Skip to main content

Modeling and Prediction of Nonlinear EEG Signal Using Local SVM Method

  • Conference paper
  • 1570 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5507))

Abstract

Electroencephalogram (EEG) is widely regarded as chaotic signal. Modeling and prediction of EEG signals is important for many applications. The method using support vectors machine (SVM) based on the structure risk minimization provides us an effective way of learning machine. The performance of SVM is much better than the traditional learning machine. Now the SVM is used in classification and regression. But solving the quadratic programming problem for training SVM becomes a bottle-neck of using SVM because of the long time of SVM training. In this paper, a local-SVM method is proposed for predicting the signals. The local method is presented for improving the speed of the prediction of EEG signals. The simulation results show that the training of the local-SVM obtains a good behavior. In addition, the local SVM method significantly improves the prediction precision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lasemidis, L.D., Sackellares, J.C.: Chaos Theory and Eilepsy. The Neuroscientist 2, 118–126 (1996)

    Article  Google Scholar 

  2. Lin, X.B., Qiu, T.S.: EEG Signal Analysis and Processing based on Prediction of Epileptic Seizures and Research Progress. Biomedical Engineering Foreign Medica1 Sciences 27, 9–12 (2004) (in Chinese)

    Google Scholar 

  3. Takens, F.: Dynamical Systems and Turbulence. Spring Verlag, Berlin (1981)

    MATH  Google Scholar 

  4. Kaneko, K.: Pattern Dynamic in Spatiotemporal Chaos. Phisica D 34, 1–44 (1989)

    Article  MATH  Google Scholar 

  5. Leung, H., Haykin, S.: Detection and Estimation using an Adaptive Rational Function Filter. IEEE Trans. Signal Processing 42(11), 3366–3376 (1994)

    Article  Google Scholar 

  6. Leung, H.: Nonlinear Clutter Cancellation and Detection using a Memory-based Predictor. IEEE Trans. Aerosp. Electron. System. 32(4), 1249–1256 (1996)

    Article  Google Scholar 

  7. Lo, J.T.: Synthetic Approach to Optimal Filtering. IEEE Trans. Neural Network. 5(5), 803–811 (1994)

    Article  Google Scholar 

  8. Vapink, V.P.: The Nature of Statistical Learning Theory. Springer, NewYork (1995)

    Book  Google Scholar 

  9. Smola, A.J., Scholkopf, B.: A Tutorial on Support Vector Regression. Statistics and Computing 14, 199–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  11. Zhang, J.S., Dang, J.J., Li, H.C.: Spatiotemporal Chaos Sequence Prediction using Local Support Vector Machine. Acra Physica Sinca 56, 67–77 (2007) (in Chinese)

    MATH  Google Scholar 

  12. Colin, C.: Algorithmic Approaches to Training Support Vector Machines: A Survey. In: Proceedings of ESANN 2000, pp. 27–36. D-Facto Publications, Belgium (2000)

    Google Scholar 

  13. Joachims, T.: Making large Scale SVM Learning Practical. In: Advances in Kernel Methods: Upport Vector Machines. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Platt, J.C.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Keerthi, S., Shevade, S., Bhattcharyya, C., et al.: Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  16. Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neural Processing Letters 9, 293–300 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, L., Lin, L., Lin, C. (2009). Modeling and Prediction of Nonlinear EEG Signal Using Local SVM Method. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03040-6_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03039-0

  • Online ISBN: 978-3-642-03040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics