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Abstract. Role-based access control (RBAC) is a common paradigm tarens
that users have sufficient rights to perform various systeerations. In many
cases though, traditional RBAC does not easily expresscapioin-level security
requirements. For instance, in a medical records systesndifficult to express
that doctors should only update the recordsheiir ownpatients. Further, tradi-
tional RBAC frameworks like Java’s Enterprise Edition relylely on dynamic
checks, which makes application code fragile and diffiauinsure correct.

We introduce Object-sensitive RBAC (ORBAC), a generaliRBAC model for
object-oriented languages. ORBAC resolves the expressegelimitations of
RBAC by allowing roles to be parameterized by propertieshef husiness ob-
jects being manipulated. We formalize and prove sound ardigpe type system
that statically validates a program’s conformance to an @& Bolicy. We have
implemented our type system for Java and have used it toatalithe-grained
access control in the OpenMRS medical records system.

1 Introduction

Controlled access to data and operations is a key ingredfesytstem securityRole-
based access contrlRBAC) [9] is an elegant and frequently-used access comtech-
anism in which a layer ofoles interposes between users and access privileges. Roles
represent responsibilities within a given organizationthfrizations for resource ac-
cess are granted to roles rather than to individual usersserd are given roles accord-
ing to their functions in the organization. Users acquitedlileges associated with
their roles. The intuition behind RBAC is that roles changfeaquently within organi-
zations relative to users, and so associating roles witbsaqgrivileges ensures a stable
and reliable access control policy.

As a concrete scenario, consider a hospital in which userbeaoctors or patients.
Doctors should be able to view and update their patientsiros; and patients should
be able to view (but not update) their own records. The RBA@ tearepresent this
policy is to introduce two role®octor and Patient where theDoctor role is allowed
to both look up and modify patient records and Baientrole is allowed only to look
up a medical record. Users are then classified as havingdbtor or Patientroles and
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inherit the corresponding access privileges. RBAC is abdd in standard enterprise
software development environments such as Java's Erderpdition (Java EE) [16],
which insert runtime role checks whenever a privileged afyen is invoked.

This simple example highlights two key limitations of the RB model and its
usage today:

Lack of expressivenes3he role-based implementation described above does net cap
ture all the constraints of our desired policy. The roledshanplementation allows
doctors to access and modgyy patient’s record, rather than only their own patients.
Similarly, the role-based implementation allows patidntaccess any other patient’s
record. One way to solve the problem is to give each user Higioown role, but that
would remove the advantages of using roles altogether! Bipyt, the RBAC model

is not fine-grained enough to express common access coatarements.

As a result of this limitation, programmers may be forcedn®ert manual access
checks that augment the ones provided by systems like JavatitEmanual process
is error prone, and it is difficult to ensure that the insexdkdcks properly enforce the
desired policy. Alternatively, a system may only enforcearse-grained access control
policy but additionally maintain a log of accesses to allgigtem administrators to
detect finer-grained violatiorsposteriorit

Lack of static checkingThe reliance solely on dynamic checks in today’s RBAC-based
systems leads to several problems. First, it is difficultdoygrammers to ensure that
their code properly respects the access control policgmaromers must manually keep
track of what roles must be held when each function is invpldtch depends on the
set of privileged operations that can potentially be reddh&ing the function’s exe-
cution. If a function is ever executed in the wrong environimthe only feedback will
be a runtime role failure when a privileged operation is kea making the problem
difficult to diagnose and fix.

Further, because of the cost of runtime role checks, thekshae often hoisted
from the privileged operations themselves to the “entnynisdiof an application. For
example, after user authentication, a single role checlddmiused to determine which
web page to display (e.g., one for doctors and another fagmqa). However, in this case
the programmer must manually ensure the sufficiency of théck for all potentially
reachable privileged operations downstream, or else teadied access policy can be
subverted.

In this paper we address both of these limitations of theiticachl RBAC model
and associated frameworks. First, we extend the RBAC mad&lipport fine-grained
policies like that of our medical records example above.G&sic idea is to allow roles
and privileged operations to Iparameterizety a set oindexvalues, which intuitively
are used to distinguish users of the same role from one anétipeivileged operation
can only be invoked if both the appropriate role is held arelrie’s index values
matches the operation’s index value.

1 This was the case in two recent security breaches in the nmasithorized access to Britney
Spears’ medical records by employees at UCLA medical camtdrto Barack Obama’s cell
phone records by employees at Verizon Wireless.



Our parameterized form of RBAC, which we c#@lbject-sensitiveRBAC (OR-
BAC), has a natural interpretation and design in the cord&an object-oriented lan-
guage (Sect. 2). Traditional RBAC policies control accasthea level of a class. For
example, with Java EE a methget Hi st ory inaPat i ent class can be declared to re-
quire the caller to hold thBatientrole. In other words, a user with thRatientrole can
invoke theget Hi st ory method oranyinstance ofat i ent . In contrast, ORBAC sup-
ports access control at the level of an individual object.és@mpleget H st ory can
now be declared to require the caller to hold Paienkthis.patientld> role, where
thepatient | d field of Pat i ent stores a patient’s unique identifier.

Second, we provide a type system tistdtically ensures that a program meets a
specified ORBAC policy, providing early feedback on potahticcess control viola-
tions. We formalize our static checker for a core Java-ldmgliage (Sect. 3). Since
types and roles are parameterized by program valuest(gig-,pat i ent | d), our static
checker is a form oflependent type system

We have implemented our static type system for ORBAC as agplbig type sys-
tem for Java in the JavaCOP framework [2]. As with framewdiks Java EE, we
leverage Java’s annotation syntax to specify the role reménts on method calls, but
the JavaCOP rules statically ensure the correctness dimdenuty of these annotations.
We have augmented the OpenMRS medical records applic2idmijth a fine-grained
access control policy using ORBAC and have used our Java®@@¢€ker to statically
ensure the absence of authorization errors (Sect. 4).

2 Object-sensitive RBAC

We now overview Object-sensitive RBAC and its associataticstype system through
a simple medical records example in Java, comparing an mgsiéation using standard
RBAC in Java EE with one using ORBAC.

2.1 Role-Based Access Control

An RBAC policy can be described as a tuglé, R, P,PA UA) consisting of a set of
userdJ, a set of roleR, and a set of permissiofs together with relationBAC P x R
giving permissions to roles aldiA C U x Rgiving (sets of) roles to users [9]. An access
of permissionp by useru is safeif there exists a role € R such thatu,r) € UA (user

u has roler) and(p,r) € PA(roler has permissiom).

Figure 1 shows how this model applies t®a i ent class for which we wish to
protect access. Our simplified class provides a factory augght Pat i ent, which re-
trieves the specified patient from the database, and twarinstmethodgjet H st ory
to return a history of the patient’s visits aaddPr escri pti on to associate a new pre-
scription with the patient.

We can group the users of our application into two groupstats@and patients. In a
typical medical records application, doctors can accesddta of their patients and pa-
tients can access their own data (e.g., through a web seitedeature). In a standard
RBAC model, we can represent these two groups Witittor and Patientroles. Java



public class Patient {
private int patientld;

/* factory method to retrieve a patient */
@Rol esAl | owed({"Doctor", "Patient"})
public static Patient getPatient(int pid) { ... }

@Rol esAl | owed({"Doctor", "Patient"})
public List<String> getHstory() { ... }

@Rol esAl | owed({"Doctor"})
public void addPrescription(String prescription) { ... }

}

public class PatientServlet {
voi d displayHi story(int pid, Request req, Response resp) {
if (reg.isUserlnRole("Patient")) {
if (reg.userld !'= pid) {
throw new AccessError("Cannot access this patient");
}
}
Patient p = Patient.getPatient(pid);
Li st<String> hist = p.getH story();
. code to wite htm representation of hist to resp ...

Fig. 1. Standard RBAC version of doctor-patient example

EE supports the specification of an RBAC policy through@Rel esAl | owed annota-
tion [16]. This annotation is placed on a method definitiointdicate the set of roles
that have permission to invoke the method. In Fig. 1 we hanetated theet Pat i ent
andget Hi st ory methods to permit users with either thector or Patientrole to call
these methods. On the other hand, &déPr escri pti on method has been annotated
to ensure that only doctors can add a prescription to a miedicard.

The Java EE tools, and other application frameworks, eafarcRBAC policy dy-
namically by inserting runtime checks to verify that thenisdeed has at least one of
the specified roles when an annotated method is invoked eTtteecks are supported
by standard infrastructure that performs user authergit@nd queries a database or
configuration files to determine role membership.

For example, one might maintain a database of users andl#®g@nted to each
user in an external LDAP server, where it can be managed bydaningtrator. The
first time a user attempts to access a protected applicasmurce (e.g., a web page),
he is redirected to a login page. The usexushenticatedy comparing his credentials



against those stored in the LDAP server. The user’s ideatityroles are then stored in
memory (e.g., in a session context) for use by dynamic acmegsol checks.

Limitations of the RBAC modeConsider thePat i ent Servl et class of Fig. 1, which
accesses a patient’'s medical record. Thepl ayH st ory method writes an HTML
representation of the patient history to a response strdando this, it obtains a
Pati ent object usingPati ent. get Pati ent and then calls itget H st ory method.
Due to the annotations on these methods, the Java EE frakeilbinsert dynamic
checks on these calls to ensure that the user has eithBottter or Patientrole.

Unfortunately, these checks are not sufficient to enforeedisired access control
policy. For example, the checks allow any patient to acceg®ther patient’s medical
record! Therefore, programmers must manually insert adit checks, as shown at
the beginning of thdi spl ayH st ory method. A similar check may also be necessary
to ensure that a doctor only accesses the records of her aiiemtsa These kinds of
checks are very fragile and error-prone — one can easilyefaygimproperly imple-
ment the check on some code path that leads to an invocatiampudtected method,
resulting in a serious security vulnerability.

Another limitation of traditional RBAC frameworks like Ja\EE is the reliance
solely on dynamic checks, which makes it difficult to stdticansure that application
code in fact respects the access policy of a protected Elasexample, the programmer
must ensure that thi spl ayH st ory method is never invoked by a user who does not
have either thédoctor or Patientroles. This requirement is completely implicit and
can only be understood by examining the implementatiati epl ayH story (and in
general the implementations of methods transitively daltigdi spl ayH st ory). If a
program disobeys the requirement, the programmer williveago warning about the
error, which will instead result in a dynamic access chedlia. Such dynamic errors
can be difficult to diagnose and fix. Further, if the error i$ expected by the calling
code, it may result in very unfriendly behavior from the Useerspective (e.g., a Java
uncaught exception).

2.2 Object-sensitive RBAC

ORBAC is a natural generalization of the formal model for RBéefined above. With
ORBAC, we defindJAC U x Rx | to be a ternary relation, in whiddA(u,r,i) gives a
useru anindexed rolgr,i) € Rx |, wherel is a set oindex valuesPermissions are also
indexed, and an access by us¢o theindexed permissio(p,i) € P x | is safeif there
exists a rolg € Rsuch thatu,r,i) € UA (useru has indexed rolé¢r,i)) and(p,r) € PA
(roler has permissiom).

In Fig. 2, we reimplement our example using an ORBAC policg. ¥8e two roles:
Patientand DoctorOf both of which are parameterized by a patient identifier (@ Ja
integer). A patient is given theatientrole for his own identifier, allowing him to access
his own record but not those of other patients. A doctor isg@DoctorOfrole for each
of her patients, allowing access to those patients but nersth

Conceptually, classes are now parameterized by a set ahdites, which are part
of the class’s static type, analogous with ordinary typeapeaters in Java. These role



public class Patient {
@Rol eParam public final int patientld;

/* factory method to retrieve a patient */

@Requires(rol es={"DoctorOX", "Patient"}, params={"pid", "pid"})
@Returns(rol eparanms="patientld", vals="pid")

public static Patient getPatient(@RoleParamfinal int pid) { ... }

@requires(rol es={"DoctorOX", "Patient"},
params={"this.patientld", "this.patientld"})
public List<String> getHstory() { ... }

@Requires(rol es="DoctorOF", params="this. patientld")
public void addPrescription(String prescription) { ... }

}

public class PatientServlet {
@Requires(rol es={"DoctorOX", "Patient"},
params={"pid", "pid"})
voi d di spl ayHi st ory(@ol eParam final int pid,
Request req, Response resp) {
Patient p = Patient.getPatient(pid);
Li st<String> hist = p.getH story();
. code to wite htnl representation of hist to resp ...

Fig. 2. ORBAC version of doctor-patient example

indices may then be used in role annotations within the cl&%sle our formalism ex-
plicitly parameterizes classes in this way, as shown latarjmplementation employs
additional annotations to achieve the same effect withadifying Java’s syntax. Class
role parameters are modeled as public final fields of the ttedsare declared with the
@Rol ePar am annotation. For example, th@ol ePar am annotation on theat i ent | d

field of Pati ent indicates that this field will be used as an index in role aations
within the class. Thé@Rol ePar amannotation can also be used on final formal parame-
ters to achieve the effect of method parameterization, &s ae thepi d parameter of
theget Pat i ent method.

Our @Requi r es annotation is analogous to Java EE®I| esAl | owed annotation,
indicating the set of roles that have permission to invole ahnotated method. To
stay within Java’s metadata syntax we use two parallel ajray es andpar ans, to
specify the roles. For example, tf@equi r es annotation omget Pat i ent in Fig. 2 al-
lows only users with either thBoct or Of <pi d> or Pat i ent <pi d> role to invoke the
method, wherei d is the patient identifier passed to the method. @Rexui r es an-
notations on the other methods are similar but they usepgheent | d field of the



receiver as the role index to appropriately restrict actesbatPat i ent object. Un-
like the @l esAl | owed annotation{@equi r es does not introduce a dynamic check.
Instead, all calling code is statically checked to ensuteast one of the required roles
is held.

The @Requi res annotation is a form of method precondition for access obntr
while our@et ur ns annotation is a form of postcondition. For example,@et ur ns
annotation orget Pat i ent asserts that the return@dt i ent object has aatient!d
role parameter field which is equal in value to the patientiifier passed to the method.
Our static type system checks the body of the method to ettseiegjuality between the
role parameters holds. The type system can then assumaéithatjtiality holds after a
call toget Pat i ent . In this way, we support modular typechecking for accessrobn

Resolving the limitations of the RBAC modehe Pat i ent Servl et class of Fig.2 il-
lustrates how ORBAC resolves the limitations identifiedieaiof the RBAC model.
Unlike the version in Fig. 1, no manual access checks ararestjurhese checks are
now part of the access control policy and are reflected in@egui r es annotations
on the methods dfat i ent . Therefore, it is easy for both humans and tools to reason
about a program’s access control policy just based on pmogranotations, without
examining the bodies of methods.

Further, access control is now statically checked, progj@iarly feedback on possi-
ble violations. Thali spl ayH st ory method is annotated witBiRequi r es, restricting
the method to users of thect or O <pi d> andPat i ent <pi d> roles. With this annota-
tion, the method'’s body can be statically guaranteed to timgccess control policy of
Pati ent. The call toget Pat i ent satisfies that method@equi r es clause, so the call
typechecks. Theget Pati ent method’'s@Ret urns clause indicates that the returned
patient object'gpati ent | d parameter is equal tpi d, which then allows the call to
get H st ory to typecheck successfully.

Subtle errors are now caught statically rather than dynallgid-or example, if the
call toget Pati ent in di spl ayH st ory passed a patient identifier other thard, the
call would correctly fail to typecheck, since a patient abloé accessing the record of a
patient other than himself. Also, the annotationdorpl ayH st ory in turn allowsits
callers to be modularly checked at compile time, ensuriagytiiiey have the necessary
roles for the eventual accessRat i ent .

Incorporating dynamic checksOur static type system makes explicit (via the
@Requi res annotation) the precondition that must be satisfied on doty method
mto ensure that the access control policies of all methodsitiaely called bym will

be obeyed. We insist that top-level methods (emgi,n for a standalone application
or servi ce for a servlet-based web application) have@equi r es annotation. That
is, the application’s external interface must have no pnditamn and thus can assume
nothing about the roles that the current user holds. In a@eilow an unprotected
method to call a method protected b@equi r es annotation, our type system provides
a flexible mechanism for interfacing with the program’s awibation and authentica-
tion logic through the definition able predicate method3¥hese methods are identified
by the@rol ePr edi cat e annotation, which also indicates the role that the methsid te
for. Our static type system incorporates a simple form of f@nsitivity to ensure that



public class Request {
@Rol ePredicate(rol es="Patient", parans="pid")
publi ¢ bool ean hasPatientRol e( @ol eParam final int pid) { ... }

@Rol ePredi cate(rol es="Doctor X", parans="pid")
publi ¢ bool ean hasDoct or Of Rol e( @Rol eParam final int pid) { ... }
}

public class PatientServliet {
voi d di spl ayHi st ory(@vol eParam final int pid,
Request req, Response resp) {
if (!(req.hasPatientRole(pid) ||
reg. hasDoct or Of Rol e(pi d)))

{

}
Patient p = Patient.getPatient(pid);
Li st<String> hist = p.getH story();
. code to wite htm representation of hist to response ...

throw AccessError (" Cannot access this patient");

Fig. 3. Use of role predicate methodsdnspl ayH st ory

method calls whose role requirements are not met by thertumethod’s@equi r es
annotation occur only after appropriate dynamic checksesedt.

