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Abstract. Software frameworks impose constraints on how plugins may interact
with them. Many of these constraints involve multiple objects, are temporal, and
depend on runtime values. Additionally, they are difficult to specify because they
are often extrinsic and may break behavioral subtyping. This work introduces
relationships as an abstraction for specifying framework constraints in FUSION
(Framework Usage SpecificatIONs), and it presents a formal description and im-
plementation of a static analysis to find constraint violations in plugin code. We
define three variants of this analysis: one is sound, one is complete, and a prag-
matic variant that balances these tradeoffs. We prove soundness and complete-
ness for the appropriate variants, and we show that the pragmatic variant can
effectively check constraints from real-world programs.

1 Introduction

Object-oriented frameworks have brought many benefits to software development, in-
cluding reusable codebases, extensible systems, and encapsulation of quality attributes.
However, frameworks are used at a high cost; they are complex and difficult to learn
[1]. This is partially due to the complexity of the semantic constraints they place on the
plugins that utilize them.

As an example, consider a constraint in the ASP.NET web application framework.
The ASP.NET framework allows developers to create web pages with user interface
controls on them. These controls can be manipulated programatically through callbacks
provided by the framework. A developer can write code that responds to control events,
adds and removes controls, and changes the state of controls.

One task that a developer might want to perform is to programmatically change the
selection of a drop down list. The ASP.NET framework provides the relevant pieces,
as shown in Fig. 11. Notice that if the developer wants to change the selection of a
DropDownList (or any other derived ListControl), she has to access the individ-
ual ListItems through the ListItemCollection and change the selection using
setSelected. Based on this information, she might naı̈vely change the selection as
shown in List. 1. Her expectation is that the framework will see that she has selected a
new item and will change the selection accordingly.

When the developer runs this code, she will get the error shown in Fig. 2. The er-
ror message clearly describes the problem; a DropDownList had more than one item

1 As the implementation of FUSION runs on Java, we translated the examples to Java syntax.
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Fig. 1: ASP.NET ListControl Class Diagram

List. 1: Incorrect selection for a DropDownList

1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e) {
4 ListItem newSel;

5 newSel = list.getItems().findByValue("foo");

6 newSel.setSelected(true);
7 }

selected. This error is due to the fact that the developer did not de-select the previously
selected item, and, by design, the framework does not do this automatically. While an
experienced developer will realize that this was the problem, an inexperienced devel-
oper might be confused because she did not select multiple items.

The stack trace in Fig. 2 is even more interesting because it does not point to the
code where the developer made the selection. In fact, the entire stack trace is from
framework code; there is no plugin code referenced at all! At runtime, the framework
called the plugin developer’s code in List. 1, this code ran and returned to the frame-
work, and then the framework discovered the error. To make matters worse, the pro-
gram control could go back and forth several times before finally reaching the check
that triggered the exception. Since the developer doesn’t know exactly where the prob-
lem occurred, or even what object it occurred on, she must search her code by hand to
find the erroneous selection.

The correct code for this task is in List. 2. In this code snippet, the developer de-
selects the currently selected item before selecting a new item.

Fig. 2: Error with partial stack trace from ASP.NET
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List. 2: Correctly selecting an item using the ASP.NET API

1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e) {
4 ListItem newSel, oldSel;

5 oldSel = list.getSelectedItem();

6 oldSel.setSelected(false);
7 newSel = list.getItems().findByValue("foo");

8 newSel.setSelected(true);
9 }

List. 3: Selecting on the wrong DropDownList

1 DropDownList listA, listB;

2

3 private void Page_Load(object sender, EventArgs e) {
4 ListItem newSel, oldSel;

5 oldSel = listA.getSelectedItem();

6 oldSel.setSelected(false);
7 newSel = listB.getItems().findByValue("foo");

8 newSel.setSelected(true);
9 }

This example, and many others we have found on the ASP.NET developer forum,
shows three interesting properties of framework constraints.

Framework constraints involve multiple classes and objects. List. 2 requires four
objects to make the proper selection. The framework code that the plugin used was
located in four classes.

Framework constraints are often extrinsic. While the DropDownList was the
class that checked the constraint (as seen by the stack trace), the constraint itself was on
the methods of ListItem. However, the ListItem class is not aware of the DropDown-
List class or even that it is within a ListControl at all, and therefore it should not
be responsible for enforcing the constraint. Compare the extrinsic nature of these con-
straints to the intrinsic nature of a class invariant. In addition to being difficult to check,
it is more difficult to document an extrinsic constraint as it is unclear where the docu-
mentation should go so that the plugin developer will naturally discover it.

Framework constraints have semantic properties. Framework constraints are not
only about structural concerns such as method naming conventions or types; the devel-
oper must also be aware of semantic properties of the constraint. There are at least three
semantic properties shown by the DropDownList example. First, the plugin developer
had to know which objects she was using to avoid the problem in List. 3. In this ex-
ample, the developer called the correct operations, but on the wrong objects. She also
had to notice which primitive values (such as true or false) she used in the calls to
change the selection. Finally, she had to be aware of the ordering of the operations.
In List. 2, had she swapped lines 5 and 6 with lines 7 and 8, she would have caused
unexpected runtime behavior where the selection change does not occur. This behavior
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occurs because getSelectedItem returns the first selected ListItem that it finds in
the DropDownList, and that may be the newly selected item rather than the old item.

In previous work [2], we proposed a preliminary specification approach and sket-
ched a hypothetical analysis to discover semantic mismatches, such as the ones de-
scribed above, between the plugin code and the declared constraints of the framework.
The previous work primarily discussed the requirements for such a system and explored
a prototype specification. In this paper, we make three contributions:
1. We show that the concept of framework developer-defined relations across objects

captures an underlying programming model used to interact with frameworks. We
use these relations to specify framework constraints FUSION (Framework Usage
SpecificatIONs). (Sect. 2)

2. We propose (Sect. 3) and formally define (Sect. 4) a static analysis that detects vio-
lations of constraints in plugins. We define three variants of the FUSION analysis:
a sound variant, a complete variant, and a third variant that is neither sound nor
complete. We prove soundness and completeness for the appropriate variants, and
we argue that the pragmatic variant is better for practical use. There are only minor
differences between the variants, so it is simple to switch between them.

3. We implemented the pragmatic variant of the FUSION analysis and ran it on code
based on examples from framework help forums. As the FUISION does not require
the entire framework to be specified, framework developers will be able to add
specifications as they answer questions on these forums. We show that FUSION
captures the properties described and that the pragmatic variant can handle real-
world code with relatively few false positives and false negatives. (Sect. 5)

2 Developer-defined Relations over Objects

When a plugin developer programs to a framework, the primary task is not about creat-
ing new objects or data. In many cases, programming in this environment is about ma-
nipulating the abstract associations between existing objects. Every time the plugin re-
ceives a callback from the framework, it is implicitly notified of the current associations
between objects. As the plugin calls framework methods, the framework changes these
associations, and the plugin learns more about how the objects relate. Each method
call, field access, or conditional test gives the plugin more information. For example, in
List. 2, when the plugin made the call to ListItemCollection.findItemByValue, it
learned about the association between the returned ListItem and the DropDownList.
These may be direct associations within code, or they may represent an abstract as-
sociation with no references in memory. Even when the plugin needs to create a new
object, it is frequently done by calling abstract factory methods that set up the object
and its relationships with other objects. Many frameworks, including ASP.NET, also use
dependency injection, a mechanism in which the framework populates the fields of the
plugin based on an external configuration file [3]. When using dependency injection, the
plugin simply receives and manipulates pre-configured objects. In the DropDownList
example, all the objects are provided by the framework through dependency injection,
and the plugin simply changes their relationships with each other.

