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Abstract. Endowing an intelligent agent with an episodic memory af-
fords it a multitude of cognitive capabilities. However, providing efficient
storage and retrieval in a task-independent episodic memory presents
considerable theoretical and practical challenges. We characterize the
computational issues bounding an episodic memory. We explore whether
even with intractable asymptotic growth, it is possible to develop effi-
cient algorithms and data structures for episodic memory systems that
are practical for real-world tasks. We present and evaluate formal and
empirical results using Soar-EpMem: a task-independent integration of
episodic memory with Soar 9, providing a baseline for graph-based, task-
independent episodic memory systems.

1 Introduction

Episodic memory, as first described by Tulving [23], is a long-term, contextual-
ized store of specific events. Episodic memory, what an individual “remembers,”
is contrasted with semantic memory, a long-term store of isolated,
de-contextualized facts that an individual “knows.” As an example, a memory
of viewing artwork during one’s last vacation would be episodic, whereas recall-
ing the name of a famous gallery would likely be semantic (unless, for example,
producing this information relied upon a memory of reading a brochure).

Nuxoll and Laird [I4] demonstrated that an episodic store can afford an in-
telligent agent a multitude of cognitive capabilities. For example, an agent that
recalls the results of actions taken previously in situations similar to its current
state may learn to predict the immediate consequences of future actions (i.e.
action modeling). In this paper, we extend this previous work, augmenting and
refining the underlying implementation and providing a theoretical and empiri-
cal analysis of the algorithms and data structures necessary to support effective
and efficient episodic memory.

Episodic memory research is closely related to studies in case-based reasoning
(CBR). The goal of CBR is to optimize task performance given a case-base,
where each case consists of a problem and its solution [6]. In CBR systems, case
structure is typically pre-specified, case-base size is either fixed or grows at a
limited rate, and the cases usually do not have any inherent temporal structure.
In contrast, an episodic store grows monotonically with experience, accumulat-
ing snapshots of an agent’s experiences over time. An agent endowed with this
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memory can retrieve relevant episodes to facilitate reasoning and learning based
upon prior events.

In Section 2, we characterize episodic memory and introduce performance
goals for its effective use in computational systems. We then compare our goals
for episodic memory with related work. In Section 3, we present a brief overview
of Soar-EpMem, the integration of episodic memory with Soar 9 [g], together
with the domain we will use for evaluation. In Section 4, we present the details
of Soar-EpMem, formally characterize its performance, and empirically evalu-
ate its performance on a complex domain (>2500 features) over one million
episodes. Earlier versions of Soar-Epmem [I4] emphasized the cognitive capa-
bilities episodic memory affords, while this work describes a completely new,
robust, efficient, more complete implementation, together with the formal char-
acterization and empirical evaluation.

2 Characterizing Episodic Memory

In this section, we first enumerate the relevant functional and implementa-
tion requirements for episodic memory. We then contextualize episodic mem-
ory within related case-based reasoning work. Finally, we analyze an existing
task-independent episodic memory system apropos efficient implementation.

2.1 Episodic Memory Constraints

Episodic memory is distinguished from other memory systems by a set of func-
tional requirements [I3]. First, episodic memory is architectural: it is a func-
tionality that does not change from task-to-task. Second, episodic memory is
automatic: memories are created without a deliberate decision by the agent.
Because memories are experiential, there is some temporal relationship between
episodes. Furthermore, in contrast to most case-based reasoning systems, the set
of features that can occur in an episodic memory is not pre-specified, but re-
flects whatever data is available via agent sensing and internal processing. Also,
there is not a pre-specified subset of the episode that is used for retrieval nor
is there a pre-specified subset that is the result, so that the complete episode is
reconstructed during retrieval.
For this work, we adopt two additional restrictions on episodic memory:

1. Stored episodes do not change over time: memories do not decay and are not
removed from the episodic store (no forgetting).