As a simple example, Fig. 3 contains a new versionPafient Servl et’s
di spl ayH st ory method that performs the necessary role checks dynamidddky
method no longer has @equi r es clause, but our static type system recognizes that
the method is safe: the dynamic role checks ensure that tiseocethePat i ent class
are only reached when the user has the appropifatientor DoctorOf role. Unlike
the manual dynamic checks in the standard RBAC example skawvlier, these checks
are statically ensured to be sufficient. Any errors in theastyit checks in Fig. 3 (e.g.,
accidentally using a patient identifier other tham) will be caught at compile time.
Further, the dynamic checks can be placed as early as possthe execution of an ap-
plication without the risk that a check will be forgotten @mse code path to a protected
method.

The role predicate methods are treated as black boxes bymaisystem. They are
free to consult a framework’s security infrastructure omglement authentication and
authorization however the application designer sees fifa¢h a particular predicate
method could always return true and be used to achieve act sffailar to J2EE’s
@unAs annotation, which allows components to be invoked with aisgcidentity
other than that of the currently authenticated user. Intspoedicate methods provide a
flexible mechanism for incorporating the runtime checks #ina necessary to ascertain
security credentials, and our type system ensures thatubeiis sufficient to satisfy
declared method preconditions.



ClassDecl K = classC(n){TT,M}

MethodDecl M = (NT M(T X) requiresd{e}

Exprs e = x|ef|em{p)(e) | newT(e) |ede|usePine
| packp, e | unpackeasr,xin e

Vals v = newC(i)(V) | packi,v

Types T = C{p) | ar.T

RoleContext O] = propositional formula over atoms @

Roles Q = R{p)

Indices p = rli

IndexVarContext A = | Ar

VariableContext r = S rx:T

Fig.4. Grammar for the ORBAC language and type system. Metavarfalbhnges over class
namesmover method names,over field namesR over role names, andq over index variables,
i and j over index constants, andover program variables.

3 Formal Semantics

We have formalized the static and dynamic semantics of al skanad-like language in
which ORBAC policies can be expressed and statically chisclaed we have proven
a type soundness theorem. Figure 4 shows the syntax of ogudge, a variant of
Featherweight Java [14]. Our language models only the eateifes necessary to study
the ORBAC model and its static type system formally. For thisson we have omitted
inheritance, although our implementation handles it instamdard way, as described
in Sect. 4.1.

In our Java implementation of ORBAC described in the prewieaction, index
variables are specially designated fields and method paeasni our formal language,
we explicitly parameterize classes, methods, and rolegjtise syntax of Java generics.
For greater expressiveness, we include a form of existéyypias to classify expressions
whose role indices are not statically known. This modelsgf@mple, the situation in
our Java implementation where a method’s return type ispeterized by an index, but
no information about this index’s value is provided (e.ga, & @et ur ns annotation).
Expressions of existential type are introduced in our cangliage by packexpression
and eliminated by amnpackexpression, in the usual way [24]. Our core language
includes ause expression for dynamically changing the set of held roldsictvis a
simplified form of the role predicate methods in our Java enpéntatior?. Finally, we
include a non-deterministic choice construgt(l e2) as a simple form of conditional.

Access protection is expressed in our Java implementasiony @a@equi r es an-
notation indicating the set of roles that may invoke a metfitis set can be viewed as
a disjunctivepredicate to be satisfied on entry to the method. We provider® gen-
eral mechanism in our formal language; methods includegai r es clause which can
specify an arbitrary propositional formula over roles asecpndition for invocation.

2 Theuse expression can be viewed as a role predicate method thaysbugceeds. The pos-
sibility of a predicate method returnirigl se can be modeled by combininge with non-
deterministic choice. For example, the expressieed in e;) 0 e, models the situation where
e is executed if a dynamic check for predicstesucceeds, and otherwisgis executed.



T=T  MokinC(r)

— C-OK
classC(r){T f;M} ok ( )
g-kT  TgFT  T,gF®  ®TGX:T,this:Cf)Fe:T (M-0K)
(@ T M(T X) requires®{e} ok inC(r)
O;ATHe: T
;AT Ex:T(x) (T-VAR)
O;ATHe: T fieldgT)=T f
lelds(T) (T-FIELD)
D;ATHef: T
fieldfT)=Tf ®ATFe:T AFT (T-NEW)
®;AT HnewT(e): T
QATHe :T  OATEe:T
e & (T-cHoOSPE
OAT e Oe: T
AFp P;ATHe: [r—p]T
T-PACK
@O;A;T F packp,e: 3r.T ( )
r¢n I"(x) undefined
®;A T FHep 39S AFT ;AT X:[q—T|SkHe: T
- (T-UNPACK)
@;A;T Funpacke; asr,xiney: T
A+ OATHe: T (1-usg)
®;A;T Fused ine: T
®;ATHe:S AFp  msigSm)=MTET
QAT e T—P|T = [r—p|P (T-INVK)
;AT Hem(p)(e): [F—p|T
fields(T)=T f
classC(r){T f;M} € ClassDecls (FIELDS)
fieldsC(p)) =[r—p|T f
: =
‘ msigT,m) =T —T ‘
classC(r){Tf;M} € ClassDecls  (4)S n(Sx) requiresd{e} ¢ M (M-SI0)

msigC(p),m) = (@)[r — S =" [r—pJS

Fig. 5. Typing rules for our formal language.



The typing rules for our formal language are shown in Fig.>§prEssions are type-
checked under three contex:is the role context represented as a propositional for-
mula over rolesA keeps track of the index variables that are in scope,laiglthe
usual free-variable typing context. The rules depend o afstmple well-formedness
judgments, which ensure that all referenced index varsadie in scope. For example,
AF T in the premise of-NEW ensures that the type being constructed does not refer to
any undefined index variables.

The most interesting rule isINVK which includes a logical entailment check in the
premise that guarantees that the current role corbesdtisfies the calleetsequi r es
precondition after appropriate substitution of actualéed for index parameters. Meth-
ods are typechecked modularly by rsdeok which uses th& specified in a method’s
requi res clause as the role context when checking the body.

