Improving Reinforcement Learning by using Case
Based Heuristics

Reinaldo A. C. BiancHi?, Raquel Ro% and Ramon Lopez de Mantatas

1 Centro Universitario da FEI, Sao Bernardo do Campo, Brazi
r bi anchi @ ei . edu. br,
2 Artificial Intelligence Research Institute (IIIA-CSIC) gaterra, Spain.
{ros, mantaras}@iia.csic.es

Abstract. This work presents a new approach that allows the use of ¢ases
a case base as heuristics to speed up Reinforcement Leatgorithms, com-
bining Case Based Reasoning (CBR) and Reinforcement LrepfRiL) tech-
niques. This approach, called Case Based Heuristicallyel&cated Reinforce-
ment Learning (CB-HARL), builds upon an emerging technjcghe Heuristic
Accelerated Reinforcement Learning (HARL), in which RL heads are accel-
erated by making use of heuristic information. CB-HARL isubset of RL that
makes use of a heuristic function derived from a case baseCise Based Rea-
soning manner. An algorithm that incorporates CBR techesquto the Heuristi-
cally Accelerated Q-Learning is also proposed. Empirigalieations were con-
ducted in a simulator for the RoboCup Four-Legged Soccer g&tition, and
results obtained shows that using CB-HARL, the agents l&ester than using
either RL or HARL methods.

1 Introduction

Case Based Reasoning (1; 2) techniques have been shown sefo¢in a multitude
of domains, with widespread applications ranging from thgnsization of autoclave
loading (3), the diagnosis and treatment of many medicdllpros (4), to the synthesis
of high quality expressive music (5).

Reinforcement Learning (RL) is also a very successful Aitfilntelligence tech-
nique. RL algorithms are very useful for solving a wide variproblems when their
models are not available a priori, since many of them are knowave guarantees of
convergence to equilibrium (6; 7). Unfortunately, the aengence of a RL algorithm
may only be achieved after an extensive exploration of taesiction space, which is
usually very time consuming.

One way to speed up the convergence of RL algorithms is malkéegof a con-
veniently chosen heuristic function, which can be used &eaing the appropriate
actions to perform in order to guide exploration during tearhing process. Several
Heuristically Accelerated Reinforcement Learning (HARhgthods that makes use of
a heuristic function have been recently proposed (8; 9)s@hechniques are very at-
tractive: as RL, they are based on firm theoretical foundatiés the heuristic function
is used only in the choice of the action to be taken, many ottrelusions obtained



for RL remain valid for HARL algorithms, such as the guaranté convergence to
equilibrium in the limit and the definition of an upper bournd the error.

Although several methods have been successfully appliediefining the heuristic
function, a very interesting option has not been exploradtye reuse of previously
learned policies, using a Case Based Reasoning approaishpdper investigates the
combination of Case Based Reasoning (CBR) and Reinforcelneanning (RL) tech-
niques, with the goal of speeding up RL algorithms by usireyjmus domain knowl-
edge, stored as a case base. To do so, we propose a new ahgdnighCase Based
Heuristically Accelerated Q—-Learning (CB-HAQL), whichcorporates Case Based
Reasoning techniques into an existing HARL algorithm, tleaititically Accelerated
Q-Learning (HAQL).

The application domain of this paper is that of the RoboCum&ard Platform
League, Four-Legged Soccer Competition (10), where teamsisting of four Sony
AIBO robots operating fully autonomously and communicgtimough a wireless net-
work compete in a 6 x 4 m field. This domain is one of many RoboChagdlenges,
which has been proven to be an important domain for researchwhere RL tech-
niques have been widely used. Nevertheless, the technigy®sed in this work is
domain independent.

The paper is organized as follows: Section 2 briefly revielnes Reinforcement
Learning problem; Section 3 describes HARL approach anH#&@L algorithm, while
section 4 describes Case Based Reasoning. Section 5 shamte imcorporate CBR
techniques into HARL algorithms, in a modified formulatiditioe HAQL algorithm.
Section 6 describes the robotic soccer domain used in theriexgnts, presents the ex-
periments performed, and shows the results obtained \zinahclusions are presented
in Section 7.

2 Reinforcement Learning and the Q—Learning algorithm

Reinforcement Learning (RL) algorithms have been applietassfully to the on-line
learning of optimal control policies in Markov Decision Besses (MDPs). In RL, this
policy is learned through trial-and-error interactiongted agent with its environment:
on each interaction step the agent senses the current stitiee environment, chooses
an actioru to perform, executes this action, altering the stadéthe environment, and
receives a scalar reinforcement signéh reward or penalty).

The RL problem can be formulated as a discrete time, finitee sfaite action
Markov Decision Process (MDP). The learning environmentloa modeled by a 4-
tuple (S, A, 7,R), where:

— S:is afinite set of states.

— A:is afinite set of actions that the agent can perform.

-7 :8 x A — II(S): is a state transition function, whefé(S) is a probability
distribution overS. T'(s, a, s’) represents the probability of moving from stat®
s’ by performing action.

- R:S8 x A— R:is ascalar reward function.



Table 1. The Q-Learning algorithm.

Initialize Q. (s, a) arbitrarily.
Repeat (for each episode):
Initialize s.
Repeat (for each step):
Select an action using equation 2.
Execute the action, observer(s,a), s'.
Update the values @) (s, a) according to equation 1.
s« s'.
Until s is terminal.
Until some stop criteria is reached.

The goal of the agent in a RL problem is to learn an optimalgyati* : S — A
that maps the current stateinto the most desirable actionto be performed irs.
One strategy to learn the optimal poligy is to allow the agent to learn the evaluation
function@ : S x A — R. Each action valu€)(s, a) represents the expected cost
incurred by the agent when taking actiorat states and following an optimal policy
thereafter.

The @—learning algorithm (11) is a well-know RL technique thaesi strategy
to learn an optimal policyr* via learning of the action values. It iteratively approxi-
mates(), provided the system can be modeled as an MDP, the reinfemfiunction
is bounded, and actions are chosen so that every stateg@etiois visited an infinite
number of times (the complete algorithm is presented inélall The@ learning up-
date ruleis:

Q(s,a) — Q(s,a) + « [r + 'ynr?xQ(s’, a)—Q(s,a)l, 1)

wheres is the current state; is the action performed ig; r is the reward received; is
the new statey is the discount factoi) < « < 1); and«, is the learning rate. To select
an action to be executed, the Q—Learning algorithm usualhsiclers ar — Greedy
strategy:

(s) arg max, Q(S, a) if ¢ <np, )
T™S) =
Grandom otherwise

where:

— ¢ is a random value uniformly distributed ovigr, 1] andp (0 < p < 1) is a pa-
rameter that defines the exploration/exploitation trafieloé largerp, the smaller
is the probability of executing a random exploratory action

— Qrandom 1S @n action randomly chosen among those available in state

In RL, learning is carried out online, through trial-andegtinteractions of the agent
with the environment. Unfortunately, convergence of any ajorithm may only be
achieved after extensive exploration of the state-actpats. In the next section we
show one way to speed up the convergence of RL algorithmsaiyng use of a heuris-
tic function in a manner similar to the use of heuristics ifoimed search algorithms.
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3 Heuristic Accelerated Reinforcement Learning and the HAQ
Algorithm

Formally, a Heuristically Accelerated Reinforcement lréiag (HARL) algorithm (8) is
a way to solve a MDP problem with explicit use of a heuristiedtion?{ : S x A — R
for influencing the choice of actions by the learning agéfits, a) defines the heuristic
that indicates the importance of performing the actiowhen visiting states. The
heuristic function is strongly associated with the polieyery heuristic indicates that
an action must be taken regardless of others.

The heuristic function is an action policy modifier, whichedanot interfere with
the standard bootstrap-like update mechanism of RL alguost A possible strategy
for action choice is an — greedy mechanism where a heuristic mechanism formalized
as a functiorf (s, a) is considered, thus:

3)

(5) arg maxg, [F(s, a) <1 EH (s, a)ﬁ} if ¢ <p,
m(s) =
Grandom otherwise

where:

-F:S8x A — Ris an estimate of a value function that defines the expected
cumulative reward. If(s, a) = Q(s, a) we have an algorithm similar to standard
Q-Learning

- H: S x A — Ris the heuristic function that plays a role in the action choi
H (s, a) defines the importance of executing actioim states.

— pais a function that operates on real numbers and producesea fram an ordered
set which supports a maximization operation.

— & andg are design parameters that control the influence of the $teufinction.

— g is a parameter that defines the exploration/exploitatieoff.

— Qrandom 1S @n action randomly chosen among those available in state

The first HARL algorithm proposed was the Heuristically Alecated Q—Learning
(HAQL) (8), as an extension of the Q—Learning algorithm. ©héy difference between
them is that in the HAQL makes use of an heuristic functiorhim action choice rule
defined in Equation (3), whetg = @, therx< operator is the sum, angi= 1:

arg maxg, {Q(s, a)+ £H (s, a)} if ¢ <p,
7(s) = . (4)
Qrandom otherwise
where all variables are defined as in Equation (3).