2. The goal of retrieval is to find the episode that is the Nearest Neighbor (NN)
to the cue based upon qualitative matching (using recency of the episode as
a tie-breaking bias).

This specification imposes challenging complexity bounds: the lack of episode
dynamics dictates a monotonically increasing episodic store and capturing full
agent state over time requires storage at least linear in state changes.
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2.2 Related Case-Based Reasoning Work

Efficient NN algorithms have been studied in CBR for qualitative and quan-
titative retrieval [I1] [2I] [24]. The underlying algorithms and data structures
supporting these algorithms, however, typically depend upon a relatively small
and/or static number of case/cue dimensions, and do not take advantage of the
temporal structure inherent to episodic memories.

Considerable work has been expended to explore heuristic methods that ex-
change reduced competency for increased retrieval efficiency [19], including re-
fined indexing [2] [3], storage reduction [25], and case deletion [I7]. Many
researchers achieve gains through a two-stage cue matching process that initially
considers surface similarity, followed by structural evaluation []. In this work,
we take advantage of this approach and apply it to a monotonically growing,
task-independent episodic memory.

The requirement of dealing with time-oriented problems has been acknowl-
edged as a significant challenge within the CBR community [1], motivating work
on temporal CBR (T-CBR) systems [16], and research on the representation of
and reasoning about time-dependent case attributes [5], as well as preliminary
approaches to temporal case sequences [12] [18]. However, existing T-CBR work
does not deal with accumulating an episodic store, nor does it take advantage
of temporal structure for efficient implementations.

2.3 EM: A Generic Memory Module for Events

EM [22] is a generic store to support episodic memory functionality in a vari-
ety of systems, including planning, classification, and goal recognition. EM is
an external component with an API, wherein host systems must implement a
thin interface layer. The term “episode” in EM defines a sequence of actions
with a common goal and is represented as a triple: context (“general setting”
of the episode), content (ordered set of the events that make up the episode),
and outcome (a domain/task-specific evaluation of the result of the episode).
Though meaningful in systems like planners, it may be difficult to pre-define
action sequences and outcome evaluation functions for long-living agents that
must contend with multiple, possibly novel, tasks.

EM queries are partially defined episodes and a single evaluation dimension.
EM utilizes a two-stage evaluation scheme, whereby a constant number (5) of po-
tential matches are found, which are then compared using a relatively expensive
semantic matcher. While Tecuci and Porter have shown results for learning in
short (250 episode), single-task domains, it is unclear whether the underlying al-
gorithms and data structures will scale to agents with many orders of magnitude
more episodes.

3 Integration of Episodic Memory in Soar

This section provides an introduction to the integration of episodic memory with
Soar 9 [§], followed by an overview of the task we will use for evaluation.
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3.1 Soar

Soar is a cognitive architecture that has been used extensively for developing
AT applications and cognitive models. One of Soar’s main strengths has been
its ability to efficiently represent and bring to bear large bodies of symbolic
knowledge to solve diverse problems using a variety of methods [10].

Although Soar has many components, the most relevant aspect of its design
to episodic memory is that it holds all of its short-term knowledge in its working
memory (WM). Working memory contains an agent’s dynamic internal state,
including perceptual data, situational awareness, current goals and intentions,
and motor commands. By recording the contents of working memory, episodic
memory can capture an agent’s history of experience.

Soar’s working memory is implemented as a directed, connected graph of
working memory elements (WMEs). Each WME is a triple: identifier (a node or
vertex), attribute (a link or edge), and value (a node or terminal value). Working
memory is a set: no two WMEs can have the same identifier, attribute, and value.

3.2 Episodic Memory Integration

Figure [ depicts the high-level integration of episodic memory with Soar.
Episodes consist of snapshots of working memory and are automatically stored
in the episodic store. Episodes are retrieved when an agent deliberately creates
a cue, at which point Soar searches the store for candidate episodes, ranks them
with respect to the cue (cue matching), selects the best match, and then re-
constructs the episode in working memory (in a special area so that it does
not overwrite existing working memory structures, nor is the retrieved episode
confused with the agent’s current experience).