RulesT-PACK and T-UNPACK are standard for existential type systems. The role
variabler in rule T-UNPACK is required to be fresh, which matches the intuition that
existential types classify objects with unknown index ealuAn unpacked role variable
r can only be employed to satisfy role checks withinsa statement that grants roles
involving r. This is analogous to performing a dynamic role predicateckion an
object with an unknown index in our Java implementation.eRelELDS andM-SIG
only apply to class types, so an existential package mushpaaked before its fields
and methods are accessed and values of existential typetdaandirectly instantiated.

The dynamic semantics for our formal language is shown in@=ighese evaluation
rules perform role checks that model the dynamic checks imilgged operations used
in most existing RBAC systems. Our type soundness resulieher, establishes that
such dynamic role checking is unnecessary for well-typedjams. Like the typing
judgment, the evaluation judgment includes a role confiexis context is used in rule
E-INVK, which performs a dynamic entailment check that the cumelet context is
sufficient to satisfy the method’s declared preconditionleRe-CONGRUENCE steps
subexpressions according to the evaluation order edtablisy the evaluation contexts,
leaving the role context unchanged. Rel&/SEL ignores the current role context and
dynamically evaluates its subexpression under the spacifietext.

We have proven a type soundness theorem, which ensuresdivayped programs
cannot fail dynamic role entailment checks. The theorentasgn using the standard
progress and preservation style [30]. Full details arergimehe accompanying techni-
cal report [10]; we provide statements of the key resulteher

Lemmal (Progress) If ®;-;-+e: T, then either e is a value or there is an expression
€ such that®’ - e — € for any®’ whered’ = o.

Lemma2 (Preservation) If ®;A;T-e: T andd e — €, then®d;A;T e :T.

These lemmas imply a type soundness theorem as well as trekaiary about role
checking:

Theorem 1 (Type Soundness) If ®;-;-+e: T, then e will not get stuck when evaluated
under any role context’ such thatd’ = @.

Corollary 1 (Dynamic Entailment Checks Unnecessary) Well-typed programs can-
not fail dynamic role entailment checks.



Evaluation Contexts E = []|E.f |Em{@)(®) |vm{P)(v,...,.E,e...,€)
| newT(v,...,E e, ...,e) | packp, E | unpackE asr,xin e

dre—¢

m (E-CONGRUENCH

fieldgT) =T T

— (E-FIELD)

PHnewT(V).fi — v
mbody(T,m(p)) = (&)  msigT,m) = @52S o= [o—pd i)

® F newT (V).m(p) (V') — [x — V] [this— newT (V)]e
® - unpack(packi,v) asr,xin e — [X — V|[r — i]e (E-UNPACK)
PreOe—e (E-CHOOSEL)
bhe 0 —e (E-CHOOSE)
Pre—¢€ (E-USEL)
&+ used’ ine — used’ in €
®Fused’ inv—v (E-USE2)
| mbody(T, m(p)) = (%.€) |

classC(r){TT;M} € ClassDecls  (4)S m(Sx) requiresb{e} € M (M-BODY)

mbody(C(p),m(d)) = (X, [q— 0][F — ple)

Fig. 6. Evaluation for our formal language.



4 Experience: The OpenM RS Case Study

We implemented our ORBAC checker as an extension to Jave irettaCOP pluggable
types framework [2]. To evaluate our approach, we took OpRBNR1], an existing

open source medical records application, and retrofitted itse an ORBAC policy
to protect access to patient data. OpenMRS is implementdevia using the Spring
application framework [28], which is a commonly used altgive to Java EE. Spring
provides several useful modules, includingiarersion of controtontainer, an aspect-
oriented programming framework, and integration with thbd#hate framework for

persistence [13]. Spring’s access control framework sttpmtandard RBAC policies,
which can be configured by an administrator.

4.1 Implementation of ORBAC using JavaCOP

Our checker implementation makes use of the annota@®egui r es, @et ur ns, and
@Rol ePr edi cat e that were introduced in Sect. 2.2.

Several practical issues that are not modeled in the fosmadire addressed in our
implementation. Class inheritance is supported. The aveskforces the standard re-
quirements on method overriding: an overriding method rhast a compatible, pos-
sibly weaker precondition@equi r es annotation) and a compatible, possibly stronger
postcondition @ret ur ns clause). Methods without @equi r es annotation are con-
sidered to have the preconditibnue, so they can be invoked in any context. Hence,
methods that override such methods are required to not h@eeqai r es annotation.

While our formalism uses arbitrary propositional formulasrequires clauses, our
Java implementation restric@equi r es and@rol ePr edi cat e annotations to be dis-
junctions of roles. This means that role contexts are foasiith conjunctive normal
form (CNF); the@equi res clause of a method provides the first conjunct and dy-
namic role predicate checks add conjuncts to the conteid.Siimplifies typechecking
by allowing us to perform a series of subset checks rathardhacking arbitrary logical
implication.

We make use of JavaCOP’s support for flow-sensitive reagdtif to implement
the static updating of the role context based on role prégliv@thod invocations. Java-
COP's flow framework properly handles Java’s complex cdifiioay, including excep-
tional control flow. As a result, our checker can staticaljidate the style of dynamic
checks used in Fig. 3, as well as many other styles.

The implementation of the checker was fairly straightfamvdt contains 174 lines
of code in the declarative JavaCOP language and about 459dinJava code defining
the flow analysis and some supporting functions and datatstes.

4.2 OpenMRS architecture

The OpenMRS source contains over 160,000 lines of codeadpreer 633 files, not
including the frameworks and other infrastructure thatepends upon. Figure 7 shows

a simplified UML diagram of some key patient-related clastefined by OpenMRS.
Patients are represented by Ba¢i ent class. Each patient has a number of associated
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Fig. 7. Patient-related classes in OpenMRS

encounterseach representing a visit to the hospital or clinic. Eaactobenter may con-

tain multipleobservationgrepresented by th@s class) which are used for recording
test results and patient vitals.

