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Abstract. This paper describes the design automation issues and techniques used to design a 
massively parallel processing platform – SpiNNaker – from a hardware and systems design 
perspective. The emphasis of this paper is addressing the key problem of resource mapping, 
where multiple threaded programs are to be targeted onto a hardware platform that consists of 
multiple ARM cores and other resources such as memory and networks. In addition, the design 
environment is considered to ensure that a designer can program applications onto this 
environment in a practical manner. 

1   Introduction 

SpiNNaker is a massively parallel multi-core computing engine, consisting of a 
vast array of ARM cores and a fast interconnect fabric. Although strictly a clocked 
system, each ARM core is effectively decoupled from its peers, and individual 
processors communicate with each other by means of packets; a packet incident upon 
a processor causes an interrupt which handles the packet. The system has been 
designed to support the real-time simulation of large aggregates of spiking neurones. 
The development strategy is coarsely incremental, but the final goal is to be able to 
simulate aggregates of a billion neurones, where each of a million processors is 
supporting the emulation of a thousand neurones. 

 Various aspects of the system (physical architecture and interconnect fabric, 
neural and synaptic models) have been described in detail elsewhere [1-3]. The 
overall structure of the system is shown in figure 1. This paper describes some of the 
problems associated with mapping the abstract neural connection topology (which 
may, but is not required to be, three dimensional) onto a physical two dimensional 
array of processors. The requirements are highly analogous to the automated place 
and route (APR) problem experienced in chip design, and the evolution of those 
problems almost identical. In the world of IC design, components representing the 
realisation of a circuit (transistors, resistors, vias and so on) have to be laid out on a 
two dimensional silicon die, and then the geometry of the interconnect defined. In the 
early days of IC design, this could be done by hand, but as the size and complexity of 
systems grew, design automation - initially a luxury - became a necessity. Today, it is 
simply not possible to lay out a state-of-the-art IC (5mm x 5mm die, feature size 
O(100nm)) by hand. So it is with SpiNNaker: the neural systems we wish to simulate 
are vast topologies of interconnected neurones, which have to be mapped onto our 
array of processors. The situation is actually worse than in the electronic counterpart: 



in electronic designs, design automation tools and techniques capitalise heavily on a 
hierarchical input description, an advantage that is largely denied us in the current 
problem domain. This paper describes the development strategy for a suite of APR 
tools designed to be used to load the SpiNNaker data structures with large (O(109)) 
interconnected neurones. 

 
II. THE HARDWARE PLATFORM 

 
A. The chip 
 The internal architecture of the SpiNNaker chip is depicted in figure 1. Each 

chip contains 20 ARM processors (with a small amount of local memory in a Harvard 
configuration) and 6 bi-directional inter-chip link ports. These are interconnected by 
an on-chip network. External interfaces are also provided to a single bank of chip-

local DRAM and 
Ethernet. 

 
 The chips 

themselves are 
connected (via the 
inter-chip link ports) 
in a hexagonal mesh, 
mapped onto the 
surface of a toroid. 
This conveniently 
avoids edge effects, 
although it requires 
that the notion of 
geometric hop 
distance be handled 
rather carefully. 
However, this 
particular design 
decision is one of the 
more easily 
overturned: The 

economics of getting silicon right first time are significantly different to changing the 
inter-chip layout on a PCB. 

 Neurones are mapped statically onto an individual ARM processor, and the 
internal state of the neurones mapped onto each die is held in the associated DRAM. 
When a spike arrives at a processor, it fetches the state of the relevant neurone from 
the DRAM, processes the incoming spike, updates the state of the neurone in the 
DRAM and may broadcast spikes of its own. 

 
B. Neural events (spikes) 
 Spikes are embodied by a 32-bit packet, a technique known as Address Event 

Representation (AER). When a neurone spikes, the spike is a pure asynchronous 
'event': all of the information is conveyed solely in the time of the spike and the 



identity of the neurone that emitted the spike. In a real-time system time models itself 
(possibly with a scaling factor, but we normally assume no scaling), so in an AER 
system the identity ('address') of a neurone that spikes is simply broadcast at the time 
that it spikes to all neurones to which the spiking neurone connects. 

 In SpiNNaker AER is implemented using packet-switched communication 
and multicast routing. Although the communication system introduces some temporal 
latency, provided this is small compared with biological time constants (which in 
practice means provided it is well under 1ms) then the error introduced by this latency 
is negligible. 

 
III. PLACE AND ROUTE 

 
A. A traditional methodology 
 Real circuits, though they may have hugely different functionalities, are all 

remarkably similar from a purely topological perspective. Most logic elements have a 
handful of inputs; most nets are connected to very few components, but a very few 
nets will be massively connected. As the general place and route problem is NP-
complete, APR tools today all use heuristics to deliver the results. Whilst these are 
very powerful, and have been honed over several decades of use and development, a 
heuristic wins because it capitalises on the statistical properties of its input dataset. If 
you change the nature of the presented problem, the efficacy of a given algorithm 
must be viewed with some caution. However, there exists a vast and mature body of 
work in this area, and it would be foolish not to utilise it. The APR problem is 
conventionally broken down into the sub-problems of placement, global and detailed 
routing.  

 
1. Placement 
 Placement (in the context of SpiNNaker) involves choosing a mapping 

between the neurones of the abstract topological circuit and the fixed geometry of the 
processor array. This placement is only weakly influenced by the properties of the 
interconnect. Two broad classes of placement algorithms exist: iterative and 
constructive. Iterative systems operate by starting with a very crude, computationally 
cheap (often both random and unrealizable), and improving upon it in an incremental 
fashion. Many different convergence criteria have been studied. 

Force-directed placement (iterative)[4] considers the neurones (modules) as point 
masses, and the interconnect as springs, of weighted force constant. The system is 
allowed to relax to a configuration of minimum energy. This algorithm can be made 
extremely fast; although it is derived from the laws of physics, there is, of course, no 
necessity to abide by them if it is computationally inconvenient. 

Simulated annealing (iterative)[5] also attempts to minimise the overall 'energy' of 
a system, by a sequence of random perturbations, the probability of acceptance of 
each depending on the improvement wrought as a consequence. 

 
2. Routing 
 The routing problem is concerned with finding a route between a set of 

points, round a set of obstructions (placed modules) on a two-dimensional plane. The 



routing problem is generally decomposed into global and detailed routing, the 
difference being the granularity of the analysis.  

Routing algorithms are even more diverse and numerous than placement, and offer 
the usual spectrum of reliability and quality-of-solution vs. speed. One of the earliest - 
and possibly most versatile - is a graph-searching algorithm, known as Lees' maze-
runner[6]. The algorithm can be used at arbitrary levels of granularity, and is 
guaranteed to find a solution for a given single route if it exists. On the other hand, it 
is relatively slow, and the overall success in finding a solution for a set of routes is not 
guaranteed. Numerous enhancements to reduce memory footprint and runtime exist, 
but the algorithm in its simplest form is widely applicable to all manner of graph-
searching problems. 

 
B. SpiNNaker-specific issues 
 The APR problem in the context of the SpiNNaker system may be 

summarized by figure 2: a fragment of circuitry, comprising six neurones, is to be 
mapped onto the fixed array of processing nodes. Each node can accommodate 
around 1000 neurones. Having decided upon this mapping, the routes (the sequences 
of nodes between source and target) must be established, and the routing tables 
defined in each node. What is different about the SpiNNaker context? 

 
1. Data size 
 Conventional processing speeds have increased by many orders of magnitude 

over the past few decades, but even this is not enough to overcome polynomial 
complexity in an algorithm when the input datasets become large. APR of electronic 
circuits containing a billion components is feasible today in reasonable timescales, but 
these circuit descriptions are highly hierarchical, the decomposition being determined 
and fixed by human input. 

The discussion of where we actually 
get (meaningful) circuits of a billion 
neurones has yet to be published, but 
irrespective of whether these circuits are 
generated semi-automatically or 
stochastically generated, the APR task 
will be formidable. 

 
� 32 bit machines can only address four 

billion memory locations; it will not 
be possible to even hold (let alone 
process) the entire datastructure at 
one time in an APR machine. 