Y.

L —— Cue Matching
< Episode
‘

Episodic Store

Fig. 1. Soar-EpMem Architecture
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Soar’s representation of working memory as an arbitrary graph structure has
significant implications for the underlying implementation of episodic memory. A
simpler representation, such as a vector or propositional representation, would
make it possible to develop a simpler and faster implementation of episodic
memory, but at significant cost in expressability and generality. The underlying
implementation of episodic memory is independent of other details of Soar and
should generalize to other architectures with graph-based representations of their
dynamic data.

Soar agents interact with real-world, dynamic environments and these agents
have real-time constraints on reactivity. Based on our own experience with real-
time agents, Soar must execute its primitive cycle in 50-100ms to maintain reac-
tivity in real-world agents. This bound is easily achieved for Soar’s non-episodic
memory components and puts a limit on how much time can be spent on stor-
age, which can occur every cycle. However, there is more flexibility in retrieval,
which can occur in parallel with Soar’s other processing and can still be useful
if it takes small multiples of Soar’s primitive cycle time. Empirical evidence sug-
gests that a retrieval time of approximately 500ms is necessary to be useful in
real world applications.

3.3 Evaluation Domain

Our evaluation of Soar-EpMem is based on the TankSoar domain. TankSoar is a
pre-existing domain that has been used extensively in evaluating other aspects
of Soar and was used in the original episodic memory research in Soar [I3]. In
TankSoar, each Soar agent controls an individual tank that moves in a discrete
15x15 two-dimensional maze. Agents have only limited sensing of the environ-
ment and their actions include turning, moving, firing missiles, raising shields,
and controlling radar. A TankSoar agent has access to a rich set of environmental
features through its senses, including smell (shortest-path distance to the near-
est enemy tank), hearing (the sound of a nearby enemy), path blockage, radar
feedback, and incoming missile data.

TankSoar includes an agent named mapping-bot that builds up an internal
map of the environment as it explores. The mapping-bot agent’s working memory
contains about 2,500 elements. Over 90% of these elements comprise a static
map of its environment. A large proportion of the remaining WMEs (usually
70-90%) are related to perception and they typically change within one episode.
For the experiments described below, a new episode was stored every time an
action was performed in the environment, which is approximately every primitive
decision cycle in Soar. The properties of this agent, especially the large working
memory and the large number of WMEs changing per episode, make TankSoar
an atypically stressful domain for episodic memory experimentation.

The tests were run on an Intel 2.8GHz Core 2 Duo processor and 4GB RAM.
The Soar-EpMem episodic store was managed using version 3 of the SQLite in-
process relational database engine [20]. The tests described below involved one
million mapping-bot episodes, averaged over ten trials.
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4 Soar-EpMem Structure and Evaluation

In this section, we present Soar-EpMem together with its evaluation. We begin
with a description of global data structures that summarize the structures found
in working memory. These global structures greatly decrease the amount of stor-
age and processing required for individual episodes. The remaining subsections
describe the different phases of episodic memory processing. The first is stor-
age of episodic memories, the second is cue matching to find a stored episodic
memory, and the final is episodic reconstruction, which involves finding all of the
components of an episode and adding it to Soar’s working memory.

The design of Soar-EpMem was motivated by the need to minimize the growth
in processing time for all of these operations as the number of episodes increases.
However, over long agent lifetimes, cue matching has the greatest growth po-
tential and the overall design is meant to minimize the time required for that
operation, without significantly impacting required memory or the time required
for the other operations.

4.1 Global Episodic Memory Structures

In order to eliminate duplicate representations of working memory elements and
speed cue matching, a global structure can be maintained that represents all the
structures that have existed in working memory. A nalve storage representation
would explicitly define an episode as a “bag” of pointers to such a global structure
(see Fig. 2 left). Termed an “instance” representation by Nuxoll and Laird [14],
such an approach requires time and storage linear in the average number of
working memory elements per episode.