The OpenMRS application interacts with the client via Jamlsts. In Fig. 7, we
show the two primary servlets for patienBat i ent DashBoar dControl | er, which
renders to HTML a summary of a patient’s data, &atli ent For mControl | er, which
accepts a new or updated patient and saves it to the datalizsse servlets obtain
patient records from the database via classes implemethtigt i ent Ser vi ce inter-
face, which defines methods for creating, querying, updatind voiding patients (as
well as many others not shown here). The implementatidtabifent Ser vi ce is pro-
vided byPat i ent Ser vi cel npl , which in turn uses a class implementiPag i ent DAO
(DAO stands for “Data Access Object”). The implementatidrPat i ent DAO is pro-



vided byH ber nat ePat i ent DAQ, which interacts with the Hibernate framework and
isolates Hibernate-specific code.

The patient service implementatidtat i ent Servi cel npl is made available to
servlets via the€ont ext class. This class provides static methods for accessirzaglo
system state (e.g., mappings between “service” interfandstheir configured imple-
mentations) as well as state specific to a given user (e.geridiand permissions).

OpenMRS access control frameworke implementation of RBAC in OpenMRS adds
a level of indirection to the standard RBAC model: methodsmotected by assigning
requiredprivilegesthrough annotations in the codelesare defined as mappings from
role names to sets of privileges, amskrsare assigned sets of roles. The role-privilege
mapping and the user-role mapping are maintained in thédséa permitting them to
be changed by an administrator at runtime.

Access policies are configurable in OpenMRS, but the lifoitet of the RBAC
model make it impossible to configure a policy that permitseas to a specific ob-
ject while preventing access to other objects of the sansscla other words, only
coarse-grained policies, which restrict access at thé ¢d\@dasses rather than objects,
are supported. For example, in one reasonable policy witlgse restrictions, patients
would have no access to the system at all and every healtpoavaler would have
read-write access to all patients.

Access control requirements are defined using method dimmgaepresenting the
set of privileges needed to access the method. These aonstate converted to dy-
namic checks by Spring’s aspect-oriented programmingédraonk. For patient data,
these annotations are made on Ha¢i ent Servi ce class. There are separate privi-
leges defined for viewing, creating, updating, and delepiatients. The administrator
must then assign these privileges to RBAC roles.

Each servlet in OpenMRS may (indirectly) invoke many dyrmaprivilege checks
inserted by Spring. Unfortunately, there is no easy way Howtkich privileges are
required by a servlet. Changes to the implementation of detemay inadvertently
change the set of privileges checked in a given situaticagifg to runtime errors,
which are displayed as an HTML rendering of a Java stack trace

Privileges may be explicitly checked in the code by callihg hasPrivil ege
method on theCont ext class. These explicit checks are used in situations where au
thorization occurs in a conditionally executed block or véhan implementation needs
additional authorization requirements beyond those fipddor an interface.

4.3 An ORBAC policy for OpenMRS

With ORBAC we were able to create a new fine-grained accegsatpolicy for patient
objects, with three roles:

1. Users with théSupervisorole have read and write access to all patients. This role
is unparameterized — it behaves as a standard RBAC role.

2. Users with théProviderForrole (e.g., doctors) have read and write access to their
patients, but not to other patients. This role is parametdrby the patient’s id.



User |Assigned roles Patients allowed |Patients allowed |Patients denied
read-only access|read-write access|access
Alice |Supervisor Britney, Carol,
Dave
Bob  |ProviderFox Carob> Carol Britney, Dave
Britney|Patient Britney> Britney Carol, Dave
Carol |PatienkCarot>, Carol Britney Dave
ProviderFok Britney>
Dave |PatienkDave> Dave Britney, Carol

Fig. 8. Example of access rights for OpenMRS extended with ORBAC

3. Users with thdPatientrole have read access to their own patient record, but not to
those of other patients. This role is parameterized by thients id.

We only changed the access policies for objects relatedtierpis; other objects in
the system are protected by OpenMRS’s original RBAC policy.

Example 1.Figure 8 shows an example set of user-to-role assignmedthamesulting
access rights of these users. There are three patients $iystem: Britney, Carol, and
Dave. All three have ®atientrole parameterized by their own id and can thus see, but
not modify, their own patient records. Alice holds the urgmaeterizedupervisorole

and has read-write access to the three patients. Bob is é&prder Carol, and thus
has read-write access to her record, but no access to thepatients. Carol is both a
provider for Britney and a patient herself. She does not ead-write access to her
own recordd

The mechanism for assigning tReoviderForrole turned out to be an interesting
design consideration. The OpenMRS database schema ard wigidel implement a
one-to-many doctor-patient relationship, so one mighsser using the presence of
this relationship to granProviderFor status. However, in a real healthcare environ-
ment, multiple doctors and nurses might need to interadt wipatient and thus see
the patient’s record. We chose to base the granting oPtbeiderForrole on whether
there is an encounter record associated with the patientrengrovider. This can be
determined by an SQL query against imeount er table, the results of which can then
be cached to speed up future checks.

The presumed workflow for granting access rights to a paidata are as follows:

1. When a patient enters the clinic, a user v8tipervisoaccess looks up the patient’s
record, or creates it if necessary.

2. TheSupervisorselects a doctor to see the patient and then creates an éeicoun
record referencing the patient and the doctor.

3. The doctor now has tHeroviderForrole for this patient and can update the patient
record.

Thus, all the providers who have participated in a patiecgi® can access the patient
record. Other approaches to granting access rights tonpaléea are possible and en-
forceable with our pluggable type system.



Implementing the ORBAC policyo implement our fine-grained access control policy
in OpenMRS, we first made ttpat i ent | d field of thePat i ent class a role parameter
via the@ol ePar amannotation. We then replaced the original privilege antiarta on
thePat i ent Servi ce interface with@equi r es annotations. For example, the declara-
tion of theget Pat i ent method is now:

@Requires(rol es={"ProviderFor", "Patient", "Supervisor"},
parans={"patientld", "patientid", ""})
public Patient getPatient(@RoleParam final Integer patientld)
throws API Exception;

This method fetches the patient identifiedgay i ent | d from the database. To call
it, the caller must possess either tAmviderFor, Patient or Supervisoroles. These
first two roles are parameterized by the spegiéiti ent | d, while Supervisoiis unpa-
rameterized.

