
Improving Reinforcement Learning by using Case
Based Heuristics

Reinaldo A. C. Bianchi1,2, Raquel Ros2, and Ramón López de Mántaras2

1 Centro Universitário da FEI, São Bernardo do Campo, Brazil.
rbianchi@fei.edu.br,

2 Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain.
{ros,mantaras}@iiia.csic.es

Abstract. This work presents a new approach that allows the use of casesin
a case base as heuristics to speed up Reinforcement Learningalgorithms, com-
bining Case Based Reasoning (CBR) and Reinforcement Learning (RL) tech-
niques. This approach, called Case Based Heuristically Accelerated Reinforce-
ment Learning (CB-HARL), builds upon an emerging technique, the Heuristic
Accelerated Reinforcement Learning (HARL), in which RL methods are accel-
erated by making use of heuristic information. CB-HARL is a subset of RL that
makes use of a heuristic function derived from a case base, ina Case Based Rea-
soning manner. An algorithm that incorporates CBR techniques into the Heuristi-
cally Accelerated Q–Learning is also proposed. Empirical evaluations were con-
ducted in a simulator for the RoboCup Four-Legged Soccer Competition, and
results obtained shows that using CB-HARL, the agents learnfaster than using
either RL or HARL methods.

1 Introduction

Case Based Reasoning (1; 2) techniques have been shown to be useful in a multitude
of domains, with widespread applications ranging from the optimization of autoclave
loading (3), the diagnosis and treatment of many medical problems (4), to the synthesis
of high quality expressive music (5).

Reinforcement Learning (RL) is also a very successful Artificial Intelligence tech-
nique. RL algorithms are very useful for solving a wide variety problems when their
models are not available a priori, since many of them are known to have guarantees of
convergence to equilibrium (6; 7). Unfortunately, the convergence of a RL algorithm
may only be achieved after an extensive exploration of the state-action space, which is
usually very time consuming.

One way to speed up the convergence of RL algorithms is makinguse of a con-
veniently chosen heuristic function, which can be used for selecting the appropriate
actions to perform in order to guide exploration during the learning process. Several
Heuristically Accelerated Reinforcement Learning (HARL)methods that makes use of
a heuristic function have been recently proposed (8; 9). These techniques are very at-
tractive: as RL, they are based on firm theoretical foundations. As the heuristic function
is used only in the choice of the action to be taken, many of theconclusions obtained

2

for RL remain valid for HARL algorithms, such as the guarantee of convergence to
equilibrium in the limit and the definition of an upper bound for the error.

Although several methods have been successfully applied for defining the heuristic
function, a very interesting option has not been explored yet: the reuse of previously
learned policies, using a Case Based Reasoning approach. This paper investigates the
combination of Case Based Reasoning (CBR) and Reinforcement Learning (RL) tech-
niques, with the goal of speeding up RL algorithms by using previous domain knowl-
edge, stored as a case base. To do so, we propose a new algorithm, the Case Based
Heuristically Accelerated Q–Learning (CB-HAQL), which incorporates Case Based
Reasoning techniques into an existing HARL algorithm, the Heuristically Accelerated
Q–Learning (HAQL).

The application domain of this paper is that of the RoboCup Standard Platform
League, Four-Legged Soccer Competition (10), where teams consisting of four Sony
AIBO robots operating fully autonomously and communicating through a wireless net-
work compete in a 6 x 4 m field. This domain is one of many RoboCupchallenges,
which has been proven to be an important domain for research,and where RL tech-
niques have been widely used. Nevertheless, the technique proposed in this work is
domain independent.

The paper is organized as follows: Section 2 briefly reviews the Reinforcement
Learning problem; Section 3 describes HARL approach and theHAQL algorithm, while
section 4 describes Case Based Reasoning. Section 5 shows how to incorporate CBR
techniques into HARL algorithms, in a modified formulation of the HAQL algorithm.
Section 6 describes the robotic soccer domain used in the experiments, presents the ex-
periments performed, and shows the results obtained. Finally, conclusions are presented
in Section 7.

