Skip to main content

Learning Sparse Representations Using a Parametric Cauchy Density

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5507))

Included in the following conference series:

  • 1545 Accesses

Abstract

For extracting sparse structures in images adaptively, the prior probabilities over the coefficients are modeled with a flexible parametric Cauchy density, which can describe a class of super-Gaussian distributions by varying the steepness and the scale parameters in the density function. The derivatives of the sparseness cost function are continuous at each point of its domain, which is convenient for gradient techniques based learning algorithms, and may provide a better approximation of the volume contribution from the prior. The performance of the flexible prior is demonstrated on a set of natural images.

Supported by the Science Foundation of Nanjing University of Information Science and Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olshausen, B.A.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  2. Olshausen, B.A.: Principles of image representation in visual cortex. Vis. Neurosci., 1603–1615 (2003)

    Google Scholar 

  3. Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: “Receptive field organization of complex cells in the cat’s striate cortex”. J. Physiol. 283(1), 79–99 (1978)

    Article  Google Scholar 

  4. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  5. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88(1), 455–463 (2002)

    Google Scholar 

  6. Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  7. Bell, A.J., Sejnowski, T.J.: The ‘independent components’ of natural scenes are edge filters. Vis. Res. 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  8. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1. Vis. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  9. Lewicki, M.S., Sejnowski, T.J.: Learning Overcomplete Representations. Neurocomput. 2(12), 337–365 (2000)

    Google Scholar 

  10. Doi, E., Lewicki, M.S.: Sparse coding of natural images using an overcomplete set of limited capacity units. In: Proc. NIPS 2005, Vancouver, Canada, vol. 17, pp. 377–384. MIT Press, Cambridge (2005)

    Google Scholar 

  11. Bromiley, P.A., et al.: Bayesian and non-Bayesian probabilistic models for medical image analysis. Image Vis. Comput. 21(10), 851–864 (2003)

    Article  Google Scholar 

  12. Buccigrossi, R.W., Simoncelli, E.P.: Image compression via joint statistical characterization in the wavelet domain. IEEE Trans. Image Process. 8(12), 1688–1701 (1999)

    Article  Google Scholar 

  13. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  14. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  15. Lewicki, M.S., Olshausen, B.A.: Probabilistic framework for the adaptation and comparison of image codes. J. Opt. Soc. Am. A 16(7), 1587–1601 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, LZ. (2009). Learning Sparse Representations Using a Parametric Cauchy Density. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_121

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03040-6_121

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03039-0

  • Online ISBN: 978-3-642-03040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics