
Using Meta-Reasoning to Improve the
Performance of Case-Based Planning

Manish Mehta, Santiago Ontañón, and Ashwin Ram

CCL, Cognitive Computing Lab
Georgia Institute of Technology

Atlanta, GA 30332/0280
{mehtama1,santi,ashwin}@cc.gatech.edu

Abstract. Case-based planning (CBP) systems are based on the idea of
reusing past successful plans for solving new problems. Previous research
has shown the ability of meta-reasoning approaches to improve the per-
formance of CBP systems. In this paper we present a new meta-reasoning
approach for autonomously improving the performance of CBP systems
that operate in real-time domains. Our approach uses failure patterns to
detect anomalous behaviors, and it can learn from experience which of
the failures detected are important enough to be fixed. Finally, our meta-
reasoning approach can exploit both successful and failed executions for
meta-reasoning. We illustrate its benefits with experimental results from
a system implementing our approach called Meta-Darmok in a real-time
strategy game. The evaluation of Meta-Darmok shows that the system
successfully adapts itself and its performance improves through appro-
priate revision of the case base.

1 Introduction

Learning is a competence fundamental to intelligence, reflected in the ability of
human beings to learn from their successes to make future progress and from
their mistakes to improve themselves. Developing systems with learning abilities
can therefore help us understand better the nature of intelligence. In order to
create intelligent systems, it is thus important to provide systems with the ability
to learn from their own experience (both successful and failed) and improve
themselves. Failed experiences in problem solving play a role in learning, as they
provide both humans and artificial systems with strong cues on what needs to
be learned [5, 9, 10, 15]. Likewise, successful experiences provide clues on ways to
make progress and prosper in the problem domain. Meta-reasoning approaches
have utilized successful and failed system experiences to create self-improving AI
systems [1, 6]. This paper investigates this ability of meta-reasoning approaches
to improve the performance of case-based planning (CBP) systems that operate
under real-time constraints.

Meta-reasoning systems are typically composed of a base reasoner that is in
charge of the performance task, and a meta-reasoner that observes and modi-
fies the base reasoner’s plan. Meta-reasoning is the process of monitoring and

In International Conference on Case-Based Reasoning, ICCBR 2009

controlling the reasoning process of the base reasoner, to adjust that reasoning
process as needed. Previous research on introspective CBR (See Section 2) has
shown that meta-reasoning can enable a CBR system to learn by refining its
own reasoning process. In this paper we present a new meta-reasoning approach
for case-based planning. Our approach is based on using a collection of author-
defined failure patterns, which are explicit descriptions of anomalous situations.
Failure patterns provide a case-based solution for detecting failures in the execu-
tion of the base reasoner. After failures have been detected, fixes have to be made
in the system to prevent those failures from happening again. Our work has four
main contributions: First, it can be used in real-time domains, and instead of
modifying the plans in the case-base modifies the behavior of the base system
by creating daemons that operate in real time. Second, we present a generic
representation for failure patterns using finite state machines (FSM). Third, our
system automatically learns which of the failures detected in the behavior of
the system are important or not by comparing successful and unsuccessful past
executions, whereas previous approaches required an explicit model of “correct
behavior” in order to detect failures. Finally, our approach can learn both from
successful and unsuccessful experiences.

In this paper we are going to use Darmok [13, 14] as the base reasoning sys-
tem, which is a case-based planning system designed to play real-time strategy
(RTS) games. The system resulting from applying our approach to Darmok is
called Meta-Darmok, with extends Darmok by giving it the ability to be in-
trospectively aware of successful and failed execution, analyze the differences
between the two executions and further adapt and revise the executing plans
based on deliberating over the analyzed differences.

The rest of the paper is organized as follows. In Section 2, we present the
related approaches that use meta-reasoning to improve the performance of CBR
systems. Section 3 introduces our case based planning system, Darmok, and
WARGUS, the RTS game used in our experiments. In Section 5, we present our
meta-reasoning approach and Meta-Darmok. We present evaluation of Meta-
Darmok in Section 6. Finally we conclude with future steps in Section 7.

2 Related Work

Application of CBR systems to real-world problems has shown that it is difficult
for developers to anticipate all possible eventualities. Changing circumstances
necessitate that a CBR system learns from its experiences and improve its per-
formance over a period of time. Fox and Leake [8] developed a system to improve
the retrieval of a CBR system using meta-reasoning. Their work used a model
for the correct reasoning behavior of the system, and compared the performance
of the model with the actual system performance to detect and diagnose rea-
soning failures. The approach, however, requires the development of a complete
model of correct reasoning behavior, which is difficult to construct for a system
operating in a complex real-time strategy game scenario like ours. Unlike their
approach, our work doesn’t depend upon an author created correct model of

In International Conference on Case-Based Reasoning, ICCBR 2009

Fig. 1. A screenshot of the WARGUS game.

the system’s performance but uses successful problem solving experiences as a
benchmark model with which to compare the failed experience.

The DIAL system [11] uses introspective techniques to improve case adap-
tation. The system stores the traces of successful adaptation transformations
and memory search paths and utilizes them to improve the system performance.
Arcos [2] presents a CBR approach for improving solution quality in evolving en-
vironments. The approach however learns only from system’s successes whereas
in our approach we utilize both the successful and failed experiences. There are
other system that have explored meta-reasoning approaches to identify system
failures and improve system’s performance. The Meta-Aqua system, for example,
by Cox and Ram [7] uses a library of pre-defined patterns of erroneous inter-
actions among reasoning steps to recognize failures in the story understanding
task. The Autognostic system by Stroulia and Goel [16] uses a model of the
system to localize the error in the system’s element and and uses the model to
construct a possible alternative trace which could lead to the desired but un-
accomplished solution. The Introspect system [4] observes its own behavior so
as to detect its own inefficiencies and repair them. The system has been im-
plemented for the game of Go, a deterministic, perfect information, zero-sum
game of strategy between two players. Ulam et. al. [18] present a model based
meta-reasoning system for FreeCiv game that uses a self-model to identify the
appropriate reinforcement learning space for a specific task. All these systems
however are limited to learning from failed experience (and ignoring successful
experiences) to improve the system performance.

3 Case-Based Planning in WARGUS

WARGUS is an open source clone of Warcraft II, a successful commer-
cial real-time strategy game. Each player’s goal in WARGUS is to survive and
destroy the other players. Each player controls a number of troops, buildings,

In International Conference on Case-Based Reasoning, ICCBR 2009

FaPlan
M difi ti

Daemons

Pa

Fa

Modification
Routines

PlanDaemons
DetModification

Daemon
TManager Trac
Sta

Plan
Retrieval plans

Plan
Expansion

Pl

Game

goals
state

Case
Base

Pl
Adap

Base

C

plans

Case
Learner

Expert Traces

Meta-Level Plan
Adaptationailure Adaptation

atterns

ailure Abstracted
tection

TraceTrace Diff.
Diff

Trace

RecordingCalculatorce Diff.
tistics

Execution
Trace

Wargus
actions

sensorsPlan
Execution

lan

e State

Trace

lan
ptation

Darmok

Fig. 2. Overview of the Meta-Darmok architecture.

and workers (who gather resources such as gold, wood and oil in order to pro-
duce more units). Buildings are required to produce more advanced troops, and
troops are required to attack the enemy. The calculations inherent in the combat
system make the game non-deterministic. The game involves complex strategic
reasoning, such as terrain analysis, resource handling planning, and scheduling,
all of them under tight time constraints. For example, the map shown in Fig-
ure 1 is a 2-player version of the classical map “Nowhere to run, Nowhere to
hide”(NWTR), one of the maps from Battlenet regularly player by human play-
ers, characterized by a wall of trees that separates the players. This map leads
to complex strategic reasoning, such as building long range units (such as cat-
apults or ballistas) to attack the other player before the wall of trees has been
destroyed, tunneling early in the game through the wall of trees trying to catch
the enemy by surprise, or other strategies, as explained in Section 6.

In this section we will briefly describe the Darmok [13, 14] system, which
serves as the base reasoner for our meta-reasoning approach. In order to play
WARGUS Darmok learns plans from expert demonstrations, and then uses
case-based planning to play the game reusing the learnt plans. The lower part of
Figure 2 shows a simplified overview of the Darmok system. Basically, Darmok
is divided in two main processes:

– Case Acquisition: involves capturing plans for playing the game using expert
demonstrations. Each time a human plays a game, an expert trace is gener-
ated (containing the list of actions performed in the game). The expert then

In International Conference on Case-Based Reasoning, ICCBR 2009

annotates the trace stating which goals he was pursuing with each action.
From the annotated traces, plans are extracted and stored in the case base.

– Plan Execution: The execution engine consists of several modules that to-
gether maintain a current plan to win the game. The Plan Execution module
executes the current plan, and updates its state (marking which actions suc-
ceeded or failed). The Plan Expansion module identifies open goals in the
current plan and expands them. In order to do that it relies on the Plan Re-
trieval module, which retrieves the most appropriate plan to fulfill an open
goal. Finally, the Plan Adaptation module adapts the retrieved plans.

Let us present some additional detail on the Darmok system, required to
understand our meta-reasoning approach.

Cases in Darmok consist of two parts: plan snippets and episodes. Snippets
store plans, and episodes contain information on how successful was a plan in a
particular situation. Specifically, a snippet has four main parts:

– A goal, which is a representation of the intended goal of the plan.
– A set of preconditions that must be satisfied before execution.
– A set of alive conditions that must be satisfied during the execution of the

plan for it to have chances of success.
– The plan itself.

During execution, Darmok interleaves case-based planning and execution.
The plan expansion, plan execution and plan adaptation modules collaborate
to maintain a current plan that the system is executing. A plan in Darmok is
represented as a tree consisting of goals and plans (like in HTN planning [12]).
Initially, the plan consists of a single goal: “win the game”. Then, the plan
expansion module asks the plan retrieval module for a plan for that goal. That
plan might have several subgoals, for which the plan expansion module will again
ask the plan retrieval module for plans, and so on. When a goal still doesn’t have
an assigned plan, we say that the goal is open.

Additionally, each subplan in the plan has an associated state that can be:
pending (when it still has not started execution), executing, succeeded or failed. A
goal that has a plan assigned and where the plan has failed is also considered to
be open. Open goals can be either ready or waiting. An open goal is ready when
all the plans that had to be executed before this goal have succeeded, otherwise,
it is waiting.

The plan expansion module is constantly querying the current plan to see if
there is any ready open goal. When this happens, the open goal is sent to the
plan retrieval module. The retrieved plan is sent to the plan adaptation module,
and then inserted in the current plan, marked as pending.

The plan execution module has two main functionalities: check for basic
actions that can be sent to the game engine and check the status of plans that are
in execution. Basic actions that are ready and with all its preconditions satisfied
are sent to WARGUS to be executed. If the preconditions are not satisfied, the
action is sent back to the adaptation module to see if it can be repaired. If it

In International Conference on Case-Based Reasoning, ICCBR 2009

cannot, then the action is marked as failed. Whenever a basic action succeeds
or fails, the execution module updates the status of the plan that contained it.
When a plan is marked as failed, its corresponding goal is open again. If the alive
conditions of an executing plan or action are not satisfied, it is also marked as
failed, and if its success conditions are satisfied, then it is marked as succeeded.

4 Plan Adaptation

Plan adaptation in Darmok is divided into two difference processes: parameter
adaptation and structure adaptation. When a plan is retrieved from the case
base, structure adaptation is used (removing or inserting actions and or goals),
and when each one of the actions in a plan is about to be sent to execution,
parameter adaptation is used (which will adapt the parameters of the actions:
locations and unit identifiers). Let us briefly explain these two processes.

During parameter adaptation, Darmok attempts to adapt the coordinates
and unit identifiers present in the actions so that they can be applied to the
game at hand. For instance, if in an action the expert demonstrated that “ a
farm has to be built at coordinates 26,25”, Darmok will analyze which properties
the coordinates 26,25 satisfy (e.g. they represent an empty extension of grass,
far from the enemy and close to a forest), and look for a location in the current
map that is the most similar. Darmok will do the same with the unit identifiers
(looking to use the most similar units in the current game that the expert used
in his demonstration game).

For structure adaptation, Darmok analyzes a plan and determines whether
all the actions are required or not in the current game. For instance, maybe a
plan specifies that a “barracks” has to be built, but in the current game, we
already have “barracks”. Darmok also determines whether additional actions
have to be executed in order to make the plan executable in the current game.
For instance maybe the plan makes reference to some “worker units” but in the
current game we don’t have them, so actions in order to obtain them are required.
Structure adaptation is achieved by generating a plan dependency graph using
the preconditions and success conditions of the actions. The plan dependency
graph is a directed graph where each node in the graph is a primitive action
and each link represents the dependency relationship between the parent and
the child.

5 Meta-Level Plan Adaptation

The Darmok system is able to play the game of WARGUS after observing ex-
pert traces. However, once it has learnt, the system is not able to modify the
plans it has learnt. Although Darmok has the capability of learning from experi-
ence (by remembering which plans succeeded and which ones failed in different
situations), it does not have any capability to fix the plans in its case base. If
the expert that Darmok learnt from made a mistake in one of the plans, Darmok
will repeat that mistake again and again each time Darmok retrieves that plan.