2 Reinforcement Learning and the Q–Learning algorithm

Reinforcement Learning (RL) algorithms have been applied successfully to the on-line
learning of optimal control policies in Markov Decision Processes (MDPs). In RL, this
policy is learned through trial-and-error interactions ofthe agent with its environment:
on each interaction step the agent senses the current states of the environment, chooses
an actiona to perform, executes this action, altering the states of the environment, and
receives a scalar reinforcement signalr (a reward or penalty).

The RL problem can be formulated as a discrete time, finite state, finite action
Markov Decision Process (MDP). The learning environment can be modeled by a 4-
tuple〈S,A, T ,R〉, where:

– S: is a finite set of states.
– A: is a finite set of actions that the agent can perform.
– T : S × A → Π(S): is a state transition function, whereΠ(S) is a probability

distribution overS. T (s, a, s′) represents the probability of moving from states to
s′ by performing actiona.

– R : S ×A → ℜ: is a scalar reward function.

3

Table 1.The Q–Learning algorithm.

Initialize Q̂t(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Select an actiona using equation 2.
Execute the actiona, observer(s, a), s′.
Update the values ofQ(s, a) according to equation 1.
s← s′.

Until s is terminal.
Until some stop criteria is reached.

The goal of the agent in a RL problem is to learn an optimal policy π∗ : S → A
that maps the current states into the most desirable actiona to be performed ins.
One strategy to learn the optimal policyπ∗ is to allow the agent to learn the evaluation
function Q : S × A → R. Each action valueQ(s, a) represents the expected cost
incurred by the agent when taking actiona at states and following an optimal policy
thereafter.

The Q–learning algorithm (11) is a well-know RL technique that uses a strategy
to learn an optimal policyπ∗ via learning of the action values. It iteratively approxi-
matesQ, provided the system can be modeled as an MDP, the reinforcement function
is bounded, and actions are chosen so that every state-action pair is visited an infinite
number of times (the complete algorithm is presented in Table 1). TheQ learning up-
date rule is:

Q̂(s, a)← Q̂(s, a) + α
[

r + γ max
a′

Q̂(s′, a′)− Q̂(s, a)
]

, (1)

wheres is the current state;a is the action performed ins; r is the reward received;s′ is
the new state;γ is the discount factor (0 ≤ γ < 1); andα, is the learning rate. To select
an action to be executed, the Q–Learning algorithm usually considers anǫ − Greedy

strategy:

π(s) =

{

arg maxa Q̂(s, a) if q ≤ p,

arandom otherwise
(2)

where:

– q is a random value uniformly distributed over[0, 1] andp (0 ≤ p ≤ 1) is a pa-
rameter that defines the exploration/exploitation tradeoff: the largerp, the smaller
is the probability of executing a random exploratory action.

– arandom is an action randomly chosen among those available in states.

In RL, learning is carried out online, through trial-and-error interactions of the agent
with the environment. Unfortunately, convergence of any RLalgorithm may only be
achieved after extensive exploration of the state-action space. In the next section we
show one way to speed up the convergence of RL algorithms, by making use of a heuris-
tic function in a manner similar to the use of heuristics in informed search algorithms.

4

3 Heuristic Accelerated Reinforcement Learning and the HAQL
Algorithm

Formally, a Heuristically Accelerated Reinforcement Learning (HARL) algorithm (8) is
a way to solve a MDP problem with explicit use of a heuristic functionH : S×A → ℜ
for influencing the choice of actions by the learning agent.H(s, a) defines the heuristic
that indicates the importance of performing the actiona when visiting states. The
heuristic function is strongly associated with the policy:every heuristic indicates that
an action must be taken regardless of others.

The heuristic function is an action policy modifier, which does not interfere with
the standard bootstrap-like update mechanism of RL algorithms. A possible strategy
for action choice is anǫ− greedy mechanism where a heuristic mechanism formalized
as a functionH(s, a) is considered, thus:

π(s) =

{

argmaxa

[

F(s, a) ⊲⊳ ξH(s, a)β
]

if q ≤ p,

arandom otherwise
(3)

where:

– F : S × A → ℜ is an estimate of a value function that defines the expected
cumulative reward. IfF(s, a) ≡ Q̂(s, a) we have an algorithm similar to standard
Q–Learning.

– H : S × A → ℜ is the heuristic function that plays a role in the action choice.
H(s, a) defines the importance of executing actions in states.