As a general rule, the value éf;(s,a) used in HAQL should be higher than the
variation among the&)(s, a) values for the same € S, in such a way that it can
influence the choice of actions, and it should be as low aslgdess order to minimize
the error. It can be defined as:

H(s.0.0) {mzax Q(s,z) - 6:2(57 a) +nif a = (s), )

0 otherwise



Table 2. The HAQL algorithm.

Initialize Q (s, a) and H (s, a) arbitrarily.
Repeat (for each episode):
Initialize s.
Repeat (for each step):
Update the values dff;(s, a) as desired.
Select an action using equation 4.
Execute the action, observer(s,a), s'.
Update the values @) (s, a) according to equation 1.
s« s
Until s is terminal.
Until some stop criteria is reached.

wheren is a small real value (usually 1) and?(s) is the action suggested by the
heuristic policy.

Convergence of the HAQL algorithm was presented by BiarRihieiro and Costa
(8), together with the definition of an upper bound for theemmn the estimation of Q.
The complete HAQL algorithm is presented in Table 2. The sauntkors investigated
the use of HARL in multiagent domain, proposing a multiageARL algorithm — the
Heuristically Accelerated Minimax-Q (9) — and testing itdarsimplified simulator for
the robot soccer domain.

Despite the fact that RL is a method that has been tradifpregplied in the
Robotic Soccer domain, only recently HARL methods starteithdp used in this do-
main. Bianchi, Ribeiro and Costa (9) investigated the use miiltiagent HARL algo-
rithm in a simplified simulator for the robot soccer domairliBerto, Ribeiro, Costa
and Bianchi (12) studied the use of the HARL algorithms toespep learning in the
RoboCup 2D Simulation domain. Finally, Martins and Bian(#8) studied the use of
several HARL algorithms in a simulated Robot soccer envirent that reproduces the
conditions of a real physical robot, the FIRA Simurosot cetitjpn league.

4 Case-based reasoning

Humans frequently try to solve a new problem by rememberipteaious similar sit-
uation, reasoning about it, and then reusing knowledge aif gliuation to solve the
new problem. Case-based reasoning (CBR) (1; 2) uses knge/lefiprevious situa-
tions (cases) to solve new problems, by finding a similar pasé and reusing it in the
new problem situation. In the CBR approach, a case usuatdlgribes a problem and
its solution, i.e., the state of the world in a defined momeidtthe sequence of actions
to perform to solve that problem.

According to Lopez de Mantaras al (2), solving a problem by CBR involves
“obtaining a problem description, measuring the simijadf the current problem to
previous problems stored in a case base with their knowrisoh) retrieving one or
more similar cases, and attempting to reuse the solutidreattrieved case(s), possibly
after adapting it to account for differences in problem dipsions”. Other steps that are



usually found in CBR systems are the evaluation of the preg@slution, the revision
of the solution, if required in light of its evaluation, arfietretention (learning) of a
new case, if the system has learned to solve a new problem.

The case definition used in this work is the one proposed by{Rbh45; 16; 17; 18),
which is composed of three parts: the problem descriptinthe solution description
(A) and the case scop&{), and is formally described as a 3-tuple:

case = (P, A, K).

The problem descriptio# corresponds to the situation in which the case can be used.
For example, for a simple robotic soccer problem, the dpsori of a case can include
the robot position, the ball’s position and the positionshaf other robots in the game.
For a game wit robots,P can be:

P= {xB;yByxRoayRua' "7an,7an}-

The solution description is composed by the sequence dfrecthat each robot
must perform to solve the problem, and can be defined as:

A ={Ry : [ag,, ao,, ""a0p0]7 Y A (S A §

wheren is the number of robots in the teamy, is an individual or joint action that robot
R; must perform ang; corresponds the number of actions the roRpperforms.

The case scope defines the applicability boundaries of thescéo be used in the
retrieval step. For example, Ros (18) define it as “the regafrihe field within which
the ball and the opponents should be positioned in orderttve that case”. In the
case of a simple robot soccer problef,can be represented as ellipsoids centered
on the ball's and opponents’ positions indicated in the [gnwbdescription. It can be
defined as:

K= {(7'%77'%)7 (TﬁgaT}lzo) EERR) (lezanJZi\’,n)}v
wheret, 77, corresponds to the andy radius of the ellipsoid region around the ball
and(7g,,7p,) -, (TE, , 74 ) the radius of the regions around theobots in the game
(teammates and opponents).
Case retrieval is in general driven by a similarity measete/ben the new problem
and the solved problems in the case base. In this work we esg#e retrieval method
proposed by Ros (18), where the similarity along three ingrdraspects are evaluated:

— the similarity between the problem and the case;
— the cost of adapting the problem to the case, and;
— the applicability of the solution of the case.