Since the primary mechanism of interaction is based on manipulating relationships
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List. 4: The Child relation. Every relation must define params, effect, and test

1 @Relation({ListItem.class, ListControl.class})
2 public @interface Child {
3 String[] params();

4 Effect effect();

5 String test() default "";
6 }

between objects, we will model it formally using a mathematical relation. A relation is
a named set of tuples on several types τ.2 A relationship is a single tuple in a relation,
represented as

name(`1, . . . , `n)

where each ` is a static representation of a runtime object with the type defined by the
relation.

In this section, we introduce FUSION and three specification constructs based on re-
lationships. The first construct in FUSION, relationship effects, specify how framework
operations change associations between objects. The second construct, constraints, uses
relationships to specify extrinsic and semantic constraints across multiple objects. Fi-
nally, relation inference rules specify how relationships can be inferred based on the
current state of other relationships, regardless of what operations are used.

2.1 Relationship Effects

Relationship effects specify changes to the relations that occur after calling a framework
method. The framework developer annotates the framework methods with information
about how the calling object, parameters, and return value are related (or not related) af-
ter a call to the method. These annotations describe additions and removals of relation-
ships from a relation. For example, the annotation @Item({item, list}, ADD) creates
an Item relationship between item and list, while @Item({item, list}, REMOVE)
removes this relationship3. When a relationship is removed or added, we are simply
marking whether or not its existence in the relation is known. Thereby, if a relationship
is “removed”, but there was no prior knowledge of whether it existed, it is marked as
definitely not in the relation.

Relationship effects may refer to the parameters, the receiver object, and the return
value of a method. They may also refer to primitive values. Additionally, parameters
can be wild-carded, so @Item({*, list}, REMOVE) removes all the Item relationships
between list and any other object.

In addition to the ADD and REMOVE effects, a TEST effect uses a parameter to
determine whether to add or remove a relationship. For example, we might annotate the

2 The relations shown in this paper are only unary and binary, but n-ary relations are supported.
3 We are presenting a simplified version of the syntax for readability purposes. The correct Java

syntax for the add annotation appears as @Item(params={“item”, “list”}, effect=ADD).
This is the syntax used in the implementation.
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List. 5: Partial ListControl API with relationship effect annotations

1 public class ListControl {
2 @List({result, target}, ADD)
3 public ListItemCollection getItems();
4

5 //After this call we know two pieces of information. The returned item is selected and it is a child of this
6 @Child({result, target}, ADD)
7 @Selected({result}, ADD)
8 public ListItem getSelectedItem();
9 }

10 public class ListItem {
11 //If the return is true, then we know we have a selected item. If it is false, we know it was not selected.
12 @Selected({target}, TEST, return)
13 public boolean isSelected();
14

15 @Selected({target}, TEST, select)
16 public void setSelected(boolean select);
17

18 @Text({result, target}, ADD)
19 public String getText();
20

21 //When we call setText, remove any previous Text relationships, then add one for text
22 @Text({∗, target}, REMOVE)
23 @Text({text, target}, ADD)
24 public void setText(String text);
25 }

26 public class ListItemCollection {
27 @Item({item, target}, REMOVE)
28 public void remove(ListItem item);
29

30 @Item({item, target}, ADD)
31 public void add(ListItem item);
32

33 @Item({item, target}, TEST, result)
34 public boolean contains(ListItem item);
35

36 @Item({result, target}, ADD)
37 @Text({text, result}, ADD)
38 public ListItem findByText(String text);
39

40 //if we had any items before this, remove them after this call
41 @Item({∗, target}, REMOVE)
42 public void clear();
43 }

method List.contains(Object obj) with @Item({obj, target}, TEST, result) to
signify that this relationship is added when the return value is true and removed when
the return value result is false.

As relations are user-defined, they have no predefined semantics. Any hierarchy or
ownership present, such as Child or Item relations, is only inserted by the framework
developer. In fact, relationships do not have to reflect any reference paths found in the
heap, but may exist only as an abstraction to the developer. This allows relations to

6



List. 6: Comments showing how the relationship context changes after each instruction

1 DropDownList ddl = ...;

2 ListItemCollection coll;

3 ListItem newSel, oldSel;

4 oldSel = ddl.getSelectedItem();

5 //Child(oldSel, ddl), Selected(oldSel)
6 oldSel.setSelected(false);
7 //Child(oldSel, ddl), !Selected(oldSel)
8 coll = ddl.getItems();

9 //Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl)
10 newSel = coll.findByText("foo");

11 //Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl), Item(newSel, coll), Text(”foo”, newSel)

List. 7: DropDownList Selection Constraints and Inferred Relationships

1 @Constraint(
2 op=‘‘ListItem.setSelected(boolean select)’’,
3 trigger=‘‘select == false and Child(target, ctrl) and ctrl instanceof DropDownList’’,
4 requires=‘‘Selected(target)’’, effect={‘‘!CorrectlySelected(ctrl)’’})
5 @Constraint(
6 op=‘‘ListItem.setSelected(boolean select)’’,
7 trigger=‘‘select == true and Child(target, ctrl) and ctrl instanceof DropDownList’’,
8 requires=‘‘!CorrectlySelected(ctrl)”, effect={‘‘CorrectlySelected(ctrl)’’})
9 @Constraint(

10 op=‘‘end−of−method”,
11 trigger=‘‘ctrl instanceof DropDownList’’,
12 requires=‘‘CorrectlySelected(ctrl)’’, effect={})
13 @Infer(trigger=‘‘List(list, ctrl) and Item(item, list)’’, infer={‘‘Child(item, ctrl)’’})
14 public class DropDownList {...}

be treated as an abstraction independent from code. This is a common specification
paradigm; relations have a similar purpose to model fields in JML specifications [4].

To define a new relation, the framework developer creates an annotation type and
uses the meta-annotation @Relation to signify it as a relation over specific types. List. 4
shows a sample definition of the Child relation from the DropDownList example.

Once the framework developer defines the desired relations, they can be used as
relationship effects, as shown in List. 5. These annotations allow tools to track relation-
ships through the plugin code at compile time. List. 6 shows a snippet from a plugin,
along with the current relationships after each instruction. For example, after line 4 in
List. 6, we apply the effects declared in List. 5, lines 6-8. Therefore, at line 5, we learn
the two new relationships shown. This information, the relationship context, provides
us with an abstract, semantic context that each instruction resides in. In the next section,
we use this context to check the semantic parts of framework constraints.

2.2 Constraints

Framework developers can specify constraints on framework operations in a proposi-
tional logic over relationships. They are written as class-level annotations, but as con-
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straints are extrinsic, they can constrain the operations on any other class. As the three
examples in List. 7 show, a constraint has four parts:
1. operation: This is a signature of an operation to be constrained, such as a method

call, constructor call, or even a tag signaling the end of a method. Notice that these
constraints may be defined in another class, as in the first constraint in List. 7. This
makes constraints more expressible that a class or protocol invariant.