In International Conference on Case-Based Reasoning, ICCBR 2009

The meta-reasoning approach presented in this paper provides Darmok exactly
with that capability, resulting in a system called Meta-Darmok, shown in Figure
2. By analyzing past performances, Meta-Darmok can fix the plans in the case
base, improving the performance over Darmok.

Our meta-level plan adaptation approach consists of five parts: Trace Record-
ing, Trace Difference Calculation, Failure Detection, Plan Modification, and the
Daemon Manager. During trace recording, a trace holding important events hap-
pening during the game is recorded. Trace difference calculation involves keeping
track of differences across successful and unsuccessful games. Failure detection
involves analyzing the execution trace and differences across various games to
find possible issues with the executing plans by using a set of failure patterns.
These failure patterns represent a set of pre-compiled patterns that can identify
the cause of each particular failure by identifying instances of these patterns in
the trace. Once a set of failures has been identified, the failed conditions can be
resolved by appropriately revising the plans using a set of plan modification rou-
tines. These plan modification routines are created using a combination of basic
modification operators (called modops). The modops are in the form of modify-
ing the original elements of the plan (i.e. actions), introduction of new elements
or reorganization of the elements inside the plan. Finally, some of the modifi-
cations take form of daemons, which monitor for failure conditions to happen
when Darmok retrieves some particular behaviors, the daemon manager triggers
the execution of such daemons when required. We describe each of the different
parts of the meta-level plan adaptation in detail next.

5.1 Trace Recording

In order to analyze the behavior of Darmok, the meta-reasoning module records
an execution trace when Darmok is playing a game. The execution trace is used
to record important events happening during the execution of Darmok. These
events are in the form of information regarding the plans that were executing,
their start and end times, their final execution status i.e. whether the plans
started, failed or succeeded.

The trace also contains the external state of the game recorded at various
intervals so that different information can be extracted from it during reasoning
about the failures happening at execution time. The trace provides a considerable
advantage in performing adaptation of plans with respect to only analyzing the
instant in which the failure occurred, since the trace can help localize portions
that could possibly have been responsible for the failure.

During its run, Darmok records a low level execution trace that contains
information related to basic events including the identifier of the plan that was
being executed, the corresponding game state when the event occurred, the time
at which the plan started, failed or succeeded, and the delay from the moment the
plan became ready for execution to the time when it actually started executing.
All this information is recorded in the execution trace, which the system updates
as events occur at runtime. The execution trace also records any modifications
performed by the various system components to the executing goal and plans.

In International Conference on Case-Based Reasoning, ICCBR 2009

As explained earlier, this is carried out by the plan adaptation modules. The
plan adaptation module makes various changes to the list of goals and plans
that are currently executing.

Once a game finishes, an abstracted trace is created from the execution trace
that Darmok generates. The abstracted trace is the one used by the rest of
components of the meta-reasoning module. The abstracted trace consists of:

– Unit Data: information regarding units such as hit points, status (whether
a unit is idle, for example), location, etc.,

– Idle Data: which units were idle and the cycle intervals for which they were
idle.

– Kill Data: the cycles at which particular units were attacked and killed.
– Resource Data: for each entry in the trace, the corresponding resources that

were available, such as the amount of food, gold, wood and oil.
– Attack Data: the units that were involved in an attack. For example, the

enemy units that were attacking and the AI units that were under attack.
– Basic Plan Failure Data: the reason for plan failures, such as whether it was

due to insufficient resources or not having a particular unit available to carry
out a plan.

– Trace Data: contains information including the number of goals and plans
that were pursued, number that succeeded, failed, didn’t finish and didn’t
start. The data also includes number of times a goal was pursued, num-
ber of times it restarted, the total number of resource gathering plans that
were used and type of resource that was gathered by those plans as part of
satisfying that goal.

Once the abstracted trace is generated, it is both sent to the failure detection
component and to the trace difference calculation component. The trace differ-
ence calculator records the differences between the stored repository traces and
the new execution trace as we explain next, and the failure detection component
uses this information to find failures in the trace.

5.2 Trace Difference Calculation

Each trace records various statistics as explained previously to help calculate dif-
ferences across them. The differences among other things include various statis-
tics:

– Actions level: holds the difference in terms of the actions that are carried
out. These differences are for example, differences in parameters like location
where the unit is built, number of units built by an action, number and type
of resources gathered.

– Non-Existent Plan/Goal: holds goals and plans that were present in a par-
ticular game and absent in other.

– Plan/Goal Type: differences in the type of plans/goals that were used during
execution.

In International Conference on Case-Based Reasoning, ICCBR 2009

– Cycle Level: differences in start and end cycle of plans and goals.
– Goal Count: comparison of number of times a goal was pursued.
– Action Plan Stats: differences in terms of number of actions that succeeded,

failed, didn’t start or finish.
– Resource Gathering Plans: holds the difference in terms of number of re-

source gathering plans that were used and the type of resource that was
gathered, the number that succeeded and failed.

– Score differences: differences in scores at the end of completion of a basic
operator plan and higher level goal and plan.

– Restart differences: differences in terms of the number of times a goal was
restarted.

– Plan/Goal Count: differences in terms of number of goals/plans that were
used and count of particular type of plans that were used.

The trace difference calculator module calculates the differences for the trace
pairs involving a) Type SuccVsUnsucc: successful vs unsuccessful traces and b)
Type UnsuccVsUnSucc: unsuccessful vs unsuccessful traces. As Darmok plays
more games of WARGUS the trace difference calculator, keeps updating the
trace difference statistics, which contain the probability of the differences being
present across both types of trace pairs. These probability estimates are used by
failure detection as explained next.

5.3 Failure Detection

Failure detection involves localizing the fault points. Although the abstracted
trace defines the space of possible causes for the failure, it does not provide
any help in localizing the cause of the failure. Traces can be extremely large,
especially in the case of complex games on which the system may spend a lot
of effort, thus analyzing the trace looking for failures might be a complicated
problem for two reasons: first, traces might be huge, and second, it is not clear
what to look for in the trace, since it is not clear what a “failure” looks like in
a trace.

In order to solve both problems, our meta-reasoning module contains a collec-
tion of failure patterns, which can be used to identify the cause of each particular
failure by identifying instances of these patterns in the trace [3, 5, 17]. The fail-
ure patterns essentially provide an abstraction mechanism to look for typical
patterns of failure conditions over the execution trace. The failure patterns sim-
plify the blame-assignment process into a search for instances of the particular
problematic patterns. Specifically, failure detection conceptually consists of two
phases, matching and filtering:

1. Failure Pattern Matching: during this phase, all the failure patterns stored
in the system are matched against the abstracted trace, and all the matches
are recorded.

2. Filtering Non-important Failures: during this phase, the trace difference
statistics are used to discern which failures are important and which ones

In International Conference on Case-Based Reasoning, ICCBR 2009

can be ignored. The result of this phase is the set of failures that are passed
along to the plan modification component.

In our approach both phases are fused in a single process. Failure patterns are
represented as finite state machines (FSM), which encode both the information to
perform both phases mentioned earlier (matching and filtering). Figure 3 shows
an example of one of the failure patterns defined in our system. Specifically,
such pattern specifies that a failure is detected if a “plan restart” is found in
the current trace, and if the probability of such failure satisfies some thresholds
according to the trace difference statistics database, then it is considered.

An example of a failure detected from the abstracted trace, related to the
functioning of plan adaptation module, is Important Goals or Plans Removed
failure. The failure pattern detects whether important goals and plans have
been removed from the trace. As explained earlier, the plan adaptation module
potentially removes and/or adds goals and plans to existing list of goals and
plans. This failure allows to detect whether, due to some failure in processing
of plan adaptation module, some goals which are important for executing the
current plan are removed. For example, the plan adaptation module may remove
a “build tower goal” that is not considered necessary, which results in system
losing in one of the maps. The fix for this failure would be to reinsert back the
important goal or plan that has been removed back into the currently executing
plan.

There are other failures that are detected based on the probability estimates
from the trace pairs. The differences which have a high probability of presence in
Type SuccVsUnsucc and low in Type UnsuccVsUnsucc are flagged for repair as
part of the failure detection. This helps find the differences that are important
and try to remove only those failures. These statistics help gauge probability
values on whether a particular difference reflects some factor that is present or
absent in successful as compared to unsuccessful games. An example of such
a difference could be the restart difference. In Darmok, a goal restarts when
it doesn’t finish successfully in the previous attempt. In unsuccessful traces, it
could happen that the goal restarts multiple times whereas in successful traces
the goal finishes successfully in one or two attempts. This would lead to a lot
of time and resources spent by the system in pursuing the restarted goal in
unsuccessful traces. After analysis of the Type SuccVsUnsucc and Type Unsuc-
cVsUnsucc traces, restart difference would have a high probability of presence in
Type SuccVsUnsucc traces and low in Type SuccVsUnsucc. Once this difference
is flagged, the failure pattern restart failure is detected (shown in Figure 3). A
fix for this failure would be to add a constraint on the number of times the goal
could be restarted. Other examples of failure patterns and their corresponding
plan modification routines are given in Table 1.

5.4 Plan Modification

Once the cause of the failure is identified, it needs to be addressed through
appropriate modification. These modifications are in the form of inserting or

In International Conference on Case-Based Reasoning, ICCBR 2009

Init Restart Diff Remove

<Restart diff> found
P(< Restart diff>) ≥ Thres2 in SuccVsUnsucc and

P(<Restart diff>) ≤ Thres1 in UnsuccVsUnSucc

Init
State

Restart Diff

Pres.

Remove

Diff.

P(< Restart diff>) < Thres2 in SuccVsUnsucc or

P(<Restart diff>) > Thres1 in UnuccVsUnSucc

Ignore Diff.

Fig. 3. The figure shows the failure pattern restart failure in WARGUS. The failure is
addressed when there is a high probability (greater than Thres2) of presence in Type
succVsUnsucc and low probability (less than Thres1) in Type UnSuccVsUnSucc

.

removing a new appropriate plan at the correct position in the failed plan, or
removing some steps or changing some parameter of an executing plan. The plan
modification step involves applying these operators to modify the failed plans
appropriately.

Once the failure patterns are detected from the execution trace, the corre-
sponding plan modification routines and the failed conditions are inserted as
daemons for the map in which these failed conditions are detected. The dae-
mons act as a meta-level reactive plan that operates over the executing plan at
runtime. The conditions for the failure pattern become the preconditions of the
plan and the plan modification routine consisting of basic modops become the
steps to execute when the failure pattern is detected. The daemons operate over
the executing plan, monitor their execution, detect whether a failure is about to
happen and repair the plan according to the defined plan modification routines.

Notice thus, that Meta-Darmok does not directly modify the plans in the
case-base of Darmok, but reactively modifies those plans when Darmok is about
to us them, in case some failure is about to happen. In the current system, we
have defined 20 failure patterns and plan modification routines for WARGUS.

The adaptation system can be easily extended by writing other patterns of
failure that could be detected from the abstracted trace and the appropriate
plan modifications to the corresponding plans that need to be carried out in
order to correct the failed situation. In order to understand the process better,
let us look at an example.

In International Conference on Case-Based Reasoning, ICCBR 2009

Failure Pattern Plan Modification Routine

Plan Composition failure (e.g., issues with
plan feature like its parameters, its type
etc)

Change the plan according to the particu-
lar composition issue i.e change the loca-
tion, parameter etc

Goal/Plan count Failure Constrain the number of times a plan/goal
is pursued.

Restart failure Constrain the number of time a plan/goal
is restarted

Goal/Plan Missing failure Add a plan/goal at appropriate time dur-
ing the execution

Plan Step(s) Missing failure Add step(s) to a particular plan

Basic Operator failure Adding a basic action that fixes the failed
condition

Table 1. Some example failure patterns and their associated plan modification routine
in WARGUS

5.5 Exemplification

In order to understand the working of the meta-level plan adaptation module
let us look at an illustrated example. In some runs, we observed that the plan
adaptation module of Darmok inserted a large amount of resource gathering
goals (in particular sending peasants to gather wood) for the following reason.
In some of the expert traces, the expert sent a very few set of peasants to gather
wood at the very beginning of the game. Those few peasants would gather enough
wood for the rest of the game, since they would start gathering wood very early.
Sometimes, Darmok would reassign one of those peasants to another task. Thus,
when the need for wood arises later in the game, Darmok will be low on wood.
Since wood is harvested very slow, Darmok sends several peasants to gather
wood at the same time in order to have the wood on time. This situation is fine
in the short term, but in the long term, in a map like the one shown in Figure 1
(“Nowhere to Run, Nowhere to Hide” or NWTR), a hole in the wall of trees will
be open quickly (since there are lots of peasants chopping wood). This allows
the enemy to enter through the wall of trees and attack Darmok before Darmok
is ready to reply. Let us see how the meta-level adaptation module can help fix
this problem.

After playing several games, the trace difference calculator module accumu-
lates statistics, and in particular one of them is that the average number of
gathering resource goals for the NWTR map is much higher for unsuccessful
traces than for successful traces. After the analysis of the Type SuccVsUnsucc
and Type UnsuccVsUnsucc traces, the difference in statistics for the occurrence
of the resource gathering goal will have a high probability of presence in Type
SuccVsUnsucc traces and low in Type UnsuccVsUnsucc, thus the difference will
be flagged. One of the failure patterns incorporated in our system is called
Goal/Plan Count Failure. This failure pattern gets triggered when the differ-
ence in statistics for the occurrence of the goal or plan has a high probability

In International Conference on Case-Based Reasoning, ICCBR 2009

Table 2. Effect of plan adaptation on game statistics

No MetaLevel Adaptation MetaLevel Adaptation

NT W D L ADS AOS WP W D L ADS AOS WP improvement.

1 4 4 7 1333 1523 26.67% 9 3 3 2096 582 60.00% 125.00%
2 5 2 8 1234 1010 33.33% 9 3 3 2628 356 60.00% 80.00%
3 5 3 7 1142 1762 33.33% 6 5 4 2184 627 40.00% 20.00%

11 8 26 3709 4295 31.11% 24 11 10 6908 1565 53.33% 75.00%

of presence in Type SuccVsUnsucc traces and low in Type UnsuccVsUnsucc.
When the meta-level is analyzing a new unsuccessful trace in the NWTR map,
the Goal/Plan Count Failure pattern will be triggered.

The plan modification routine associated with the Goal/Plan Count Failure
pattern consists of creating a new daemon that counts the number of times a
particular goal appears during the course of a game, and if it is beyond some
threshold, the daemon will delete such goals from the current plan. In particular,
in our example, the daemon will be instantiated to look for resource gathering
goals, and the threshold will be set to the typical value found in the successful
traces in the trace difference statistics data base.

In this particular example, once the daemon inserted, we observed that the
daemon prevents addition of resource gathering goals beyond a certain point.
In the short term, Darmok will struggle to have resources, since Darmok needs
them to build buildings and train units. However, the daemon simply prevents
the wall of trees to get destroyed, and thus resources are gathered at a slower
pace, but the few peasants gathering resources finally obtain enough wood, to
enable Darmok to successfully complete the plan without destroying the wall of
trees too early.

6 Meta-Level Plan Adaptation Results

To evaluate Meta-Darmok, we conducted two different experiments turning the
meta-reasoner on and off respectively. When the meta-reasoning is turned off, the
execution traces are recorded as part of the execution. When the meta-reasoning
is turned on, these execution traces are used as the starting point to calculate
the trace statistics as new traces accumulate.

The experiments were conducted on 5 different variations of the NWTR map
(shown in Figure 1). NWTR maps have a wall of trees separating the opponents
that introduces a highly strategic component in the game (one can attempt
ranged attacks over the wall of trees, or prevent the trees to be chopped by
building towers, etc.). 3 different expert demonstrations were used for evaluation
from NWTR maps (which lead to three different sets of plans to be used by
Darmok). Moreover, Darmok can learn from more than one demonstration, so
we will evaluate results when Darmok learns from one, two and from all three
demonstrations.

In International Conference on Case-Based Reasoning, ICCBR 2009

Table 2 shows the results of the experiments with and without meta-reasoning.
NT indicates the number of expert traces. For each experiment 6 values are
shown: W, D and L indicate the number of wins, draws and loses respectively.
ADS and AOS indicate the average Darmok score and the average opponent score
(where the “score” is a number that WARGUS itself calculates and assigns to
each player at the end of each game). Finally, WP shows the win percentage.
The right most row presents the improvement in win percentage comparing meta-
reasoning with respect to no meta-reasoning. The bottom row shows a summary
of the results. The results show that meta-reasoning leads to an improvement of
the percentage of wins as well as the player score to opponent score ratio. An
improvement occurs in all cases irrespective of the number of traces used. Notice
that in the case where Darmok learnt from 3 expert traces, the meta-reasoner
is not able to bring the performance up to 60% like in the other two scenarios.
This is because one of the traces used in our experiments was clearly inferior to
the other two, and the performance of Darmok strongly depends on the quality
of the expert traces [14]. However, meta-reasoning is still able to significantly
improve the performance.