To provide dynamic role checks, we first created three nevwil@ges in Open-
MRS, corresponding to our three roleSRBAC_PATI ENT, ORBAC_PROVI DER, and
ORBAC_SUPERVI SCR. Each of these privileges has an associated OpenMRS roleh wh
can then be assigned to users. We added role predicate radti@hch of our ORBAC
roles to theCont ext class. For example, the role predicate forBagientrole is defined
as follows:

@Rol ePredi cate(rol es="Patient", params="patientld")
public static bool ean hasPatient Rol e(
@ol eParam final Integer patientld) {
User user = Context.getAuthenticatedUser();
if (user==null || !Context.hasPrivilege("ORBAC PATI ENT"))
return fal se;
el se return user.getUserld().equal s(patientld);

}

The method checks if the user has the OpenMRS priviGRBAC_PATI ENT and if so it
compares the user’s identifier to the specified patient ifient

Checking the OpenMRS source codlie ensure that the required roles for accessing
patients were enforced, we ran our pluggable type systemeoarttire OpenMRS code
base (a total of 633 Java files). The checking takes 11 secona@$/acBook Pro with

a 2.4 GHz Intel Core 2 Duo processor and 2 GB of memory.

We used our type checker in an iterative manner in order tonedessary anno-
tations and dynamic checks until all type errors were reshlin general we used
@Requi res annotations on methods to remove static type errors. Asioratt in
Sect. 2.2, we cannot placedBequi r es annotation on the top-level methods in servlets
through which all user requests must pass. This is the rigilaee to use predicate
methods that perform dynamic security credential checksatisfy the type checker.

In total, we made changesto 81 (13%) of the files. A total of @@&jui r es annota-
tions and 151 dynamic checks were added. Since the plugiyaleleystem successfully
checks the code, the dynamic role checks that occur withinetecode are guaranteed
to be sufficient on all paths to the protected method2aof ent Ser vi cel npl .



The count of dynamic checks represents individual role ipe¢e calls
(hasPat i ent Rol e, hasPr ovi der Rol e, orhasSuper vi sor Rol €). In many cases, these
predicates are used together in a sifdlestatement. In general, dynamic checks for
patient reads use a disjunction of all three predicates;kshfor patient writes use a
disjunction of the provider and supervisor predicates, @ratks for servlets that gen-
erate reports (which access many patients) use the supepvedicate alone.

4.4 Limitationsand tradeoffs

Final fields and role parametersn the ORBAC example of Sect. 2, role parameter
fields are declared as nal . Our type system requires that role parameters do not
change. If role parameters can change, the type system lesaemsound, potentially
allowing prohibited calls.

Unfortunately, Hibernate requires that persisted objbeige default constructors
and non-final id fields. These id fields are frequently the steds used as role param-
eters (e.g., thpati ent | d of classPat i ent). To address this, we permit role parameter
fields to be non-final but include checks in our pluggable symtem to ensure that role
parameter fields are not assigned outside of construct@ral$ use the JavaCOP flow
framework to ensure that every constructor initializes@lk parameter fields.

ProviderFor vs. Provider rolesIn our case study, we chose to define for doc-
tors a ProviderFor role which is parameterized by a patient id. This approach
is straightforward and easily handles the case where a npatias multiple
providers. However, it is problematic when representinggections. For example, the
get Pat i ent sByNane method ofPat i ent Ser vi ce takes a partial patient name and re-
turns aCol | ecti on<Pati ent > of matching patients. The names of these patients are
then displayed to the user, who can drill down to a specifiepatecord. We changed
this method to return only those patients accessible to slee. Wnfortunately, there
is no way to represent the precise element type of this dalein our type system,
since each patient has a different id. Therefore, we usel@ction object with no role
parameter. This lack of static validation cannot cause argggwiolation, but it does ne-
cessitate the use of dynamic role predicate checks in ocodeet¢h the actudbat i ent
object when the provider “drills down.”

An alternative would be to instead usdé’eviderrole, which is parameterized by
the doctor’s user id. Thus, the patients returnedétyPat i ent sByNane would all be
parameterized by the same value, allowing easier repi@gmmin our type system.

This alternative approach is not without disadvantagethérmost obvious imple-
mentation of this policy, théat i ent object would be parameterized by two fields:
patientld and providerld. However, this does not work well if a patient can
have multiple providers. One work-around is to changegttePat i ent method for
Pati ent Servi cel npl to populate thepr ovi der | d with the current user’s id, if the
user is in the set of providers for the patient.

Access control for encounters and observatidmsour current implementation, ac-
cesses to objects logically contained within patientshsae encounters and obser-
vations, are not protected I@Requi r es annotations. In theory, this could lead to an



unsoundness in the security policy, although, in practlee OpenMRS navigation de-
sign prevents users from accessing these sub-objectsutfirgt accessing the parent
Patient instance. To be sure there is no violation, we could @ehui res anno-
tations to encounters and observations. Alternativelycad use a form obbject
ownership[7] to verify that these objects are in fact logically conidl within their
associated patient objects.

5 Redated Work

Role-based access control [9] has been used successfaigrip systems and is now a
NIST standard. Several approaches have been exploreddgrcaers to extend declar-
ative access control models like RBAC to represent and eefioistance-level policies.
However, these approaches have employed only dynamicoemfint of such policies.

The emphasis in some prior work [1, 15, 4] is on clarifying thenal semantics of
a parameterized access control model. For example, Atdalid Khayat [1] provide
a set-theoretic semantics in a formal specification languagd Barttet al. [4] briefly
mentions a parameterized role extension to a temporalfogieasoning about privacy.
We adapt a variant of these generalized RBAC models to artivbjented language,
provide a static type system for enforcing access contral, lsve implemented and
validated the approach in Java.