2. trigger predicate: This is a logical predicate over relationships. The plugin’s rela-
tionship context must determine that this predicate holds for this constraint to be
triggered. If not, the constraint is ignored. While operation provides a syntactic
trigger for the constraint, trigger provides the semantic trigger. The combination
of both a syntactic and semantic trigger allows constraints to be more flexible and
expressible than many existing protocol-based solutions.

3. requires predicate: This is another logical predicate over relationships. If the con-
straint is triggered, then this predicate must be true under the current relationship
context. If the requires predicate is not true, this is a broken constraint and the
analysis should signal an error in the plugin.

4. effect list: This is a list of relationship effects. If the constraint is triggered, these
effects will be applied in the same way as the relationship effects described earlier.
They will be applied regardless of the state of the requires predicate.
In the first example at the top of List. 7, the constraint is checking that at every call

to ListItem.setSelected(boolean), if the relationship context shows that the ar-
gument is false, the receiver is a Child of a ListControl, and if that ListControl is
a DropDownList, then it must also indicate that the ListItem is Selected. Addition-
ally, the context will change so that the DropDownList is not CorrectlySelected. The
second constraint is similar to the first and it enforces proper selection of ListItems in
a DropDownList. The third constraint ensures that the plugin method does not end in
an improper state by utilizing the “end-of-method” instruction to trigger when a plugin
callback is about to end.

2.3 Inferred relationships

In some cases, the relationships between objects are implicit. Consider the ListItem-
Collection from the DropDownList example. The framework developer would like
to state that items in this list are in a Child relation with the ListControl parent.
However, it does not make sense to annotate the ListItemCollection class with this
information since ListItemCollections should not know about ListControls.

Inferred relationships describe these implicit relationships that can be assumed at
any time. In List. 7, line 13 shows an example for inferring a Child relationship based
on the relations Item and List. Whenever the relationship context can show that the
“trigger” predicate is true, it can infer the relationship effects in the “infer” list. Inferred
relationships allow the framework developer to specify relationship effects that would
otherwise have to be placed on every location that the predicate is true; this would
significantly drive up the cost of adding these specifications.

It is possible to produce inferred relationships that directly conflict with the rela-
tionship context. To prevent this, the semantics of inferred relationships is that they
are ignored in the case of a conflict, that is, relationships from declared relationship
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effects and constraints have a higher precedence. The rationale behind this is that the
constraints and relationship effects are explicitly declared, and this should be reflected
by the giving them precedence. Additionally, the inferred relationships are only used
on an as-needed basis; to generate all possible inferred relations would be expensive
for the analysis. An alternative mechanism would be to signal an error, though it is not
currently clear whether this will increase the number of false positives.

3 The FUSION Analysis

We have designed and implemented a static analysis to track relationships through plu-
gin code and check plugin code against framework constraints. The FUSION analysis
is a modular, branch-sensitive, forward dataflow analysis4. It is designed to work on a
three address code representation of Java-like source. We assume that the analysis runs
in a framework that provides all of these features. In this section, we will present the
analysis data structures, the intuition behind the three variations of the analysis, and a
discussion of their tradeoffs. Sect. 4 defines how the analysis runs on each instruction.

The FUSION analysis is dependent on several other analyses, including a boolean
constant propagation analysis and an alias analysis. The FUSION analysis uses the
constant propagation analysis for the TEST effect. For this purpose, the relation analysis
assumes there is a function B to which it can pass a variable and learn whether the
represented value is true, false, or unknown.

The FUSION analysis can use any alias analysis which implements a simple inter-
face. First, it assumes there is a context L that given any variable x, provides a finite
set ¯̀ of abstract locations that the variable might point to. Second, it assumes a context
Γ` which maps every location ` to a type τ. The combination of these two contexts,
< Γ`,L > is represented as the alias lattice A. This lattice must conservatively abstract
the heap, as defined by Def. 1.

Definition 1 (Abstraction of Alias Lattice). Assume that a heap h is defined as a set
of source variables x which point to a runtime location ` of type τ. Let H be all the
possible heaps at a particular program point. An alias lattice < Γ`,L > abstracts H at
a program counter if and only if

∀ h ∈ H . dom(h) = dom(L) and

∀ (x1 ↪→ `1 : τ1) ∈ h . ∀ (x2 ↪→ `2 : τ2) ∈ h .
(if x1 6= x2 and `1 = `2 then

∃ ` ′ . ` ′ ∈ L(x1) and ` ′ ∈ L(x2) and τ1 <: Γ`(`
′)) and

(if x1 6= x2 and `1 6= `2 then

∃ ` ′1, `
′
2 . `

′
1 ∈ L(x1) and ` ′2 ∈ L(x2) and ` ′1 6= ` ′2 and τ1 <: Γ`(`

′
1) and τ2 <: Γ`(`

′
2))

This definition ensures that if two variables alias under any heap, then the alias lattice
will reflect that by putting the same location ` ′ into each of their location lists. Likewise,

4 By branch-sensitive, we mean that the true and false branches of a conditional may receive
different lattice information depending upon the condition. This is not a path-sensitive analysis.
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if the two variables are not aliased within a given heap, then the alias lattice will reflect
this possibility as well by having a distinct location in each location set. The definition
also ensures that the typing context Γ` has the most general type for a location.

If the alias analysis ensures Def. 1 and can provide the required interface, the vari-
ants of the FUSION analysis are provably sound or complete. Additionally, a more
precise alias analysis will increase the precision of the FUSION analysis.

3.1 The Relation Lattice
unknown

true

ooooo
false

PPPPP

bot

nnnnnn
OOOOOO

Fig. 3: The relationship
state lattice

We track the status of a relationship using the four-
point dataflow lattice represented in Fig. 3, where
unknown represents either true or false and bot is a
special case used only inside the flow function. The
FUSION analysis uses a tuple lattice which maps all
relationships we want to track to a relationship state
lattice element. We will represent this tuple lattice as
ρ. We will say that ρ is consistent with an alias lattice
A when the domain of ρ is equal to the set of relationships that are possible under A.

Notice that as more references enter the context, there are more possible relation-
ships, and the height of ρ grows. Even so, the height is always finite as there is a finite
number of locations and a finite number of relations. As the flow function is monotonic,
the analysis always reaches a fix-point.

3.2 Flow Function

The analysis flow function is responsible for two tasks; it must check that a given op-
eration is valid, and it must apply any specified relationship effects to the lattice. The
flow function is defined as

fC;A;B(ρ, instr) = ρ
′

where C is all the constraints, A is the alias lattice, B is the boolean constant lattice,
ρ is the starting relation lattice, ρ ′ is the ending relation lattice, and instr is the in-
struction the analysis is currently checking. The analysis goes through each constraint
in C and checks for a match. It first checks to see whether the operation defined by the
constraint matches the instruction, thus representing a syntactic match. It also checks
to see whether ρ determines that the trigger of the constraint applies. If so, it has both
a syntactic and semantic match, and it binds the specification variables to the locations
that triggered the match. These bindings will be used for the remaining steps.