– ⊲⊳ is a function that operates on real numbers and produces a value from an ordered
set which supports a maximization operation.

– ξ andβ are design parameters that control the influence of the heuristic function.
– q is a parameter that defines the exploration/exploitation tradeoff.
– arandom is an action randomly chosen among those available in states.

The first HARL algorithm proposed was the Heuristically Accelerated Q–Learning
(HAQL) (8), as an extension of the Q–Learning algorithm. Theonly difference between
them is that in the HAQL makes use of an heuristic function in the action choice rule
defined in Equation (3), whereF = Q, the⊲⊳ operator is the sum, andβ = 1:

π(s) =

{

argmaxa

[

Q̂(s, a) + ξH(s, a)
]

if q ≤ p,

arandom otherwise,
(4)

where all variables are defined as in Equation (3).
As a general rule, the value ofHt(s, a) used in HAQL should be higher than the

variation among thêQ(s, a) values for the sames ∈ S, in such a way that it can
influence the choice of actions, and it should be as low as possible in order to minimize
the error. It can be defined as:

H(s, a, o) =

{

max
i

Q̂(s, i)− Q̂(s, a) + η if a = πH(s),

0 otherwise.
(5)

5

Table 2.The HAQL algorithm.

Initialize Q̂t(s, a) andHt(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Update the values ofHt(s, a) as desired.
Select an actiona using equation 4.
Execute the actiona, observer(s, a), s′.
Update the values ofQ(s, a) according to equation 1.
s← s′.

Until s is terminal.
Until some stop criteria is reached.

whereη is a small real value (usually 1) andπH(s) is the action suggested by the
heuristic policy.

Convergence of the HAQL algorithm was presented by Bianchi,Ribeiro and Costa
(8), together with the definition of an upper bound for the error in the estimation of Q.
The complete HAQL algorithm is presented in Table 2. The sameauthors investigated
the use of HARL in multiagent domain, proposing a multiagentHARL algorithm – the
Heuristically Accelerated Minimax-Q (9) – and testing it ina simplified simulator for
the robot soccer domain.

Despite the fact that RL is a method that has been traditionally applied in the
Robotic Soccer domain, only recently HARL methods started being used in this do-
main. Bianchi, Ribeiro and Costa (9) investigated the use ofa multiagent HARL algo-
rithm in a simplified simulator for the robot soccer domain; Celiberto, Ribeiro, Costa
and Bianchi (12) studied the use of the HARL algorithms to speed up learning in the
RoboCup 2D Simulation domain. Finally, Martins and Bianchi(13) studied the use of
several HARL algorithms in a simulated Robot soccer environment that reproduces the
conditions of a real physical robot, the FIRA Simurosot competition league.

4 Case-based reasoning

Humans frequently try to solve a new problem by remembering aprevious similar sit-
uation, reasoning about it, and then reusing knowledge of that situation to solve the
new problem. Case-based reasoning (CBR) (1; 2) uses knowledge of previous situa-
tions (cases) to solve new problems, by finding a similar pastcase and reusing it in the
new problem situation. In the CBR approach, a case usually describes a problem and
its solution, i.e., the state of the world in a defined moment and the sequence of actions
to perform to solve that problem.

According to López de Mántaraset al (2), solving a problem by CBR involves
“obtaining a problem description, measuring the similarity of the current problem to
previous problems stored in a case base with their known solutions, retrieving one or
more similar cases, and attempting to reuse the solution of the retrieved case(s), possibly
after adapting it to account for differences in problem descriptions”. Other steps that are

6

usually found in CBR systems are the evaluation of the proposed solution, the revision
of the solution, if required in light of its evaluation, and the retention (learning) of a
new case, if the system has learned to solve a new problem.

The case definition used in this work is the one proposed by Ros(14; 15; 16; 17; 18),
which is composed of three parts: the problem description (P), the solution description
(A) and the case scope (K), and is formally described as a 3-tuple:

case = (P, A, K).

The problem descriptionP corresponds to the situation in which the case can be used.
For example, for a simple robotic soccer problem, the description of a case can include
the robot position, the ball’s position and the positions ofthe other robots in the game.
For a game withn robots,P can be:

P = {xB, yB, xR0
, yR0

, . . . , xRn
, yRn

}.