The similarity function indicates how similar a problem amdase are. In most
cases, the function is defined by the distance between tharidlthe robots in the
problem and in the case.

Sim(p, c) = dist(B¢, BP) + Z dist(R;°, R;P),
i=0



where B¢ is the position of the ball in the case aBd its position in the problemR;¢
the position of the Robatin the case an®,” its position in the problem, anést(a, b)
is the gaussian distance between objeahdb. This distance is computed as follows:

az — b\ ay — by \ 2
dist(a,b) = - T y_Y
ist(a,b) exp( [< p ) +< s >]>7

wherer* 7Y are the radius of the scope around the object (ball and rglasitions).
The Gaussian distance is used because the larger the éistatveeen two points, the
lower the similarity between them. Also, thé&, ¥ parameters are used as a thresh-
old that defines a maximum distance allowed for two pointsaieehsome degree of
similarity: if the distance is greater than a lim#tjm(a, b) = 0.

The cost of adapting the problem to the case is computed ascédn of the dis-

tances between the positions of the team robots in the pro&tel the positions speci-
fied in the case. The adaptation cost is defined as:

cost(p,c) = Z dist(r;, adapt Pos;)
i=1

wheren is the number of robots that take part of the case soluitoi,is the Euclidian
distancey; is the current position of robatand adapt Pos; the adapted position for
roboti.

The applicability of the solution of the case depends on thstjon of the oppo-
nents, and combine two functions: the free path functiori¢ckvhonsiders if the trajec-
tory of the ball indicated in the case is free of opponentsyiter for the evaluated case
to be applicable and the opponent similarity, which comgift¢he opponents repre-
sent a significant threat for the robots to fulfill the taskctsas an opponent blocking
the ball or an opponent located near enough to get the ballTinss functions and the
complete case retrieval algorithm are described in detadds (18).

In recent years, CBR has been used by several researchés Robotic Soccer
domain. To mention a few, Lin, Liu and Chen (19) presentedlaibyarchitecture for
soccer players where the deliberative layer corresponds@BR system, Ahmadit
al (20) presented a two-layered CBR system for prediction Herdoach, and Karol
et al (21) presented high level planning strategies includin®3& Gystem. Finally, the
works of Ros (18) presents the most ample use of CBR techsiquiee Robotic Soccer
domain, proposing the use of CBR techniques to handle vatrieeuse and acquisition
of a case base for the action selection problem of a team édrdlar-Legged robots.

5 Combining Case Based Reasoning and Reinforcement Learrgn

Bianchi, Ribeiro and Costa (8) states that there should byymathods that can be used
to define a heuristic function for a HARL algorithm. For exdejphe same work makes
use of information from the learning process itself to inéeheuristic in execution
time, proposing the “Heuristic from Exploration” methodtexhnique that derives a
crude estimate of the transition probabilities, by annogathe results of every action



Table 3. The CB-HAQL algorithm.

Initialize Q (s, a) and H (s, a) arbitrarily.
Repeat (for each episode):
Initialize s.
Repeat (for each step):
Compute similarity and cost.
If there is a case that can be reused:
Retrieve and Adapt if necessary.
ComputeH,(s, a) using Equation 5 with the
actions suggested by the case selected.
Select an action using equation 4.
Execute the action, observer(s,a), s'.
Update the values @) (s, a) according to equation 1.
5 s,
Until s is terminal.
Until some stop criteria is reached.

performed by the agent, and then, from this model, it profesga from a final state —
the correct policies which lead to that state.

In order to give HARL algorithms the capability of reusingepious knowledge
from a domain, we propose a new algorithm, the Case Based H#&@Lextends the
HAQL algorithm, being capable of retrieving a case stored base, adapting it to the
current situation, and building a heuristic function thatresponds to the case.