Once the analysis has a match, two things must occur. First, it uses the bindings
generated above to show that the requires predicate of the constraint is true under ρ. If
it is not true, then the analysis reports an error on instr. Second, the analysis must use
the same bindings to produce ρ ′ by applying the relationship effects.

3.3 Soundness and Completeness

Soundness and completeness allow the user of the analysis to either have confidence that
there are no errors at runtime if the analysis finds none (if it is sound) or that any errors
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Table 1: Differences between sound, complete, and pragmatic variants

Variant Trigger Predicate checks when... Requires Predicate passes when...
Sound True or Unknown True

Complete True True or Unknown

Pragmatic True True

the analysis finds will actually occur in some runtime scenario (if it is complete). For
the purposes of these definitions, an error is a dynamic interpretation of the constraint
which causes the requires predicate to fail. In the formal semantics, an error is signaled
as a failure for the flow function to generate a new lattice for a particular instruction.

We define soundness and completeness of the FUSION analysis by assuming an
alias analysis which abstracts the heap using A, as described above. For both of these
theorems, we let Aconc define the actual heap at some point of a real execution, and
we let Aabs be a sound approximation of Aconc. We also let ρabs and ρconc be rela-
tionship lattices consistent with Aabs and Aconc where ρabs is an abstraction of the
concrete runtime lattice ρconc, defined as ρconc v ρabs.

For the sound variant, we expect that if the flow function generates a new lattice
using the imprecise lattice ρabs, then any more concrete lattice will also produce a new
lattice for that instruction. As the flow function only generates a new lattice if it finds
no errors, then there may be false positives from when ρabs produces errors, but there
will be no false negatives. To be locally sound for this instruction, the new abstract
lattice must conservatively approximate any new concrete lattice. Thm. 1 captures the
intuition of local soundness formally. Global soundness follows from local soundness,
the monotonicity of the flow function, and the initial conditions of the lattice.

Theorem 1 (Local Soundness of Relations Analysis).
if fC;Aabs;B(ρabs, instr) = ρabs

′
and ρconc v ρabs

then fC;Aconc;B(ρconc, instr) = ρconc
′

and ρconc
′
v ρabs

′

If the FUSION analysis is complete, we expect a theorem which is the opposite
of the soundness theorem and is shown in Thm. 2. If a flow function generates a new
lattice given a lattice ρconc, then it will also generate a new lattice on any abstraction of
ρconc. An analysis with this property may produce false negatives, as the analysis can
find an error using the concrete lattice yet generate a new lattice using ρabs, but it will
produce no false positives. Like the sound analysis, the resulting lattices must maintain
their existing precision relationship.

Theorem 2 (Local Completeness of Relations Analysis).
if fC;Aconc;B(ρconc, instr) = ρconc

′
and ρconc v ρabs

then fC;Aabs;B(ρabs, instr) = ρabs
′

and ρconc
′
v ρabs

′

The FUSION analysis can be either sound, complete, or pragmatic by making only
minor changes to the analysis. Proofs of soundness and completeness, for the sound and
complete variants respectively, can be found in our associated technical report [5]. The
differences between the variants are summarized in Tab. 1 and are described below.

Trigger condition. The trigger predicate determines when the constraint will check
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public class ListItemCollection {
@Item({∗, target}, REMOVE)
public void clear() {...}

}

@Constraint(op = ‘‘ListItemCollection.clear()’’,
trigger = ‘‘x instanceof ListItem’’,
requires = ‘‘true’’,
effect = {‘‘!Item(x, target)’’})

Fig. 4: Translating a relation effect with wildcards into a constraint. The Item relation has type
Item(ListItem, ListItemCollection).

the requires predicate and when it will produce effects. The sound variant will trigger a
constraint whenever there is even a possibility of it triggering at runtime. Therefore, it
triggers when the predicate is either true or unknown. The complete variant can produce
no false positives, so it will only check the requires predicate when the trigger predicate
is definitely true. Regardless of the variant, if the trigger is either true or unknown, the
analysis produces a set of changes to make to the lattice based upon the effects list.
The pragmatic variant will work the same as the complete variant when determining
whether to trigger the constraint. The rationale here is to try to reduce the number of
false positives by only checking constraints when they are known to be applicable.

Error condition. The requires predicate should be true to signal that the operation
is safe to use. The sound variant will cause an error whenever the requires predicate
is false or unknown. The complete variant, however, can only cause an error if it is
sure there is one, so it only flags an error if the requires predicate is definitely false. In
this case, the pragmatic variant will work the same as the sound variant. If the analysis
has come to this point, it already has enough information to determine that the trigger
was true. Therefore, we will require that the plugin definitely show that the requires
predicate is true, with the expectation that this will reduce the false negatives.

While the pragmatic variant can produce false positives and false negatives, we
believe it will be the most cost-effective in practice based on our experience described
in Sect. 5. Additionally, this variant may use inferred relationships, a feature which is
not sound or complete but reduces the specification burden on the framework developer.

4 Abstract Semantics of FUSION

In this section, we present formal semantics for a simplified version of the specifications
and analysis, the grammar for which is shown in Fig. 5. We do not formalize TEST
effects or specialized relations for equality (==) and typing (instanceof). A semantics
with TEST effects can be found in our technical report [5], and it is possible to add
specialized relations by calling out to other flow analyses in the same manner as is done
with both TEST effects and aliasing.

Relationship effects and wildcards are both syntactic sugar that can be easily trans-
lated into a constraint form. Relationship effects are translated by considering them as
a constraint on the annotated method with a true trigger predicate, a true requires
predicate, and the effect list as annotated. Wildcards are easily rewritten by declaring a
fresh variable in the trigger predicate and constraining it to have the desired type. Fig.
4 shows an example effect with a wildcard translated into a constraint.
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constraint cons ::= op : Ptrg ⇒ Preq ⇓ R
predicate P ::= P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | R | true | false

relation predicate R ::= rel(ᾱ) | ¬rel(ᾱ)
source instruction instr ::= xrslt = xtgt.m(x) | xrslt = new τ(x) | eom | . . .

instruction signature op ::= τtgt.m(y : τ) : τrslt | new τ(y : τ) | end-of-method | . . .
meta variable α ::= y | `
ternary logic t ::= True | False | Unknown

lattice elements E ::= unknown | true | false | bot

flow lattice ρ ::= rel(¯̀) 7→ E, ρ | ∅
set of lattices P ::= {ρ} ∪ P | ∅

substitution σ ::= (y 7→ `), σ | ∅
set of substitutions Σ ::= {σ} ∪ Σ | ∅

alias lattice A ::= < Γ`; L >

aliases L ::= (x 7→ `),L | ∅
location types Γ` ::= (` : τ), Γ` | ∅

spec variable types Γy ::= (y : τ), Γy | ∅

relation type R ::= rel 7→ τ̄,R | ∅
constraints C ::= cons,C | ∅

relation inference rules I ::= P ⇓ R, I | ∅

x is a source variable
m is a method name
rel is a relation name
τ is a type
y is a spec variable, where the variables target and result have special meanings
` is a label for a runtime object
⊥A is a ρ where⊥A is consistent with A and ∀ rel(¯̀) 7→ E ∈ ⊥A . E = bot

Fig. 5: Abstract syntax

The lattice ρ has the usual operators of join (t) and comparison (v), which work
as expected for a tuple lattice. We also introduce three additional operators, defined in
Fig. 6. Equivalence join ( ) will resolve to unknown if the two sides are not equal.
Overriding meet ( ) has the property that if the right side has a defined value (not
bot), then it will use the right value, otherwise it will use the left value. The polarity
operator (l) will push all non-bottom values to the top of the lattice. Finally, we also
define ⊥A as a tuple lattice which is consistent with the alias lattice A and which maps
every relationship to bot.
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l bot = bot
(POLAR-BOT)

E 6= botl E = unknown
(POLAR-UNKNOWN)

E E = E
(EQJOIN-=)

E bot = E
(OVR-BOT)

Er 6= bot
El Er = Er

(OVR-NOT-BOT)
El 6= Er

El Er = unknown
(EQJOIN- 6=)

Fig. 6: Unusual lattice operations

ρ ` P t

ρ(rel(`)) = true

ρ ` rel(`) True
(REL-T)

ρ(rel(`)) = false

ρ ` rel(`) False
(REL-F)

ρ(rel(`)) = E E 6= true E 6= false
ρ ` rel(`) Unknown

(REL-U-SND/CMP)

ρ(rel(`)) = E E 6= true E 6= false
ρ infers ρ ′

ρ ρ
′ ` rel(`) t t is True or False

ρ ` rel(`) t
(INFER-PRG)

ρ(rel(`)) = E E 6= true E 6= false
¬∃ ρ ′

. ρ infers ρ ′
∧ ρ ρ

′ ` rel(`) t ∧ t is True or False

ρ ` rel(`) Unknown
(REL-U-PRG)

ρ infers ρ ′

P ⇓ R ∈ I ρ ` P[σ] True ρ
′ = lattice(R[σ]) ρ

′ @ ρ

ρ infers ρ ′ (DISCOVER)

Fig. 7: Check predicate truth under a lattice. The remaining rules are as expected for ternary logic
and can be found in [5].

4.1 Checking predicate truth

Before we show how constraint checking works, we must describe how the analysis
tests the truth of a relationship predicate. The judgment for this is written as

ρ ` P t

and is read “the lattice ρ shows that predicate P is t”, where t is either True, False,
or Unknown. The rules for this judgment are similar to three-valued logic, and the
interesting subset of them are in Fig. 7.

In the sound and complete variants, the rules are trivial. The analysis inspects the
lattice to see what the value of the relationship is to determine whether it is True (REL-T),
False (REL-F), or Unknown (REL-U-SND/CMP). If the lattice maps the relationship to either
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unknown or bot, then the predicate is considered Unknown. The rest of the predicate
rules work as expected for a three-valued logic.

The interesting case is in the pragmatic variant when the relationship does not map
to true or false. Instead of using the rule (REL-U-SND/CMP), the pragmatic variant ad-
mits the rules (REL-U-PRG) and (INFER-PRG). These rules attempt to use the inferred re-
lationships, defined in Sect. 2.3, to retrieve the desired relationship. The rule for the
inference judgement ρ infers ρ ′ is also defined in Fig. 7. This rule first checks to see if
the trigger of an inferred relation is true, and if so, uses the function lattice to produce
the inferred relationships described by R̄[σ]. For all relationships not defined by R̄[σ],
lattice defaults to bot to signal that there are no changes. There are two properties to
note about the rules (REL-U-PRG), (INFER-PRG), and (DISCOVER):

1. The use of inferred relationships does not change the original lattice ρ. This allows
the inferred relationships to disappear if the generator, P, is no longer true.

2. Any inferred values must be strictly more precise than the relationship’s value in
ρ, as enforced by ρ ′ @ ρ. This means that relationships can move from unknown
to true, but they can not move from false to true. This property guarantees
termination and gives declared effects precedence over inferred ones.

Inferred relationships can not be used in the sound and complete variants. This does
not limit the expressiveness of the specifications, as inferred relations can always be
written directly within the constraints. Doing so does make the specifications more dif-
ficult to write; the framework developer must add the inferred relations to any constraint
which will also prove the trigger predicate. Since inferred relations do change the se-
mantics, they are not syntactic sugar, but they are not necessary for reasons beyond the
ease of writing specifications.

4.2 Matching on an operator

In order to check a constraint, the analysis must determine whether a source instruction,
called instr, matches the syntactic operation op defined by a constraint. This is realized
in the judgment

A; Γy ` instr : op Z⇒ (Σt, Σu)

with rules defined in Fig. 8. Given the alias lattice A and a typing environment for the
free variables in op, this judgment matches instr to op and produces two disjoint sets
of substitutions that map specification variables in op to heap locations. The first set,
Σt, represents possible substitutions where the locations are all known to be a subtype
of the type required by the variables. The second set, Σu, are potential substitutions
where the locations may or may not have the right type at runtime.

As an example, we will walk through the rule (INVOKE) in Fig. 8. The first premise
checks that the free variables in op are in Γy , and the second premise builds the sub-
stitution set using the findLabels function. Each substitution in the set will map the
specification variables in op (target, result, and y1 . . . yn) to a location in the heap that
is aliased by the appropriate source variables in instr (xtgt, xrslt, and x1 . . . xn).

To produce the set Σt, the findLabels function must generate a substitution for each
yi in ȳ. It starts by verifying that the corresponding source variable xi points to only
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A; Γy ` instr : op Z⇒ (Σt, Σu)

FV(τtgt.m(y : τ) : τrslt) ⊆ Γy

findLabels(A; Γy ; xrslt, xtgt, x; result, target, y) = (Σt, Σu)

A; Γy ` xrslt = xtgt.m(x) : τtgt.m(y : τ) : τrslt Z⇒ (Σt, Σu)
(INVOKE)

FV( new τ(y : τ)) ⊆ Γy

findLabels(A; Γy ; xrslt, x; target, y) = (Σt, Σu)

A; Γy ` xrslt = new m(x) : new τ(y : τ) Z⇒ (Σt, Σu)
(CONSTRUCTOR)

A; Γy ` eom : end-of-method Z⇒ ({∅},∅)
(EOM)

findLabels(A, Γy , x, y) = (Σt, Σu)

|x| = |y| = n

Σ
t = {(y1 7→ `1), . . . , (yn 7→ `n) |

∀ i ∈ 1 . . . n . L(xi) = {`i} ∧ Γ`(`i) <: Γy(yi)}
Σ
u = {(y1 7→ `1), . . . , (yn 7→ `n) |

∀ i ∈ 1 . . . n . `i ∈ L(xi) ∧ ∃ τ ′
. τ

′
<: Γ`(`i) ∧ τ

′
<: Γy(yi)} − Σt

findLabels(< Γ`,L >; Γy ; x; y) = (Σt, Σu)
(FINDLABELS)

Fig. 8: Matching instructions to operations and type satisfaction

τ` τy Σt Σu

B A {(y 7→ `)} ∅
B D ∅ ∅
A B ∅ {(y 7→ `)}

A D ∅ {(y 7→ `)}

findLabels(< ` : τ`, x 7→ {`} >, y : τy , {x}, {y}) = (Σt, Σu)

Fig. 9: Examples of the difference between Σt and Σu

one location `, and it checks to see if the type of that location is a subtype of the type
required for yi. Every substitution σ which fits these requirements is in Σt.
Σu is a more interesting set. Unlike Σt, it checks all locations which xi aliases and

records a possible substitution for each. Additionally, when it checks the type, it allows
the location if there is even a possibility of it being the right type. As an example,
consider the class hierarchy and use of findLabels shown in Fig. 9. In the first row, `
is definitely substitutable for y, so it is a substitution in Σt. In the second row, y can
never be substituted by `, so both sets are empty. In the third and fourth rows, ` may be
substitutable for y (if ` has type B or C, respectively), so both substitutions are possibly,
but not definitely, allowed and are therefore in Σu.