The solution description is composed by the sequence of actions that each robot
must perform to solve the problem, and can be defined as:

A = {R0 : [a01
, a02

, ..., a0p0
], . . . , Rn : [an1

, an2
, ..., anpn

]},

wheren is the number of robots in the team,a0i
is an individual or joint action that robot

Ri must perform andpi corresponds the number of actions the robotRi performs.
The case scope defines the applicability boundaries of the cases, to be used in the

retrieval step. For example, Ros (18) define it as “the regions of the field within which
the ball and the opponents should be positioned in order to retrieve that case”. In the
case of a simple robot soccer problem,K can be represented as ellipsoids centered
on the ball’s and opponents’ positions indicated in the problem description. It can be
defined as:

K = {(τx
B, τ

y
B), (τx

R0
, τ

y
R0

) . . . , (τx
Rn

, τ
y
Rn

)},

whereτx
B , τ

y
B corresponds to thex andy radius of the ellipsoid region around the ball

and(τx
R0

, τ
y
R0

) . . . , (τx
Rn

, τ
y
Rn

) the radius of the regions around then robots in the game
(teammates and opponents).

Case retrieval is in general driven by a similarity measure between the new problem
and the solved problems in the case base. In this work we use the case retrieval method
proposed by Ros (18), where the similarity along three important aspects are evaluated:

– the similarity between the problem and the case;
– the cost of adapting the problem to the case, and;
– the applicability of the solution of the case.

The similarity function indicates how similar a problem anda case are. In most
cases, the function is defined by the distance between the ball and the robots in the
problem and in the case.

Sim(p, c) = dist(Bc, Bp) +

n
∑

i=0

dist(Ri
c, Ri

p),

7

whereBc is the position of the ball in the case andBp its position in the problem,Ri
c

the position of the Roboti in the case andRi
p its position in the problem, anddist(a, b)

is the gaussian distance between objecta andb. This distance is computed as follows:

dist(a, b) = exp

(

−

[

(

ax − bx

τx

)2

+

(

ay − by

τy

)2
])

,

whereτx, τy are the radius of the scope around the object (ball and robotspositions).
The Gaussian distance is used because the larger the distance between two points, the
lower the similarity between them. Also, theτx, τy parameters are used as a thresh-
old that defines a maximum distance allowed for two points to have some degree of
similarity: if the distance is greater than a limit,Sim(a, b) = 0.

The cost of adapting the problem to the case is computed as a function of the dis-
tances between the positions of the team robots in the problem and the positions speci-
fied in the case. The adaptation cost is defined as:

cost(p, c) =
n
∑

i=1

dist(ri, adaptPosi)

wheren is the number of robots that take part of the case solution,dist is the Euclidian
distance,ri is the current position of roboti andadaptPosi the adapted position for
roboti.

The applicability of the solution of the case depends on the position of the oppo-
nents, and combine two functions: the free path function, which considers if the trajec-
tory of the ball indicated in the case is free of opponents, inorder for the evaluated case
to be applicable and the opponent similarity, which computes if the opponents repre-
sent a significant threat for the robots to fulfill the task, such as an opponent blocking
the ball or an opponent located near enough to get the ball first. This functions and the
complete case retrieval algorithm are described in detail in Ros (18).

In recent years, CBR has been used by several researchers in the Robotic Soccer
domain. To mention a few, Lin, Liu and Chen (19) presented a hybrid architecture for
soccer players where the deliberative layer corresponds toa CBR system, Ahmadiet
al (20) presented a two-layered CBR system for prediction for the coach, and Karol
et al (21) presented high level planning strategies including a CBR system. Finally, the
works of Ros (18) presents the most ample use of CBR techniques in the Robotic Soccer
domain, proposing the use of CBR techniques to handle retrieval, reuse and acquisition
of a case base for the action selection problem of a team for the Four-Legged robots.

5 Combining Case Based Reasoning and Reinforcement Learning

Bianchi, Ribeiro and Costa (8) states that there should be many methods that can be used
to define a heuristic function for a HARL algorithm. For example, the same work makes
use of information from the learning process itself to infera heuristic in execution
time, proposing the “Heuristic from Exploration” method, atechnique that derives a
crude estimate of the transition probabilities, by annotating the results of every action

8

Table 3.The CB-HAQL algorithm.