Our design for Soar-EpMem takes advantage of the temporal structure of
episodes, namely that one episode usually will differ from the previous (and next)
episode only in a relatively small number of features. Thus, throughout its de-
sign, Soar-EpMem attempts to process only changes to working memory instead
of the complete episode. As a result, storing an episode involves only noticing
which elements have been added and which elements have been removed from
working memory, building up ranges of when working memory elements existed.
Termed an “interval” representation by Nuxoll and Laird, episodes are implic-

Episodic Working Memory Tree
Working Memory Tree Memories o "

Range List

/
o

Fig. 2. Global Episodic Memory Structures [13]: Instance (left), Interval (right)
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itly represented by associating valid temporal ranges with a global structure (see
Fig. 2l right). With this approach, episode storage is achieved in time and space
linear with respect to the changes in the agent’s working memory [13].

In Nuxoll’s original work [13], the graph structure of working memory was
simplified such that every attribute of an object was unique and that the overall
structure was a tree. Fig.[3 shows a simple working memory that violates both of
these assumptions. There are multiple squares ({3}, {4}, {5}) in the map ({1}),
and a “square” ({5}) and “current” ({2}) edge share a common descendant.
Under the assumption that working memory was a tree, Nuxoll’s system built
up a global structure (termed a Working Memory Tree) of all unique structures
that had ever occurred in working memory. Using a tree instead of a graph
for modeling working memory greatly simplified Nuxoll’s implementation and
was sufficient for him to explore applications of episodic memory; however these
simplifications make it impossible to correctly search and reconstruct episodes
based upon relational working memory structures, which is necessary for many
real-world applications. To correct this deficiency, Soar-EpMem implements a
new global structure, the Working Memory Graph (WMG), which captures all
information necessary for a faithful episode representation.

4.2 Episode Storage

The Working Memory Graph captures all distinct edges that have occurred in
Soar’s working memory. By associating valid temporal intervals (see Fig.[2 right)
with the unique ids of each edge (such as {1}, {2}, etc.), we implicitly define
structure for individual episodes. Episode storage is the process of efficiently
recording the start/end of these intervals.

In Soar-EpMem, interval ranges are started by executing the following algo-
rithm for every element of working memory:
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1. if element already points to the WMG, ignore

2. else:
(a) if a corresponding edge does not exist in the WMG, add it
(b) point the element to the corresponding WMG edge
(c) start a new interval at the pointed WMG edge

By ignoring elements with existing pointers (step 1), we process only new work-
ing memory elements. Later, following an element’s removal from working mem-
ory, Soar-EpMem records the end of the corresponding edge interval. Thus our
implementation only stores element changes.

Using this approach, Soar-EpMem storage time across one million episodes of
mapping-bot remained approximately constant, requiring 1.48-2.68 ms/episode.
Total episodic store size ranged from 625-1620 MB, averaging between 0.64 and
1.66 KB/episode (respectively).

4.3 Cue Matching

Episodic cues take the form of an acyclic graph, partially specifying a subset of
an episode. For example, an agent can create a cue of a position in the map to
recall what it sensed the last time it was in that position.

Episode retrieval proceeds as follows:

1. 2-Phase Nearest Neighbor Cue Matching
(a) Identify candidate episodes based upon surface cue analysis.
(b) Perform structural cue analysis on perfect surface matches.
2. Select and reconstruct the best matching episode (if it exists).

Candidate episodes are defined as containing at least one cue leaf element. Our
surface evaluation function returns the “balanced” sum of match cardinality
(number of matching leaf nodes) and feature weighting [I5].

Candidate episodes with perfect match cardinality are considered perfect sur-
face matches and are submitted to a second phase of structural graph-match.
The graph-match algorithm implements standard CSP backtracking. The best
matching episode is either the most recent structural match or the highest scor-
ing surface match.