As the problem descriptiof? corresponds to one defined state of the set of states

S inan MDP, an algorithm that uses the RL loop can be implentemtside this loop,
before the action selection, we added steps to computerttiasty of the cases in the
base with the current state and the cost of adaptation of tteeses. A case is retrieved

if the similarity is above a certain threshold, and adaptatiost is low. After a case

is retrieved, an heuristic is computed using Equation 5 Withactions suggested by
the case selected, and this heuristic is used for a certadumainof time, equals to the
number of actions of the retrieved case. After that time,\a oase can be retrieved.
The complete CB-HAQL algorithm is presented in Table 3.

Some authors have been studying the use of RL together wikh &1l the relation
between them. Sharnet al (22) makes use of CBR as a function approximator for
RL, and RL as revision algorithm for CBR in a hybrid architeet system; Juell and
Paulson (23) exploit the use of RL to learn similarity metric response to feedback
from the environment; Auslandet al (24) uses CBR to adapt quickly an RL agent to
changing conditions of the environment by the use of preslipstored policies and Li,
Zonghai and Feng (25) proposes an algorithm that makes useosfledge acquired
by reinforcement learning to construct and extend a case bas

Our approach differs from all previous works combining CBRI &L because of
the heuristic use of the retrieved case: as the case is u§edsa heuristic, if the case
base contains a case that can be used in one situation, tiebe & speed up in the
convergence time. But if the case base does not contain a&fyl esase — or even if it
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Fig. 1. The PuppySim2 users’ interface showing the robots at thiial positions.

contains cases that implement wrong solutions to the pnottlee agent will learn the
optimal solution anyway, by using the RL component of theatgm.

6 Experiments in the Robotic Soccer Domain

Empirical evaluations of the CB-HAQL approach were caroetin an extended ver-
sion of the PuppySim 2 simulator, created by the CMDash te&ihand extended by
Ros (18). This simulator represents the basic aspects &dheCup Standard Platform
League, Four-Legged Soccer Competition (27), and is uséestahe robot’s behav-
ioral response under ideal environmental conditions:dbets’ perception is noiseless,
but the outcome of the actions the robots perform have aicelégree of randomness.
PuppySim 2 was implemented using Python.

Using this simulator experiments were performed using ttkaxckers against a de-
fender and a goalie. The attackers are two robots contrbilezhe of the algorithms to
be evaluated: the Q—-Learning, described in section 2, th@lHAMescribed in section 3
or the CB-HAQL, proposed in section 5 and we have also congithem to the results
of the CBR system alone obtained by Ros (18). The opponerfizrpethe same reac-
tive behavior when playing against any of the evaluated@ggres. The defender and
the goalie have a home region which cannot go beyond. If tHesbaithin its home
region, then the robot moves towards the ball and clearslie@ise, the robot remains
in the boundary of its home region, facing the ball to maimitin its point of view.
Each trial begins with the attackers being positioned infigld in a random position,
and the defender, the goalie and the ball in a fixed locatiafl {{ipthe center, and de-
fender and goalie in the center of their home region). Fidusaows the PuppySim 2
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Fig. 2. Percentage of goals scored in each trial using the CBR (@onigte at 35%), Q—learning,
the HAQL and the CB-HAQL algorithms.

users’ interface with one starting configuration. A triatlsreither when the attackers
score a goal, the ball goes out of the field or the goalie tasithe

The heuristic used in the HAQL algorithm was defined usingrgpg rule: if hold-
ing the ball, go to the opponents goal, not taking into actthmopponents positions,
leaving the task of how to divert the opponent to the learmiracess. The heuristic
used in the CB-HAQL is computed during the games, as destiibsection 5. The
case base used for the experimentation is composed of 18§, easich cover the most
significant situations that can occur in the evaluationgmésd in this work. From this
set, 34 cases are initially defined, while the remaining @nesutomatically generated
using spatial transformations exploiting the symmetriethe soccer field. The reward
the agents receive are the same for all algorithms: the ageeitves—100 every time
the ball go out of the field or the goalie touches it ant)0 a robot scores a goal.

In order to evaluate each trial we classify the possibleauts as:

— goal : the ball enters the goal.

— close : the ball goes out of the field but passes near one ofdakpasts. More
precisely, at most 25cm to the left (right) of the left (rigbbalpost.

— block : the goalie stops or kicks the ball.

— out : the ball goes out the field without being a goal or closgaal.

We also consider the “to-goal” balls, which correspond titsithat are either goals or
close to goal. This measure indicates the degree of goaitiateof the kicks. Thus,
although the balls might not enter the goal, at least theypwdended to do so.
Twenty five training sessions were run for the three algor#hwith each session
consisting of 1000 trials. Figures 2 to 5 shows the learnunyes for all algorithms
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Fig. 3. Percentage of balls that passed close to the goals in eatHdrithe CBR (constant line
at 5%), Q-learning, the HAQL and the CB-HAQL algorithms.