 
� Even O(n3) algorithms - generally 

considered to be acceptable for APR 
problems - will be unusable. 

 
 The unavoidable outcome of 

these points is that aggressive 



hierarchical decomposition of the neural aggregate descriptions is an absolute 
necessity. 

 
2. Chip level topology 
 The SpiNNaker chips have been designed with six bidirectional I/O ports 

each, lending themselves naturally to a hexagonal placement on a two-dimensional 
plane. Six links were chosen to support a measure of fault tolerance in the final 
system, by providing a simple triangular bypass to each link if one fails. Identifying 
opposing edges of the array of chips folds the system naturally onto a toroid. 

 Point-to-point packet routing only requires routing table entries in certain 
nodes. Consider figure 3: a packet is to be sent from node S to node T; the route has 
been chosen to be S-1-2-3-4-T. The only nodes that require a routing table entry are S 
(this is from me), 2 (turn a corner) and T (this is for me). Packets incident on nodes 
with no corresponding routing table entry are simply passed through in a 'straight line' 

- the default route. 
 

It is necessary to define some 
terminology before going further: A 
fascicle is the collective noun for a set 
of neurones. Other than to note that no 
neurone can be a member of more than 
one fascicle, the term defines nothing 
about any connectivity. There is an 
implication (and an efficiency 
assumption) that the neurones in a 
fascicle share common input fascicles 
(probably sparsely connected) and 
common output target fascicles (again, 
probably sparsely connected). There is 
no implication that they are 
interconnected with each other, though 

they can be (or not). However, none of this is required - it just makes the 
datastructure packing more efficient if it holds. 

  
C. The framework 
A Fascicle Processor is a single physical ARM core on a SpiNNaker chip. It may 

be host to zero, one or more fascicles in the simulation process. The intention is that 
of the n ARM cores on a chip, n-1 will be Fascicle Processors. (The other ARM will 
be used for housekeeping functions.) 

 The overall APR structure is fairly conservative, and outlined in figure 4. It 
is a heuristic; the size of the datasets makes iteration a very expensive operation, and 
so the design intention is that a neural circuit will pass through the design flow only 
once. Feedback of any kind is to be avoided, but if this is not possible, the feedback 
loops have been arranged in order of computational expense: 

fb1: Should never be necessary anyway. 
fb2: Is cheap and may never even be necessary - see later. 
fb3: Is cheap, but the usefulness is dubious. 



fb4: The Loop of Last Resort: expensive, but allows the system to expand onto 
unused SpiNNaker chip sites if any exist. 

 
1. Neurone to fascicle mapping 
 Here we take the input neurone circuit (figure 2, for example), and partition 

it between the Fascicle Processors. In outline, the algorithm - based on the Kernighan-
Lin partitioning scheme[7] - is as follows: 

 
1. The input graph G is bisected randomly (in terms of synapse count) into two 

subgraphs, A and B. (These are potential fascicles - we note that, in general, each 
will be far too big to fit into a single SDRAM, certainly for the first few 
recursion levels of the algorithm). 

2. Define some size limit, h, corresponding to the approximate capacity of a 
Fascicle Processor. 

3. Find the neurone (in A or B) that (a) is unflagged, and (b) that would make the 
biggest improvement (which may, 
actually, be the smallest 
degradation) to the penalty function 
d() if it were to be moved to the 
opposite subgraph. 

 If Δd() is an improvement, and 
does not violate the fascicle size 
limit h, then {move it and flag it, 
return to the start of step 3} 

 // Only here if the best Δd() is 
actually a degradation 

 If it was the first attempt (i.e. no 
neurones are flagged) then stop, 
else clear flags and return to the 
start of step 3. 

4. Recursively apply step 3, replacing 
G with A and B at each level. The 
size of G will (approximately) halve 
at each recursion level; a recursive 
branch can terminate when h < 
SDRAM size (i.e. we have created 
a fascicle that will fit into a node 
SDRAM). 