Soar-EpMem efficiently iterates over candidate episodes by implementing
Nuxoll and Laird’s [13] interval searching algorithm. The major insight of this
algorithm is that a candidate match score changes only at the endpoints of
episode element intervals. For example, consider Fig. @l The dashed vertical line
at episode 6 indicates the time point of maximum coverage (i.e. maximum match
cardinality). If we begin from the most recent time point (time point 12) and
consider each candidate episode, we will examine 7 episodes before arriving at
this peak. However, after scoring episode 8, there will be no change in coverage
until time point 6: considering episodes between endpoints is redundant. Thus
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Fig. 4. Interval Search Example

if we just walk interval endpoints, incrementally updating match score, we can
achieve significant computational savings. By only processing changes, candidate
episode iteration achieves time linear in the relevant element changes (as opposed
to linear in the number of episodes).

As an optimization, Soar-EpMem will cease interval search upon reaching a
structural match. In Fig. @l however, there is no perfect surface match (since no
episode is covered by all ranges). Thus, if we assume uniform feature weighting,
interval search will return episode 6 after processing all 10 endpoints.

Soar-EpMem efficiently implements Nuxoll and Laird’s interval search algo-
rithm by maintaining B+-tree indexes of all temporal interval endpoints (one for
interval start, one for interval end), keyed on episode nodes. Walking a node’s
endpoints in descending order of time entails finding the most recent time of
interest (log time with respect to the number of endpoints), and walking the leaf
nodes in order (constant time per endpoint). To process a multi-node cue, we
maintain parallel B+-tree leaf pointers for each cue node. All pointers within
a B+-tree are stored in priority queues (keyed on endpoint value). We then
efficiently walk endpoints as described above.

Because Soar’s working memory is implemented as a graph, cue leaf nodes
do not uniquely identify an edge in the Working Memory Graph. For example,
consider the cue in Fig. [l left (relating to working memory as illustrated in
Fig. B). The internal cue node representing a “square” can be satisfied by any
of the three working memory squares ({3}, {4}, {56}). Thus, the problem of
satisfying a leaf node is tantamount to satisfying the sequence of nodes that
leads to (and includes) the leaf node. To continue the example, we can formally
express the satisfaction of the two cue leaf nodes with the following monotonic,
disjunctive normal form (DNF) boolean statements (respecting ids in Fig. [3)):

{1} A {3} A{6})
{1} ABY ATV
{1} A4 A9}V
{1y A A{11})

sat(x = 4) :=
sat(y =5) :

A~~~



412 N. Derbinsky and J.E. Laird

Q 8
map —
v —_—
CP {1}
square
v
Q {3} {4}

4y o

Fig. 5. Retrieval Example: Cue (left), Corresponding DNF Graph (right)

Thus, the problem of efficiently implementing interval search with a Working
Memory Graph is analogous to efficiently tracking satisfaction of a set of DNF
boolean equations. Soar-EpMem solves this problem by only processing changes
to a corresponding DNF graph (depicted in Fig. [ right).

The interval search process is initialized while processing the cue. During
a breadth-first search, we simultaneously create the priority queue of B+-tree
pointers (as discussed above) and the DNF graph. For clarity, a clause in a
DNF statement is represented as a root-to-leaf path in the DNF graph. Each
literal in the DNF graph (depicted as a diamond) has an associated count value,
initialized to 0, representing local satisfaction. A literal count is incremented
if its associated cue element node is “active” (i.e. our current state of interval
search is within the start/end endpoints of the node) OR its parent has a counter
value of 2. The root literal (shown with a special id of “T”) is initialized with
count 2 (thus initializing the count of all direct children to 1). If at least one
leaf literal is satisfied (i.e. has count value 2), the clause must be satisfied. We
additionally maintain a global match score, initialized to 0.

