) action A is executed at time point t

t1<t2 time point t1 is before time point t2
Table 4. Predicates of Simple Event Calculus.

The definition of the HoldsAt and HoldsBetween predicates for an arbitrary
fluent f is presented below along with rules that state that a fluent retains the
same value since the last time it was changed:

Started(t1, f, x, t2) � ∃a : HappensAt(a, t1) ∧ Initiates(a, f, x, t1) ∧ (t1 < t2)



Releases(a, f, x, t) � ∃a′ : HappensAt(a′, t) ∧ Initiates(a′, f, y, t) ∧ (y 6= x)

Clipped(t1, f, x, t2) � ∃a, t : HappensAt(a, t)∧(t1 < t < t2)∧Terminates(a, f, x, t)

HoldsAt(f, x, t) � (Initially(f, x) ∧ (0 < t) ∧ ¬Clipped(0, f, x, t))

∨(∃t1 : Started(t1, f, x, t) ∧ ¬Clipped(t1, f, x, t))

HoldsBetween(f, x, t1, t2) � (∃t : Started(t, f, x, t1) ∧ ¬Clipped(t, f, x, t2))

∨(Initially(f, x) ∧ (0 < t1) ∧ ¬Clipped(0, f, x, t2))

The reasoner applies when an object property is defined as temporal and func-
tional (e.g. the price of a product, which can have only one value at a time
point). For example if the price of the product “Product4” is set at 50 euro at
time point 2 and 60 euro at time point 4 then the following query:

SELECT Product
FROM Product
WHERE Product.price LIKE “50” AT(9)

will return an empty list as a result, because the reasoner infers that setting the
price at 60 euros at time point 4 implies that the price is not 50 euros after that
time point. If the reasoner is not used then the query will return “Product4” as
a result, which is not correct. Thus the AT operator is handled by the reasoner
in case of functional fluent properties.

4 TOQL Implementation

To show proof of concept, a TOQL system has been implemented in Java3. The
system supports query translation and execution of TOQL queries on temporal
ontologies in OWL. The input is a query written in TOQL and an ontology in
OWL (in RDF/XML or RDF/XML-ABBREV syntax).

Figure 4 illustrates the architecture of the proposed system. The TOQL
system consists of several modules whose purpose is to translate the TOQL
query into an equivalent SeRQL one (which is then executed on the knowledge
base).Notice that SeRQL is independent from TOQL. Any other language sup-
porting SQL syntax and comparison between date times (such as SPARQL)
would do for this translation. Notice also that executing TOQL statements di-
rectly on the ontology is also feasible but the implementation would be more
involved. TOQL and SeRQL have different syntax, however, queries are much
easier to express in TOQL. SeRQL supports comparison between date times but
not the full range of TOQL’s time features. Therefore, even simple TOQL queries
are translated to complicated SeRQL ones. The complete discussion of the TOQL
implementation can be found in [3]. The application loads the ontology schema

3 Available at http://www.intelligence.tuc.gr/∼petrakis/downloads/TOQL.zip



Fig. 4. TOQL system architecture.

in memory. TOQL queries are translated into equivalent SeRQL queries which
are applied to the knowledge base using SESAME 4. The TOQL query is parsed
and if fluent properties are detected then the query is converted to an equiv-
alent query addressing the underlying 4-D fluent representation, which in turn
is translated into a SeRQL query. For example the following TOQL query is
translated to the SeRQL query of page 17:

SELECT C1.companyName.TIME as T,
C1.companyName
FROM Company As C1
WHERE C1 like “Company1”

In case of queries over functional fluent properties fluents are represented as pred-
icates of event calculus and the Prolog reasoner is applied, which transforms the
query into an equivalent one that conforms to the event calculus axioms, before
the translation to SeRQL occurs. Specifically, at the “java objects generation”
phase, if the query uses the AT operator, it is replaced with an equivalent one
where every expression that uses the AT operator is replaced with the reasoners
answer.

The Pellet5 reasoner applies to the initial ontology schema, thus the schema
loaded in memory containes all infered facts using OWL semantics. For example
if the class ComputerCompany is defined as a subclass of class Company, then
a query regarding instances of class Company will also apply to instances of the
class ComputerCompany.
4 http://www.openrdf.org/
5 http://clarkparsia.com/pellet



SELECT startValue interval C1Slice 1,
endValue interval C1Slice 1, companyName C1Slice 1
FROM {interval C1Slice 1} ex1:startValue {startValue interval C1Slice 1},
{interval C1Slice 1} ex1:endValue {endValue interval C1Slice 1},
{C1Slice 1} ex1:companyName {companyName C1Slice 1},
{C1} rdf:type {ex1:Company},
{C1Slice 1} rdf:type {ex1:TimeSlice},
{interval C1Slice 1} rdf:type {ex1:TimeInterval},
{C1Slice 1} ex1:tsTimeSliceOf {C1},
{C1Slice 1} ex1:tsTimeInterval {interval C1Slice 1}
WHERE localName(C1) Like “Company 1”
USING NAMESPACE
ex1= <http://www.owl-ontologies.com/Ontology1197730146.owl#>

5 Conclusions and Future Work

We introduce TOQL (Temporal Ontology Query Language), an ontology query
language capable of querying ontologies and temporal information in ontologies.
Temporal concepts are assumed to be represented in OWL (or RDF) using the
4D perdurantist approach [15], implementing events occurring at specific time
points or time intervals and evolving in time. The language supports a powerful
set of operations including Allen operators. An application supporting execution
of TOQL queries on OWL temporal (or static) ontologies has been developed
and is available on the Web. TOQL is combined with a reasoner based on event
calculus to better support queries on temporal ontologies. Query optimization
as well as adding new features in TOQL (such as INSERT, UPDATE, DELETE,
ORDER BY, GROYP BY operations) are important issues for further research.
Extending TOQL’s syntax to handle queries on spatial data as well as queries
on ontology structure (i.e., sub-classes and super-classes) and improving query
performance by applying indexing on ontology information are also directions
for further research.
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