Initialize Q̂t(s, a) andHt(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
ComputeHt(s, a) using Equation 5 with the

actions suggested by the case selected.
Select an actiona using equation 4.
Execute the actiona, observer(s, a), s′.
Update the values ofQ(s, a) according to equation 1.
s← s′.

Until s is terminal.
Until some stop criteria is reached.

performed by the agent, and then, from this model, it propagates – from a final state –
the correct policies which lead to that state.

In order to give HARL algorithms the capability of reusing previous knowledge
from a domain, we propose a new algorithm, the Case Based HAQL, that extends the
HAQL algorithm, being capable of retrieving a case stored ina base, adapting it to the
current situation, and building a heuristic function that corresponds to the case.

As the problem descriptionP corresponds to one defined state of the set of states
S in an MDP, an algorithm that uses the RL loop can be implemented. Inside this loop,
before the action selection, we added steps to compute the similarity of the cases in the
base with the current state and the cost of adaptation of these cases. A case is retrieved
if the similarity is above a certain threshold, and adaptation cost is low. After a case
is retrieved, an heuristic is computed using Equation 5 withthe actions suggested by
the case selected, and this heuristic is used for a certain amount of time, equals to the
number of actions of the retrieved case. After that time, a new case can be retrieved.
The complete CB-HAQL algorithm is presented in Table 3.

Some authors have been studying the use of RL together with CBR and the relation
between them. Sharmaet al (22) makes use of CBR as a function approximator for
RL, and RL as revision algorithm for CBR in a hybrid architecture system; Juell and
Paulson (23) exploit the use of RL to learn similarity metrics in response to feedback
from the environment; Auslanderet al (24) uses CBR to adapt quickly an RL agent to
changing conditions of the environment by the use of previously stored policies and Li,
Zonghai and Feng (25) proposes an algorithm that makes use ofknowledge acquired
by reinforcement learning to construct and extend a case base.

Our approach differs from all previous works combining CBR and RL because of
the heuristic use of the retrieved case: as the case is used only as a heuristic, if the case
base contains a case that can be used in one situation, there will be a speed up in the
convergence time. But if the case base does not contain any useful case – or even if it

9

Fig. 1. The PuppySim2 users’ interface showing the robots at their initial positions.

contains cases that implement wrong solutions to the problem, the agent will learn the
optimal solution anyway, by using the RL component of the algorithm.

6 Experiments in the Robotic Soccer Domain

Empirical evaluations of the CB-HAQL approach were carriedout in an extended ver-
sion of the PuppySim 2 simulator, created by the CMDash team (26) and extended by
Ros (18). This simulator represents the basic aspects of theRoboCup Standard Platform
League, Four-Legged Soccer Competition (27), and is used totest the robot’s behav-
ioral response under ideal environmental conditions: the robots’ perception is noiseless,
but the outcome of the actions the robots perform have a certain degree of randomness.
PuppySim 2 was implemented using Python.

Using this simulator experiments were performed using two attackers against a de-
fender and a goalie. The attackers are two robots controlledby one of the algorithms to
be evaluated: the Q–Learning, described in section 2, the HAQL, described in section 3
or the CB-HAQL, proposed in section 5 and we have also compared them to the results
of the CBR system alone obtained by Ros (18). The opponents perform the same reac-
tive behavior when playing against any of the evaluated approaches. The defender and
the goalie have a home region which cannot go beyond. If the ball is within its home
region, then the robot moves towards the ball and clears it. Otherwise, the robot remains
in the boundary of its home region, facing the ball to maintain it in its point of view.
Each trial begins with the attackers being positioned in thefield in a random position,
and the defender, the goalie and the ball in a fixed location (ball in the center, and de-
fender and goalie in the center of their home region). Figure1 shows the PuppySim 2

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

G
oa

ls

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 2.Percentage of goals scored in each trial using the CBR (constant line at 35%), Q–learning,
the HAQL and the CB-HAQL algorithms.

users’ interface with one starting configuration. A trial ends either when the attackers
score a goal, the ball goes out of the field or the goalie touches it.