At each endpoint in the interval search algorithm, exactly one literal is ac-
tivated or de-activated (depending on whether we encounter an end/start). If
the literal is part of an internal cue node, this change may entail recursive prop-
agation to child literals. If during propagation we alter clause satisfaction, we
modify the global match score. Thus, we extend endpoint iteration to track only
changes in boolean satisfaction of the DNF graph and, by extension, modifica-
tions of candidate match score.

To compare Soar-EpMem cue matching performance with theoretical bounds,
we developed the following model to reflect the effects of operational algorithms
and data structures:

Cue Match = DNF + Interval Search + Graph Match
DNF = (X1)(log2/ U * R ])(L)
Interval Search = (X3)(1/T)(Distance)(A)
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Fig. 6. Cue Matching DNF Regression Data

The constants in the equations (X1, X2) reflect linear scaling factors for a given
computer. To derive these values for our experimental setup, we performed 100
isolated executions of primitive operations (DNF and Interval Search) on data
collected from 10 trials of mapping-bot data at 10 time points (100K, 200K, ...
1M). We collected the necessary episode statistics (described below) and per-
formed linear regressions to fit data points for 15 different queries. Low perfor-
mance timers (resolution was 1us) caused most model noise.

The Cue Match operation comprises DNF' construction and Interval Search.
The former is linearly dependent upon the logarithmic growth of the average
number, U, of historically unique internal and leaf nodes multiplied by R, the
total number of stored intervals, as well as linearly dependent upon L, the num-
ber of literals associated with the cue nodes. In our tests (see Fig. [f]), we found
X; to be 4.33us (R?=0.996). In experiments with mapping-bot to one million
episodes, results depended greatly on the cue. For all cues that did not reference
“squares” on the agent’s internal map, DNF operation time was constant and
below 8 ms. Cues containing references to map “squares” (and thus referring to
over 250 underlying structures) brought this upper bound to 55.1 ms.

The Interval Search operation is expressed as a proportion of relevant cue
node intervals. T represents the total number of episodes recorded. Distance
represents the temporal difference between the current episode and the best
match. A represents the total number of intervals relevant to the cue. Intuitively,
the farther back in time we must search for an episode, the more intervals we
must examine. This ratio could be re-written as the product the minimal relative
co-occurrence probability of the cue nodes, and the total number of changes
experienced to date by these cue nodes. In our tests (see Fig.[1]), the X5 constant
was 1.29us (R?=0.989). We found absolute operation times depended greatly on
the supplied cue. For cues that did not compel distant searches, Interval Search
was constant with an upper bound of 2.5 ms. With cues crafted to force a linear
scan of the episodic store, time increased linearly to a maximum of 1.03 seconds
over one million episodes.
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Since the linear factors, L and A, grow proportionally to changes in agent
working memory, the first phase of Soar-EpMem cue matching achieves the lower
bound of growing linearly with agent changes.

The Graph Match operation, however, is much more difficult to characterize.
CSP backtracking depends upon cue breadth, depth, structure (such as shared
internal cue nodes), and corresponding candidate episodes, but can be combi-
natorial in the worst case (though our two-phase matching policy attempts to
minimize this cost). We have not extensively evaluated this component, but we
expect a studied application of heuristic search will effectively constrain graph-
match in the average case.

4.4 Episode Reconstruction

Given the temporal id of an episode, reconstruction in Soar-EpMem can be
summarized by the following two steps:

1. Collect contributing episode elements
2. Add elements to working memory

Given the episode elements, adding WMEs to Soar is a straight forward process
that takes advantage of Soar’s existing architectural primitives and thus we focus
on the former step.

Collecting episode elements in an “interval” representation (see Fig. 2 right)
is tantamount to an interval intersection query: collect all elements that started
before and ended after time t. To facilitate efficient episode reconstruction, Soar-
EpMem maintains a Relational Interval Tree (RI-tree) [7]. An RI-tree is a map-
ping of the interval tree data structure onto Relational Database Management
System (RDBMS) B+-tree indexes and SQL queries. As with a standard interval
tree, intersection queries execute in logarithmic time with respect to the number
of stored intervals.