7 Conclusion

In this paper, we have presented a meta-reasoning approach to improve the
performance of case-based planning systems, and a particular system, Meta-
Darmok, that implements it. Meta-Darmok is based on the Darmok system,
which plays an RTS game domain. We have shown that meta-reasoning can im-
prove the performance of a CBP system that operates in a real-time domain.
Failure patterns are useful to characterize typical failures. Moreover, by analyz-
ing the differences between the successful and failed executions Meta-Darmok
can determine which of the differences detected in failed executions with respect
to successful executions are important or not. Finally, we have shown that dae-
mons can be used to introduce reactive elements in the execution of the system
that will adapt the behavior if failures are detected in real time. Our experi-
mental results indicate that our approach improves the performance of the CBP
system (overall improvement of 75%).

There were a few occasions when the meta-reasoning module introduced un-
wanted changes that degraded the system performance. However, in the few
times it happened, the issue could be resolved if the system kept track of the
system performance with the introduction of daemons for a particular map. If
the system loses the map with the introduction of certain daemons, it could
realize that the adaptation is causing unwanted changes in system performance.
This might involve incorporating the actions of the meta-reasoning module into
the execution trace to allow the meta-reasoner to introspect itself. We plan to
explore this line in our future research. We also plan to apply our approach to
other case-based planning systems to validate the generality of the approach.
Finally, we also plan to investigate strategies to automatically generate failure
patterns or tools for easy authoring of such failure patterns.

In International Conference on Case-Based Reasoning, ICCBR 2009

References

1. Michael L. Anderson and Tim Oates. A review of recent research in metareasoning
and metalearning. AI Magazine, 28:7–16, 2007.

2. Josep Llúıs Arcos. T-air: A case-based reasoning system for designing chemical
absorption plants. In ICCBR ’01: Proceedings of the 4th International Conference
on Case-Based Reasoning, pages 576–588, London, UK, 2001. Springer-Verlag.

3. J. G. Carbonell, A. C. Knoblock, and S. Minton. Prodigy: An Integrated Architec-
ture for Planning and Learning. Lawrence Erlbaum Associates.

4. Tristan Cazenave. Metarules to improve tactical go knowledge. Inf. Sci. Inf.
Comput. Sci., 154(3-4):173–188, 2003.

5. M. T. Cox and A Ram. Failure-driven learning as input bias. In Proceedings of
the Sixteenth Annual Conference of the Cognitive Science Society, pages 231–236,
1994.

6. Michael T. Cox. Metacognition in computation: a selected research review. Artif.
Intell., 169(2):104–141, 2005.

7. Michael T. Cox and Ashwin Ram. Introspective multistrategy learning: On the
construction of learning strategies. Technical report, 1996.

8. Susan Fox and David Leake. Introspective reasoning for index refinement in case-
based reasoning. Journal of Experimental and Theoretical Artificial Intelligence,
13:63–88, 2001.

9. K. J. Hammond. Learning to anticipate and avoid planning problems through
the explanation of failures. In Proceedings of the Fifth National Conference on
Artificial Intelligence, pages 556–560, 1986.

10. J. L. Kolodner. Capitalizing on failure through case-based inference. In Proceedings
of the Ninth Annual Conference of the Cognitive Science Society, pages 715–726,
1987.

11. David B. Leake, Andrew Kinley, and David Wilson. Learning to improve case
adaptation by introspective reasoning and cbr. In In Proceedings of the First In-
ternational Conference on Case-Based Reasoning, pages 229–240. Springer-Verlag,
1995.

12. D. Nau, T.C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Muñoz-Avila, and
J.W. Murdock. Applications of shop and shop2. Intelligent Systems, 20(2):34–41,
2005.

13. Santiago Ontañón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. Case-based
planning and execution for real-time strategy games. In Proceedings of ICCBR-
2007, pages 164–178, 2007.

14. Santiago Ontañón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. On-line
case-based planning. Computational Intelligence, to appear.

15. R. C. Schank. Dynamic memory: A theory of reminding and learning in computers
and people. Cambridge University Press, 1982.

16. Eleni Stroulia and Ashok K. Goel. Functional representation and reasoning in
reflective systems. Journal of Applied Intelligence, 9:101–124, 1995.

17. J.G. Sussman. A Computational Model of Skill Acquisition. American Elsevier,
1975.

18. Patrick Ulam, Joshua Jones, and Ashok K. Goel. Combining model-based meta-
reasoning and reinforcement learning for adapting game-playing agents. In AIIDE,
2008.

In International Conference on Case-Based Reasoning, ICCBR 2009