The heuristic used in the HAQL algorithm was defined using a simple rule: if hold-
ing the ball, go to the opponents goal, not taking into account the opponents positions,
leaving the task of how to divert the opponent to the learningprocess. The heuristic
used in the CB-HAQL is computed during the games, as described in section 5. The
case base used for the experimentation is composed of 136 cases, which cover the most
significant situations that can occur in the evaluation presented in this work. From this
set, 34 cases are initially defined, while the remaining onesare automatically generated
using spatial transformations exploiting the symmetries of the soccer field. The reward
the agents receive are the same for all algorithms: the agentreceives−100 every time
the ball go out of the field or the goalie touches it and+100 a robot scores a goal.

In order to evaluate each trial we classify the possible outcomes as:

– goal : the ball enters the goal.
– close : the ball goes out of the field but passes near one of the goalposts. More

precisely, at most 25cm to the left (right) of the left (right) goalpost.
– block : the goalie stops or kicks the ball.
– out : the ball goes out the field without being a goal or close togoal.

We also consider the “to-goal” balls, which correspond to balls that are either goals or
close to goal. This measure indicates the degree of goal intention of the kicks. Thus,
although the balls might not enter the goal, at least they were intended to do so.

Twenty five training sessions were run for the three algorithms, with each session
consisting of 1000 trials. Figures 2 to 5 shows the learning curves for all algorithms

11

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

C
lo

se
 to

 G
oa

l

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 3. Percentage of balls that passed close to the goals in each trial, for the CBR (constant line
at 5%), Q–learning, the HAQL and the CB-HAQL algorithms.

(the CBR alone and the three learning algorithms) and presents the percent of goals
scored (Fig. 2) by the learning team, balls that passed closeto the goals (Fig. 3), balls
blocked by the defenders (Fig. 4) and balls that went out (Fig. 5) in each trial. It is
possible to verify in Fig. 2 that at the beginning of the learning phase HAQL has worse
performance than the CB-HAQL, and as the trials proceed, theperformance of both al-
gorithms become similar, as expected, since all the algorithms converge to equilibrium.
The Q–learning is clearly the one with the worst performance, since it takes much more
trials for it to start to learn even basic policies, as not to kick the ball out of the field.
In this figure it can also be observed the performance of two agents using only the case
base. Student’st–test was used to verify the hypothesis that the use of heuristics speeds
up the learning process. Using the data from Fig. 2, the result is that the CB-HAQL is
better (makes more goals) than HAQL and Q–Learning until the300th trial, with a level
of confidence greater than 5%. After this trial the results ofthe CB-HAQL and HAQL
are comparable.

Finally, table 4 summarizes the ball classification outcomeobtained (results in per-
centage) using the CBR approach and the three learning algorithms. The results for the
CBR approach are the average of 500 trials, and the results for the Q–learning, HAQL
and CB-HAQL are the average of 100 trials, using the Q-table that the three algorithms
had at the end of the 1000th trial. As we can see the percentage of balls to goal with
the CB-HAQL approach is higher compared to either the HAQL orthe Q-Learning al-
gorithms. Moreover, the percentage of balls out are lower when using CBR, indicating
that the defender had less opportunities to take the ball andkick it out of the field, and
that the agent performed less random exploration.

12

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

B
lo

ck
ed

 b
al

ls

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 4. Percentage of balls blocked by the defenders for the CBR (constant line at 38%), Q–
learning, the HAQL and the CB-HAQL algorithms.

The parameters used in the experiments were the same for all the algorithms. The
learning rate isα = 0, 9, the exploration/ exploitation rate was defined as being equal
to 0.2 and the discount factorγ = 0.9 (these parameters are similar to those used by
(28). The value ofη was set to 1. Values in the Q table were randomly initiated, with
0 ≤ Q(st, at, ot) ≤ 1. The experiments were programmed in Python and executed in a
MacBook Pro, with 4GB of RAM in a Mac OS X platform.

7 Conclusion

This work presented a new algorithm, called Case Based Heuristically Accelerated
Q–Learning (CB-HAQL), which allows the use of a cases base todefine heuristics

Table 4.Ball outcome classification (results in percentage).