Excluding system-specific step 2 above, we developed the following model for
episode reconstruction performance in Soar-EpMem:
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Reconstruction = RI-tree + Collect
RI-tree = (X3)(log2R)
Collect = (X4)(M)(1 + log2 U)

To validate our model we performed 100 isolated executions of primitive oper-
ations (RI-tree and Collect) on the same data collected for cue-matching (10
trials, mapping-bot, 10 time points from 100K to 1M episodes). We collected the
necessary statistics (described below) for 50 episodes selected randomly (5 per
10,000 episodes through the first 100,000 episodes of exection) and performed
linear regressions to fit data points.

Total time for episode reconstruction is the sum of two operations: RI-tree
and Collect. RI-tree refers to the process of extracting pertinent intervals from
the Relational Interval Tree. The logarithmic dependent variable, R, refers to
the total number of ranges in the Rl-tree structure. In our experiments, the X3
constant was 2.55us (over 70% R?). After one million episodes, we recorded the
upper bound of RI-tree operation time as 0.1 ms.

The Collect operation refers to cross-referencing pertinent episode intervals
with structural information in the Working Memory Graph. This process de-
pends upon the average number, U, of historically unique internal and leaf nodes,
as well as the number of elements, M, comprising the episode to be reconstructed.
With mapping-bot we regressed an X value of 1.6us. Because episode size does
not vary greatly in mapping-bot (2500-2600 elements, typically), the dominating
linear factor, M, highlighted noise in the experimental data and thus R? was
73%. After one million episodes, we recorded an upper bound of 22.55 ms for
the collection operation with episodes ranging from 2521-2631 elements.

If we assume a constant or slowly growing average episode size, the M factor
can be considered a constant and thus Reconstruction becomes the linear sum of
logarithmic components R and U. Both R and U increases result from changes
in agent working memory. Thus, under these assumptions, Soar-EpMem episode
reconstruction achieves the lower bound of growing linearly with agent changes.

5 Conclusion

In this paper, we presented an implementation of a graph-based, task-
independent episodic memory and characterized the associated computational
challenges. We provided formal models of the costs associated with the different
phases of episodic processing and provided empirical results over one million
episodes.

In this work we applied efficient data structures and algorithms to limit
episodic computation, while still guaranteeing a best-match retrieval. Thus, we
consider that a typical cue is one for which retrieval does not require a linear scan
of the episodic store. Table [Il summarizes typical empirical results for mapping-
bot over one million episodes. Storage time remains nearly constant, and well
below the bound of 50ms, with linear growth in storage. Cue matching time
is within desired bounds, but suffers linear growth in the atypical case (with a
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Table 1. Soar-EpMem Typical Operation Costs: mapping-bot

episodes storage cue matching reconstruction  total
1,000,000 2.68ms, 1620MB 57.6ms 22.65ms 82.93ms

maximum observed cost of 1.03 sec.). Episodic reconstruction time is dominated
by episode size but falls within desired bounds for over 2500 features. Although
these results achieve our initial performance goals, there is still much to be done:

Additional Empirical Evaluation. We need to expand to additional do-
mains and establish a set of test cases for episodic memory systems. TankSoar
is a stressful test, useful for initial exploration and evaluation, but it is arti-
ficial and we need a collection of tasks that use episodic memory in a variety
of ecologically valid ways.

Extended Evaluations. We also need to explore much longer runs. One
million episodes corresponds to approximately fourteen hours of real time.
Our goal is to have agents that exist continually for 1 year (42-420 million
episodes [9]).

Cue Match Bounding. Although storage and reconstruction are relatively
well behaved, the cost of cue matching can be extremely variable depending
on the complexity of the cue and the structures in episodic memory. We
need to explore alternative or even heuristic graph-matching schemes that
provide tighter bounds.
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