The need for Σu may seem surprising, but the rationale behind it is that framework
constraints do not always adhere to behavioral subtyping [6]. Consider analyzing the
DropDownList constraint on the code below:
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1 ListControl list = ...;

2 ListItem item = list.getItems().findByValue("foo");

3 item.setSelected(true);

Since list is of type ListControl, the trigger clause of the first constraint in List.
7 will not be true, and the constraint will never trigger an error. However, we would
like this to trigger a potential violation in the sound variant since list could be a
DropDownList. The root of the problem was that DropDownList is not following the
principle of behavioral subtyping; it has added preconditions to methods that the base
class did not require. Therefore, a DropDownList is not always substitutable where a
ListControl is used! While frustrating for verification, this is common in frameworks;
by trading off substitutability, the framework developers received code reuse internally.
Other verification proposals have also recognized the need to support broken behav-
ioral subtyping for this reason [7, 8]. Inheritance was used here rather than composition
because the type is structurally the same, and it is almost behaviorally the same. In
fact, the methods on DropDownList itself do appear to be behaviorally substitutable.
However, the subtype added a few constraints to other classes, like the ListItem class.

By keeping track of Σt and Σu separately, it will allow the variants of the analysis
to use them differently. In particular, the sound variant will trigger errors from substi-
tutions in Σu, while the complete and pragmatic variants will only use it to propagate
lattice changes from the effect list.

4.3 Checking a single constraint

We will now show how the analysis checks an instruction for a single constraint. This
is done with the judgment

A; ρ; cons ` instr ↪→ ρ
∆

shown in Fig. 10. This judgment takes the lattices and a constraint, and it determines
what changes to make to the relation lattice for the given instruction. The lattice changes
are represented in ρ∆, where a relationship mapped to bot signifies no changes.

The analysis starts by checking whether the instruction matches the constrained op-
eration. If not, the instruction matching rules will return no substitutions and the rule
(NO-MATCH) will apply. If there are substitutions, as shown in rule (MATCH), then the
analysis must check this constraint for every aliasing configuration possible, as repre-
sented by Σt and Σu. This rule checks that for each substitution σ, the constraint passes
and produces a change lattice ρ∆. If the substitution was from Σu, then the analysis
must use the l operator on ρ∆. This is done because the analysis cannot be sure if the
substitution is valid at runtime, so it can only make changes into unknown. Setting all
changes to unknown could cause the analysis to lose precision when ρ∆ prescribes a
change that already exists in ρ. A possible solution is to let the polarizing operator re-
turn bot if the prescribed changes already exist in the lattice ρ, but we have not yet
proven this extension is sound.

The last step the rule makes is to combine all the lattice changes, from all substitu-
tions, using . The use of means that a change is only made to true or false
if all the aliasing configurations agree to it. Likewise, a signal to make no changes by
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A; ρ; cons ` instr ↪→ ρ∆

cons = op : Ptrg ⇒ Preq ⇓ R A; FV(cons) ` instr : op Z⇒ (Σt, Σu)

Σ
t ∪ Σu 6= ∅ P

t = {ρ
∆

| σ ∈ Σt ∧ A; ρ;σ `part cons ↪→ ρ
∆

}

P
u = {l ρ∆ | σ ∈ Σu ∧ A; ρ;σ `part cons ↪→ ρ

∆
}

|Σ
t
| = |P

t
| |Σ

u
| = |P

u
| P

∆ = P
t ∪ P

u

A; ρ; cons ` instr ↪→ ( P
∆)

(MATCH)

cons = op : Ptrg ⇒ Preq ⇓ R A; FV(cons) ` instr : op Z⇒ (∅,∅)

A; ρ; cons ` instr ↪→ ⊥A
(NO-MATCH)

A; ρ;σ `part cons ↪→ ρ∆

cons = op : Ptrg ⇒ Preq ⇓ R
Γy = FV(op) ∪ FV(Ptrg) ∪ FV(R) allValidSubs(A;σop; Γy) = (Σt, Σu)

Σ
t ∪ Σu 6= ∅ P

t = {ρ
∆

| σ ∈ Σt ∧ A; ρ;σ `full cons ↪→ ρ
∆

}

P
u = {l ρ∆ | σ ∈ Σu ∧ A; ρ;σ `full cons ↪→ ρ

∆
}

|Σ
t
| = |P

t
| |Σ

u
| = |P

u
| P

∆ = P
t ∪ P

u

A; ρ;σop `part cons ↪→ ( P
∆)

(BOUND)

cons = op : Ptrg ⇒ Preq ⇓ R
Γy = FV(op) ∪ FV(Ptrg) ∪ FV(R) allValidSubs(A;σop; Γy) = (∅,∅)

A; ρ;σop `part cons ↪→ ⊥A

(CANT-BIND)

allValidSubs(A;σ; Γy) = (Σt, Σu)

Σ
t = {σ

′
| σ

′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ ′
. Γ`(`) <: Γy(y)}

Σ
u = {σ

′
| σ

′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′
. ∃ τ ′

. τ
′
<: Γ`(`) ∧ τ

′
<: Γy(y)} − Σt

allValidSubs(< Γ`; L >;σ; Γy) = (Σt, Σu)
(VALIDSUBS)

Fig. 10: Checking a single constraint

way of bot must also show in all configurations. If any configurations disagree about a
lattice change, then the lattice element changes to unknown.

Once the analysis has a syntactic match, it tries to find the aliasing configurations
for a semantic match using

A; ρ;σ `part cons ↪→ ρ
∆

The analysis must get all aliasing configurations that are consistent with the current
aliases in σ and the types of the remaining free variables in cons. The substitutions are
found by the allValidSubs function, shown in Fig. 10. The rule (BOUND) proceeds in a
similar manner to the rule (MATCH), except it checks the constraint using the judgment

A; ρ;σ `full cons ↪→ ρ
∆

18



The rules for this judgment, shown in Fig. 11, are the primary point of difference
between the variants of the analysis.

Sound Variant. The sound variant first checks Ptrg[σ] under ρ. It uses this to de-
termine which rule applies. If Ptrg[σ] is True, as seen in rule (FULL-T-SND), then the
analysis must check if Preq is True under ρ given any substitution. Since this is the
sound variant, it will only accept substitutions from Σt. If Preq is not True with a
substitution from Σt, then the analysis produces an error. If there is no error, the rule
produces the effects dictated by R̄[σ]. The function lattice simply converts this list to
a lattice, where all unspecified relationships map to bot. If Ptrg[σ] is False, then the
analysis uses rule (FULL-F-SND). In this situation the constraint does not trigger, so the
requires predicate is not checked and the analysis returns no changes using ⊥A.