(the CBR alone and the three learning algorithms) and pteska percent of goals
scored (Fig. 2) by the learning team, balls that passed ¢tosee goals (Fig. 3), balls
blocked by the defenders (Fig. 4) and balls that went out. (B)gn each trial. It is
possible to verify in Fig. 2 that at the beginning of the Iéagphase HAQL has worse
performance than the CB-HAQL, and as the trials proceedyénrmance of both al-
gorithms become similar, as expected, since all the alyostconverge to equilibrium.
The Q-learning is clearly the one with the worst performasicee it takes much more
trials for it to start to learn even basic policies, as notittkkhe ball out of the field.
In this figure it can also be observed the performance of tvemesgusing only the case
base. Students-test was used to verify the hypothesis that the use of hmgrigpeeds
up the learning process. Using the data from Fig. 2, the resthat the CB-HAQL is
better (makes more goals) than HAQL and Q—Learning untiB0@” trial, with a level
of confidence greater than 5%. After this trial the resultthefCB-HAQL and HAQL
are comparable.

Finally, table 4 summarizes the ball classification outcotined (results in per-
centage) using the CBR approach and the three learningtalgst The results for the
CBR approach are the average of 500 trials, and the resultsdd@—learning, HAQL
and CB-HAQL are the average of 100 trials, using the Q-tdidéthe three algorithms
had at the end of the 1000trial. As we can see the percentage of balls to goal with
the CB-HAQL approach is higher compared to either the HAQtherQ-Learning al-
gorithms. Moreover, the percentage of balls out are lowesniising CBR, indicating
that the defender had less opportunities to take the balkekdt out of the field, and
that the agent performed less random exploration.
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Fig. 4. Percentage of balls blocked by the defenders for the CBRsfaanhline at 38%), Q—
learning, the HAQL and the CB-HAQL algorithms.

The parameters used in the experiments were the same foealdgorithms. The
learning rate isy = 0,9, the exploration/ exploitation rate was defined as beingkqu
to 0.2 and the discount facter = 0.9 (these parameters are similar to those used by
(28). The value of; was set to 1. Values in the Q table were randomly initiateth wi
0 < Q(st,at,0¢) < 1. The experiments were programmed in Python and executed in a
MacBook Pro, with 4GB of RAM in a Mac OS X platform.

7 Conclusion

This work presented a new algorithm, called Case Based stmally Accelerated
Q-Learning (CB-HAQL), which allows the use of a cases basdefiine heuristics

Table 4. Ball outcome classification (results in percentage).

Approach |GoalClose To-Goal |BlockedOut
Goal + Clos¢

CBR 35| 5 40 38 |22

Q-Learning 2 2 4 22 |74

HAQL 16| 4 20 20 |60

CB-HAQL| 40 | 7 47 36 |17
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Fig. 5. Percentage of balls that went out of the field in each trialtfie CBR (constant line at
22%), Q—learning, the HAQL and the CB-HAQL algorithms.

to speed up the well-known Reinforcement Learning algorit—Learning. This ap-
proach builds upon an emerging technique, the Heuristicekecated Reinforcement
Learning (HARL), in which RL methods are accelerated by mgkise of heuristic
information.

The experimental results obtained showed that CB-HAQLiregthbetter results
than HAQL and Q-Learning for the domain of robotic soccer ganfror example, the
Q-Learning, after 1000 learning trials, still could notguae policies that scored goals
on the opponent, while the HAQL was able to score some goalsipnificantly less
than the CBR alone and the CB-HAQL. Another interesting figdis that the goals
scored by the CB-HAQL after 1000 trials was even slightlyh@igthan the number of
goals scored by the CBR approach alone, indicating thatfimaing component of the
CB-HAQL algorithm was able to improve the initial case base.

Another important finding of this work is that the CBR approaenerated better
results than the Q—learning algorithm, for the same expantai setup. Experiments
executed until the 10.00¢ trial showed that the Q-Learning still had not converged,
indicating the slow rate of learning of this algorithm, instdlomain.

Finally, since Heuristic functions allow RL algorithms tolge problems where the
convergence time is critical, as in many real time appliwaj in future works we plan
to incorporate CBR in other well known RL algorithms, like B8A, Q(\), Minimax-
Q, Minimax-Q(\), and Nash-Q, and expanding this framework to deal with Gdne
Sum Markov Games.
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