Approach Goal Close To-Goal BlockedOut
Goal + Close

CBR 35 5 40 38 22
Q–Learning 2 2 4 22 74

HAQL 16 4 20 20 60
CB-HAQL 40 7 47 36 17

13

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

O
ut

 o
f t

he
 fi

el
d

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 5. Percentage of balls that went out of the field in each trial, for the CBR (constant line at
22%), Q–learning, the HAQL and the CB-HAQL algorithms.

to speed up the well-known Reinforcement Learning algorithm Q–Learning. This ap-
proach builds upon an emerging technique, the Heuristic Accelerated Reinforcement
Learning (HARL), in which RL methods are accelerated by making use of heuristic
information.

The experimental results obtained showed that CB-HAQL attained better results
than HAQL and Q–Learning for the domain of robotic soccer games. For example, the
Q–Learning, after 1000 learning trials, still could not produce policies that scored goals
on the opponent, while the HAQL was able to score some goals but significantly less
than the CBR alone and the CB-HAQL. Another interesting finding is that the goals
scored by the CB-HAQL after 1000 trials was even slightly higher than the number of
goals scored by the CBR approach alone, indicating that the learning component of the
CB-HAQL algorithm was able to improve the initial case base.

Another important finding of this work is that the CBR approach generated better
results than the Q–learning algorithm, for the same experimental setup. Experiments
executed until the 10.000th trial showed that the Q-Learning still had not converged,
indicating the slow rate of learning of this algorithm, in this domain.

Finally, since Heuristic functions allow RL algorithms to solve problems where the
convergence time is critical, as in many real time applications, in future works we plan
to incorporate CBR in other well known RL algorithms, like SARSA, Q(λ), Minimax-
Q, Minimax-Q(λ), and Nash-Q, and expanding this framework to deal with General
Sum Markov Games.

Bibliography

[1] Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Commun.7(1) (1994) 39–59

[2] de Mántaras, R.L., McSherry, D., Bridge, D., Leake, D.,Smyth, B., Craw, S.,
Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M.,Aamodt, A., Watson,
I.: Retrieval, reuse, revision and retention in case-basedreasoning. Knowl. Eng.
Rev.20(3) (2005) 215–240

[3] Hennessy, D., Hinkle, D.: Applying case-based reasoning to autoclave loading.
IEEE Expert: Intelligent Systems and Their Applications7(5) (1992) 21–26

[4] Althoff, K.D., Bergmann, R., Wess, S., Manago, M., Auriol, E., Larichev, O.I.,
Bolotov, A., Zhuravlev, Y.I., Gurov, S.I.: Case-based reasoning for medical deci-
sion support tasks: The inreca approach. Artificial Intelligence in Medicine (Jan-
uary 1998) 25–41

[5] de Mántaras, R.L., Cunningham, P., Perner, P.: Emergent case-based reasoning
applications. Knowl. Eng. Rev.20(3) (2005) 325–328

[6] Szepesvári, C., Littman, M.L.: Generalized markov decision processes: Dynamic-
programming and reinforcement-learning algorithms. Technical report, Brown
University (1996) CS-96-11.

[7] Littman, M.L., Szepesvári, C.: A generalized reinforcement learning model: con-
vergence and applications. In: Proceedings of the 13th International Conference
on Machine Learning (ICML’96). (1996) 310–318

[8] Bianchi, R.A.C., Ribeiro, C.H.C., Costa, A.H.R.: Accelerating autonomous learn-
ing by using heuristic selection of actions. Journal of Heuristics 14(2) (2008)
135–168

[9] Bianchi, R.A.C., Ribeiro, C.H.C., Costa, A.H.R.: Heuristic selection of actions in
multiagent reinforcement learning. In Veloso, M.M., ed.: IJCAI 2007, Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6-12, 2007. (2007) 690–695

[10] RoboCup Technical Committee: Standard platform league homepage (2009)
http://www.tzi.de/spl.

[11] Watkins, C.J.C.H.: Learning from Delayed Rewards. PhDthesis, University of
Cambridge (1989)

[12] Celiberto, L.A., Ribeiro, C.H.C., Costa, A.H.R., Bianchi, R.A.C.: Heuristic rein-
forcement learning applied to robocup simulation agents. In Visser, U., Ribeiro,
F., Ohashi, T., Dellaert, F., eds.: RoboCup. Volume 5001 of Lecture Notes in Com-
puter Science., Springer (2007) 220–227

[13] Martins, M.F., Bianchi, R.A.C.: Comparison of reinforcement learning algorithm
performance in the robotic soccer domain (in portuguese). In: Brazilian Sympo-
sium on Intelligent Automation – SBAI’2007, Florianopolis, Brazil, SBA (2007)
Anais.