 
The nature of the penalty function, 

d(), is worthy of some comment. In the 
traditional (electronic) context, it will 
represent the number of interconnects 
that cross the subgraph partition (i.e. 
pass between A and B). Here, however, 
because of the way the data is packed 
into the SDRAM, we are not attempting 



to minimise the cut interconnects, we are attempting to even out the density of 
fascicle-fascicle interconnect. In essence, we look at each neurone in turn (subject to 
the restrictions in step 3 above), and see what effect would be had on the cut-line 
count if it were to be moved to the opposing subgraph. The neurone that is chosen is 
the one that minimises the total standard deviation of the cut-line counts. 

2. SDRAM data 
 The output from the algorithm of the previous section is a set of bitmaps, 

which represent the connectivity of the neural circuitry, plus the state. These are 
loaded into the SDRAM of figure 1. 

3. Fascicle to fascicle processor mapping 
 Having partitioned the neural network into fascicles, it is now necessary to 

map these onto the individual fascicle processors, as in figure 2. The partitioning 
achieved by the last algorithm simply divided the neural aggregate up into fascicles, 
but the attributes of geometric position were not assigned to the neurones. This is 
done using a combination of Lees algorithm and force-directed placement. 

 The force-directed algorithm is ideal for this; it has approximately linear 
complexity and delivers an acceptable 
placement extremely quickly  

4. Routing geometry 
 The derivation of the individual 

packet trajectories over the system is simple. 
For a given point-to-point route, there will 
be a maximum of six 'shortest' routes (recall 
that the toroidal layout has no edges) and an 
arbitrary number of longer possibilities. The 
only real selection criterion here is the 
capacity of the routing tables at the 
inflection nodes. Each route is examined in 
turn, and that with the lowest line integral of 
routing table occupancy chosen[8]. Thus the 
interconnect route density is kept as even as 
possible over the routing surface. 

5. Routing tables 
 The final step in the process of 

loading the SpiNNaker ensemble is the 
generation of the data to be contained in the 
routing tables. The structure of the routing 
table hardware is outlined in figure 5. The 
32-bit source key is input to a 1024 x 32 bit 
tristate CAM. As it is a tristate (0, 1, X) 
CAM, in general, multiple hits will be both 
possible and common. These hits are written 
to a 1024 x 1 bit hit register. All but the 
most significant single bit in this register are 
discarded, and this single remaining bit 

treated as a 1024 bit 1-hot and passed into an address encoder. This generates a 10 bit 
binary equivalent, which drives a 1024 x 26 bit lookup RAM. The 26 bit word so 



generated consists of a 6-bit nibble and a 20-bit nibble. The 6-bit nibble represents an 
n-hot external link indicator (0-5) to which the packet is forwarded (for example 
010110 would cause the packet to be routed to external links 1, 2 and 4). The 20-bit 
nibble represents an n-hot internal Fascicle Processor address (0-19) to which the 
packet will be forwarded, triggering an interrupt as it arrives. (For example, 
00001000100100000000 will cause packets to go to Fascicle Processors 8, 11 and 15 
on the current chip. It is easy to see how packets may be duplicated by this 
mechanism. The 1024 x 32 bit tristate CAM is implemented as a 1024 x 32 bit binary 
CAM and a 1024 x 32 bit binary RAM. The RAM simply holds a bit mask indicating 
the position of the "don't cares" in the CAM. The corresponding bits in the CAM will 
actually be '0' or '1', but will never be read.  

 
IV FINAL REMARKS 

 The design, development and realisation of a customised APR tool suite for 
the SpiNNaker system is a significant undertaking, requiring resources comparable to 
that of the hardware design. Like the hardware, the system is not yet complete, 
although the hope and intention is that the alpha release will coincide with the 
delivery of the prototype silicon. 

 The detailed design and development of the SpiNNaker hardware is an 
extremely complicated piece of electronic design, and this naturally makes heavy use 
of EDA tool suites. A simulation model of the chip has been built, but unfortunately 
(perhaps not unsurprisingly) this is unable to cope with the simulation of neural 
systems of any realistic size or complexity. It should be noted, however, that the 
datastructures required to support a bespoke behavioural simulator are all present in 
the tools described here; the addition of a behavioural simulation capability is not 
seen as a vast undertaking. 
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