In the case that Ptrg[σ] is Unknown, the sound variant proceeds in a similar manner
to the case where Ptrg[σ] is True as it must consider the possibility that the trigger
predicate is actually true. In fact the only difference in the rule (FULL-U-SND) is that
the analysis must use the polarizing operator to be conservative with the effects it is
producing in case the trigger predicate is actually false at runtime.

Complete Variant. Like the sound variant, the complete variant starts by checking
Ptrg[σ] under ρ. If Ptrg[σ] is True, as seen in rule (FULL-T-CMP), then the analysis must
check Preq under ρ given any substitution. As this is the complete variant, the analysis
does not care whether the substitution came from Σt or Σu, and it does not matter
whether Preq is True or Unknown. If no substitutions work, either because none exist or
because they all show Preq to be false, then the analysis produces an error. Otherwise,
the rule produces some effects. Since the constraint trigger was true, it will produce
exactly the effects dictated by R̄[σ]. If the analysis determines that Ptrg[σ] is False,
then it uses the rule (FULL-F-CMP). Like the sound variant, the requires predicate is not
checked and the analysis returns no changes.

Finally, if Ptrg[σ] is Unknown, the complete variant will not check Preq as it can-
not be sure whether the constraint is actually triggered and it should not produce an
error. However, it must still produce some conservative effects in case the constraint is
triggered given a more concrete lattice. Like the sound rule in the case of an unknown
trigger, the rule uses the polarizing operator l to produce only conservative effects.

Pragmatic Variant. The pragmatic variant is a combination of the sound and com-
plete variants. It has the same rule for False as the other two variants, (FULL-F-PRG). The
rule (FULL-T-PRG) is the same as the True rule for soundness, while the rule (FULL-U-PRG)
is the same as the Unknown rule for completeness. This means that this variant can
produce both false positives and false negatives. False negatives can occur when Ptrg
is Unknown under ρ, but a more precise lattice would have found Ptrg to be True and
eventually generated an error. False positives occur when Ptrg is True under ρ and Preq
is Unknown under ρ, but Preq would have been True under a more precise lattice.

4.4 The flow function

The flow function for the FUSION analysis checks all the individual constraints and
produces the output lattice for the instruction. Using the judgments defined in the pre-
vious section, the flow function iterates through each constraint and receives a change
lattice. As shown in below, these lattices are combined using the join operator. Once
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A; ρ;σ `full cons ↪→ ρ∆, Sound Variant

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] True
allValidSubs(A;σ; FV(cons)) = (Σt, Σu)

∃ σ ′ ∈ Σt . ρ ` Preq[σ ′] True

A; ρ;σ `full cons ↪→ lattice(R̄[σ])
(FULL-T-SND)

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] False

A; ρ;σ `full cons ↪→ ⊥A
(FULL-F-SND)

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] Unknown

allValidSubs(A;σ; FV(cons)) = (Σt, Σu)

∃ σ ′ ∈ Σt . ρ ` Preq[σ ′] True ρ
∆ = lattice(R̄[σ])

A; ρ;σ `full cons ↪→l ρ∆ (FULL-U-SND)

A; ρ;σ `full cons ↪→ ρ∆, Complete Variant

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] True
allValidSubs(A;σ; FV(cons)) = (Σt, Σu)

∃ σ ′ ∈ Σt ∪ Σu . ρ ` Preq[σ ′] True ∨ ρ ` Preq[σ ′] Unknown

A; ρ;σ `full cons ↪→ lattice(R̄[σ])
(FULL-T-CMP)

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] False

A; ρ;σ `full cons ↪→ ⊥A

(FULL-F-CMP)

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] Unknown

ρ
∆ = lattice(R̄[σ])

A; ρ;σ `full cons ↪→l ρ∆ (FULL-U-CMP)

A; ρ;σ `full cons ↪→ ρ∆, Pragmatic Variant

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] True
allValidSubs(A;σ; FV(cons)) = (Σt, Σu)

∃ σ ′ ∈ Σt . ρ ` Preq[σ ′] True

< Γ`; L >; ρ;σ `full cons ↪→ lattice(R̄[σ])
(FULL-T-PRG)

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] False

A; ρ;σ `full cons ↪→ ⊥A

(FULL-F-PRG)

cons = op : Ptrg ⇒ Preq ⇓ R ρ ` Ptrg[σ] Unknown

ρ
∆ = lattice(R̄[σ])

A; ρ;σ `full cons ↪→l ρ∆ (FULL-U-PRG)

Fig. 11: Checking a fully bound constraint and producing effects. Shading highlights the differ-
ences between the three variants.
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the analysis has the final change lattice ρ∆, it applies the changes using the overriding
meet operation. This will preserve the old values of a relationship if the change lattice
maps to bot, but it will override the old value otherwise. This provides us with the
new relationship lattice ρ ′, which is used by the dataflow analysis to feed into the next
instruction’s flow function. This flow function is monotonic, and the lattice has a finite
height, so the dataflow analysis will reach a fix point.

∀ consi ∈ C . A
′; ρ; consi ` instr ↪→ ρ

∆
i ρ

∆ = t{ρ
∆
i } (i ∈ 1 . . . n)

fC;A(ρ, instr) = ρ ρ
∆

5 Implementation and Experience with the Pragmatic Variant

We implemented the pragmatic variant of the FUSION analysis in the Crystal dataflow
analysis framework, an Eclipse plugin developed at Carnegie Mellon University for
statically analyzing Java source 5. The implementation interfaces to a boolean constant
propagation analysis and a basic alias analysis; either of these could be replaced with
more sophisticated implementation in order to improve the results.

We specified three sets of constraints, one for the ASP.NET framework6 and two for
the Eclipse JDT framework. These were all constraints which we had misused ourselves
and were common problems that were posted on the help forums and mailing lists.
These constraints exercised several different patterns, and the specifications were able
to capture each of these patterns.

The specifications allowed us to easily describe structured relationships, such as the
ListItems which are in a DropDownList and a tree of ASTNodes within the Eclipse
JDT. In each of these cases, a relationship ties the “child” and “parent” objects together,
and it is straightforward to check if two children have the same parent. Two of our
constraints had a structured relationship where an operation required that some objects
exist (or do not exist) in a structured relationship.

All three constraints had semantics which required operations to occur in a particu-
lar order. To define this pattern, we needed a relationship which binds relevant objects
together. The operation which occurs first produces an effect which sets this relationship
to true, and the operation which must occur second requires this relationship. An exam-
ple of this was seen in the constraints on the DropDownList in List. 7. Additionally,
relationships allowed us to specify partial orderings of operations. One of the Eclipse
JDT constraints had this behavior, and in fact required three methods to be called before
the constrained operation. Alternatively, the user could choose to call a fourth method
that would replace all three method calls. We captured this constraint by having each of
the four methods produce a relationship, and the constrained operation simply required
either the three relationships produced from the group of three methods, or the single
relationship produced from the fourth one.

Relationships also made it straightforward to associate any objects that were used in
the same operation. For example, this allowed us to associate several fields of an object

5 http://code.google.com/p/crystalsaf
6 We translated the relevant parts of the API and the examples into Java.
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so that we could later check that they were only used together. We did this by annotating
the constructor of the object with a relationship effect that tied the field parameters
together. We could also associate objects that were linked by some secondary object,
but had no direct connection, such as a DropDownList and the ListItems received
from calls to the associated ListItemCollection.

After specifying the constraints, we ran the pragmatic variant on 20 examples based
on real-world code. The examples we selected are based on our own misuses of these
frameworks and on several postings on internet help forums and mailing lists. Of these,
the pragmatic variant worked properly on 16, meaning that it either found an expected
error or did not find an error on correct code. Most of these examples had little aliasing
and used exact types, which reflected what we saw on the help forums.

These examples identified two sources of imprecision. The pragmatic variant failed
on one example because the example used an unconstrained supertype, and it failed on
the remaining three examples because the constraint required objects which were not in
scope. The unconstrained supertype resulted in a false negative, and the three examples
with objects out of scope resulted in false positives. In all four of these cases, the sound
variant would have flagged an error, and the complete variant would not have.

Unconstrained supertypes, such as using a ListControl instead of a DropDown-
List, are the first potential source of imprecision for the pragmatic variant. While a
sound analysis would have detected this type of error, in practice, using this superclass
is not typical as it only exists for code reuse purposes. In fact, we never found code on
the forum that used the superclass ListControl.

The more interesting, and more typical, source of imprecision occurs when a re-
quired object is not in scope. For example, one of the Eclipse JDT constraints required
that an ASTNode have a relationship with an AST object. The plugin, however, did not
have any AST objects in scope at all, even though this relationship did exist globally.
Based on the examples we found, this does occur in practice, typically when the frame-
work makes multiple callbacks in sequence, such as with a Visitor pattern.

Future revisions of the FUSION analysis could address the problem of out-of-scope
objects with two changes. First, it should be possible for the framework to declare what
relationships exist at the point where the callback occurs. This would have provided the
correct relationships in the previous example, and it should be relatively straightforward
to annotate the interface of the plugin with this information. Second, an inter-procedural
analysis on only the plugin code could handle the case where the relationship goes out
of scope for similar reasons, such as calls to a helper function. These changes would
increase the precision of all three variants of the analysis.

The two sources of imprecision affect all three variants, though in different ways.
While imprecision when checking a constraint can produce a false positive in the sound
variant or a false negative in the complete variant, the location of the imprecision in the
constraint directly changes how the pragmatic variant handles it. When the imprecision
occurs in the trigger predicate, the pragmatic variant results in a false negative. When
the trigger predicate is precise but the requires predicate is imprecise, the pragmatic
variant results in a false positive. This reflects what we expect from the analysis; we
only wish to see an error if there is reason to believe that the constraint applies to our
plugin. If the trigger predicate is unknown, it is less likely that the constraint is relevant.
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6 Related Work

Typestates [9] are traditionally used for specifying protocols on a single object by using
a state machine, but there are several approaches to inter-object typestate. Lam et al.
manipulated the typestate of many objects together through their participation in data
structures [10]. Nanda et al. take this a step further by allowing external objects to affect
a particular object’s state, but unlike relationships, it requires that the objects reference
each other through a pre-defined path [11]. Bierhoff and Aldrich add permissions to
typestates and allows objects to capture the permission of another object, thus binding
the objects as needed for the protocol [12]. Relationships can combine multiple objects
into a single state-like construct and are more general for this purpose than typestate;
they can describe all of the examples used in multiple object typestate work.

With respect to the specifications, relationships are more incremental than typestate
because the entire protocol does not need to be specified in order to specify a single
constraint. Additionally, the plugin developer does not add any specifications, which
she must do with some of the typestate approaches. However, because they require
specifications on both sides, typestate analyses can soundly check that both the plugin
and the framework meet the specification [9, 10, 12]. The relationship analysis assumes
that the framework properly meets the specification and only analyzes the plugin.

Tracematches have also been used to enforce protocols [13]. Unlike typestate, which
specifies the correct protocol, tracematches specify a temporal sequence of events which
lead to an error state. This is done by defining a state machine for the protocol and then
specifying the bad paths.

The tracematch specification approach is similar to that of relationships; the main
difference is in how the techniques specify the path leading up to the error state. Trace-
matches must specify the entire good path leading up to the error state, which can lead to
many specifications to define a single bad error state. In cases where multiple execution
traces lead to the same error, such as the many ways to find an item in a DropDownList
and select it incorrectly, a tracematch would have to specify each possibility. Instead
of specifying the good path leading up to the error, relationships specify the context
predicate, which is the same for all good paths. This difference affects how robust a
specification is in the face of API changes. If the framework developer adds a new
way to access ListItems in a ListControl, possibly through several methods calls,
the existing tracematches will not cover that new sub-path. However, all the constraint
specifications in the proposed technique will continue to work if the sub-path eventually
results in the same relationships as other sub-paths.

Tracematches are enforced statically and dynamically using a global analysis [14].
The static analysis soundly determines possible violations, and it instruments the code
to check them dynamically. Bodden et al. provide a static analysis which optimizes
the dynamic analysis by verifying more errors statically [15], and Naeem and Lhoták
specifically optimize with regard to tracematches that involve multiple objects [16].
While the FUSION analysis is static, it could be used in the same way by instrumenting
all violations that are found by the sound variant but not by the complete variant.

Bierman and Wren formalized UML relationships as a first-class language construct
[17]. The language extension they created gives relationships attributes and inheritance,
and developers use the relationships by explicitly adding and removing them. Balzer et.
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al. expanded on this work by describing invariants on relations using discrete mathe-
matics and support semantic invariants and invariants between several relations [18].
In contrast to previous work, the relationships presented in this paper are added and
removed implicitly through use of framework operations, and if inferred relationships
are used, they may be entirely hidden from the developer.

Like the proposed framework language, Contracts [19] also view relationships be-
tween objects as a key factor in specifying systems. A contract also declares the objects
involved in the contract, an invariant, and a lifetime where the invariant is guaranteed
to hold. Contracts allow all the power of first-order predicate logic and can express
very complex invariants. Contracts do not check the conformance of plugins and the
specifications are seemingly more complex to write.

The FUSION analysis is similar to a shape analysis, with the closest being TVLA
[20]. TVLA allows developers to extend shape analysis using custom predicates that
relate different objects. FUSION specifications could be written as custom TVLA pred-
icates, but the lower level of abstraction would result in a more complex specification
and would require greater expertise from the specifier.

7 Conclusion

Relationships capture the interaction between a plugin and framework by describing
how abstract object associations change as the plugin makes calls to the framework.
We can then use these relationships to describe constraints on framework operations.
We have shown that FUSION’s relationship-based constraints can describe many con-
straint paradigms found in real frameworks, capturing relationship structure, operation
order, and object associations that may or may not derive from direct references. As
the specifications are written entirely by framework developers, plugin developers only
need to run the analysis on their code, so that investments by a few framework develop-
ers pay dividends to many plugin developers.

A currently intra-procedural static analysis can check that the plugin code meets
framework constraints. This analysis is particularly interesting because it is adjustable.
While many analyses strive to only be either sound or complete, the FUSION analysis
can be run either soundly, completely, or as a pragmatic balance of the two, thereby
allowing the plugin developer to choose the variant that provides the most useful results.
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