[14] Ros, R., Veloso, M., de Mántaras, R.L., Sierra, C., Arcos, J.L.: Retrieving and
reusing game plays for robot soccer. Lecture Notes in Artificial Intelligence4106
(2006) 47–61

15

[15] Ros, R., Veloso, M., de Mántaras, R.L., Sierra, C., Arcos, J.L.: Beyond individ-
ualism: Modeling team playing behavior in robot soccer through case-based rea-
soning. In: 22nd AAAI Conference on Artificial Intelligence, Vancouver, Canada,
AAAI Press, AAAI Press (2007) 1671–1674

[16] Ros, R., de Mántaras, R.L., Arcos, J.L., Veloso, M.: Team playing behavior in
robot soccer: A case-based approach. Lecture Notes in Artificial Intelligence4626
(2007) 46–60

[17] Ros, R., Arcos, J.L.: Acquiring a robust case base for the robot soccer domain. In
Veloso, M., ed.: Proceedings of the 20th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2007), AAAI Press, AAAI Press (2007) 1029–1034

[18] Ros, R.: Action Selection in Cooperative Robot Soccer using Case-Based Rea-
soning. PhD thesis, Universitat Autònoma de Barcelona, Barcelona (2008)

[19] Lin, Y., Liu, A., Chen, K.: A hybrid architecture of case-based reasoning and fuzzy
behavioral control applied to robot soccer. In: Workshop onArtificial Intelligence,
International Computer Symposium (ICS2002), Hualien, Taiwan, National Dong
Hwa University, National Dong Hwa University (2002)

[20] Ahmadi, M., Lamjiri, A.K., Nevisi, M.M., Habibi, J., Badie, K.: Using a two-
layered case-based reasoning for prediction in soccer coach. In Arabnia, H.R.,
Kozerenko, E.B., eds.: MLMTA, CSREA Press (2003) 181–185

[21] Karol, A., Nebel, B., Stanton, C., Williams, M.A.: Casebased game play in the
robocup four-legged league part i the theoretical model. InPolani, D., Browning,
B., Bonarini, A., Yoshida, K., eds.: RoboCup. Volume 3020 ofLecture Notes in
Computer Science., Springer (2003) 739–747

[22] Sharma, M., Holmes, M., Santamarı́a, J.C., Irani, A., Jr., C.L.I., Ram, A.: Transfer
learning in real-time strategy games using hybrid cbr/rl. In Veloso, M.M., ed.:
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007. (2007) 1041–1046

[23] Juell, P., Paulson, P.: Using reinforcement learning for similarity assessment in
case-based systems. IEEE Intelligent Systems18(4) (2003) 60–67

[24] Auslander, B., Lee-Urban, S., Hogg, C., Muñoz-Avila,H.: Recognizing the en-
emy: Combining reinforcement learning with strategy selection using case-based
reasoning. In Althoff, K.D., Bergmann, R., Minor, M., Hanft, A., eds.: ECCBR.
Volume 5239 of Lecture Notes in Computer Science., Springer(2008) 59–73

[25] Li, Y., Zonghai, C., Feng, C.: A case-based reinforcement learning for probe robot
path planning. In: 4th World Congress on Intelligent Control and Automation,
Shanghai, China. (2002) 1161– 1165

[26] Veloso, M., Rybski, P.E., Chernova, S., McMillen, C., Fasola, J., von Hun-
delshausen, F., Vail, D., Trevor, A., Hauert, S., Ros, R.: Cmdash’05: Team re-
port. Technical report, School of Computer Science, Carnegie Mellon University
(2005)

[27] RoboCup Technical Committee: RoboCup Four-Legged League Rule Book.
(2008)

[28] Littman, M.L.: Markov games as a framework for multi-agent reinforcement
learning. In: Proceedings of the 11th International Conference on Machine Learn-
ing (ICML’94). (1994) 157–163