The Resource Access Decision facility (RAD) [3] extends RBBased access con-
trol policies with access checks based on user relatioasRigicies may be configured
to require certain relationship predicates to be true wimesicéivated role is used to ac-
cess an object. For example, a rule might state that docaorsicly access the records
of patients to which they have attendingrelationship. However, these relationship
predicates are not defined in a declarative manner — a COR&@&Aface must be im-
plemented in the application to evaluate each predicatis. fiecludes any use of a
static analysis based on the relationships required byieypol

The database community has also addressed the enforcehiestboce-level ac-
cess control policies (e.g., [12,26,20,22]). In particu[d2] extends RBAC with
parameterizedole templateswhere the parameters of a template refer to database
columns or constants and serve a similar function as oupan@meters. Implementing
fine-grained access control policies at the database Iexgetvio key advantages: one
can define policies directly on the data to be protected amdiltbring of records can
be integrated with query optimization. However, datatdasel access control also has
several disadvantages. First, it would be very difficulttetisally determine the code
paths in an application which lead to a given dynamicallpegated SQL statement,
which would be necessary to statically detect access olst Second, developers
may also want to enforce restrictions on function invoasim the application, which
would require a separate mechanism from the databasedeweks control policies.
Third, most modern application deployments store the nmappf users to roles in
an external repository (e.g., an LDAP server). Informastored in such a repository
might not be available to the database query engine.

Instance-level access control policies can also be defisiad domain-specific lan-
guages. For example, the XAML standard [8] permits the d&fimiof access policies



for web services which reference data in individual requesssages. Cassandra [6,
5] extends Datalog to express constraint rules referergémgmeterized RBAC-style
roles. These approaches are appropriate for enforcingacoamtrobetweerapplica-
tions but are not so easily appligdthin an application. To (dynamically) enforce such
policies within an application, one would need to map thatiestreferenced by the
policy to actual object instances. In addition, the moreregpive semantics of these
policies would complicate static analysis.

We enforce access control policies through explicit dymaand static checks added
to the codebase through annotations. One could also writeigmin a separate lan-
guage outside the codebase and automatically insert therthimcode at compile time
or runtime (via bytecode manipulation). This approach hesnbexplored [23], with
policies expressed @k cess constraimiles — boolean expressions over an object and
its relationships. Our ORBAC annotations could be traesléh access constraint rules.

Our approach is orthogonal tdierarchical RBAC[27], where a partial order is de-
fined on roles. If a rol®&; is greater than a rolg; in this hierarchy, then any user hold-
ing Ry also holds the permissions associated WithThis hierarchy is statically defined
and not dependent on individual object instances, solibstiy supports coarse-grained
policies. For example, if hysicianrole dominates &lealthcare-Providerole in the
hierarchy, assigning two users Rhysicianroles gives them the exact same permis-
sions, which are a superset of the permissions granted ts assigned thielealthcare-
Providerrole. One could extend our ORBAC model to support hieraschieincluding
a partial order on (parameterized) roles.

There has also been work on static analysis for RBAC syst€insest to our work
is that of Pistoizet al. on static analysis of security policies in Java EE [25]. Thay
ploy an interprocedural analysis to identify RBAC policikat areinsufficient(i.e., can
lead to runtime authorization failuresgdundant(i.e., grants more roles than neces-
sary), andsubversivgi.e., allows bypassing access control requirements).Staiic
type system prevents the first and third of these errors doah& more expressive OR-
BAC model. Using a type system as opposed to an interproatalalysis allows us to
provide modular guarantees about proper access contr@anfenction in a scalable
manner, at the expense of requiring user annotations.

Researchers have explored many forms of dependent typensy$18], whereby
types depend on program values. The closest to our work igdtien of constrained
typesin the X10 programming language [19]. In X10, classes ardi@ip parame-
terized by a set oproperties which are treated within the class as public final fields.
Our design is similar but uses annotations to implicitlygraeterize a class by a des-
ignated set of fields without modifying Java’'s syntax. Sari, an X10 type has the
form C{e}, whereCis a class name arglis a constraint on the class’s properties, while
we use annotations to specify constraints. In our type sydigese constraints are al-
ways simple equality constraints. The X10 compiler hastmisupport for checking
equality constraints, but it also allows users to plug iver for other constraints.

The static checking of roles in our type system has no aneldiguX10’s con-
strained types. This part of our type system is most closebted totype-and-effect
systems [11], which statically track a set of computatiaftdcts. The computational
effects we track are the privileged operations that a foncthay invoke, which de-



termine the roles that are allowed to invoke the functioneRare also similar toa-

pabilities [29], which are a dual to effects. However, roles are digjireaather than
conjunctive: it is sufficient for an execution to hadehy of a function’s roles, while
capability systems require all capabilities to be held teuea proper execution.

6 Conclusions

We have presented the design, implementation, formadizatind practical validation
of Object-sensitive RBAC (ORBAC), a generalization of thidely used RBAC model
for access control. ORBAC allows different instances of $hene class to be distin-
guished by a designated set of object properties. Thesesgiiep can then be used
to parameterize roles thereby supporting fine-grainedssqgelicies that are useful in
common scenarios but hard to implement in traditional RBA@. have implemented
a novel static type system that employs forms of dependeestand flow sensitivity
to provide sound yet precise reasoning about an applicaaterence to an ORBAC
policy. Our OpenMRS case study illustrates the practiatityubf the ORBAC model
and our type system in a realistic setting.

We have focused on a useful but restricted version of ORBA®TSs odel can be
naturally extended to support a more expressive policydagg. Our current JavaCop-
based implementation could be enhanced to support rolécated as arbitrary propo-
sitional formulas as well as multiple parameters per robeh lof which are in our for-
malization. Useful extensions to the type system presdrgeslinclude the addition of
a partial order on roles, a richer constraint language fdexvalues, and static tracking
of the temporal order of privileged operations. Finally,wm@uld like to investigate both
local and global type inference of object-sensitive roles.
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