
M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 437–444, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Suitability of Using Self-Organizing Neural Networks in
Configuring P-System Communications Architectures

Abraham Gutiérrez, Soledad Delgado, and Luis Fernández

Natural Computing Group - Universidad Politécnica de Madrid
Carretera de Valencia Km. 7, Madrid - 28031, Spain
{abraham,sole,setillo}@eui.upm.es

Abstract. Nowadays, it is possible to find out different viable architectures that
implements P Systems in a distributed cluster of processors. These proposed
architectures have reached a certain compromise between the massively paral-
lelism character of the system and the evolution step times. They are based in
the distribution of several membranes in each processor, the use of proxies to
control the communication between membranes and mainly, the suitable distri-
bution of the architecture in a balanced tree of processors. For a given P-system
and K processors, there exists a great volume of possible distributions of
membranes over these. The main disadvantage related with these architectures
is focused in the selection of the distribution of membranes that minimizes the
external communications between them and maximizes the parallelism grade.
In this paper, we suggest the use of Self-Organizing Neural Networks (SONN)
with growing capability to help in this selection process for a given P-system.

1 Introduction

Possibilities offered by Natural Computation and, specifically P-Systems, for solving
NP-problems, have made researchers concentrate their work towards HW and SW
implementations of this new computational model. Transition P-Systems were intro-
duced by Păun [1], and were inspired by "basic features of biological membranes".
One membrane defines a region where there are a series of chemical components
(multisets) that are able to go through chemical reactions (evolution rules) to produce
other elements. Inside the region delimited by a membrane can be placed other mem-
branes defining a complex hierarchical structure that can be represented as a tree.
Generated products by chemical reactions can remain in the same region or can go to
another region crossing a membrane.

A P-System is a computational device which is an abstract representation of a par-
ticular membrane structure. Each region is populated by a multiset of symbols. These
multisets are materialized as strings of symbols. In addition, each region is associated
with a set of rewriting rules. These rules are applied to the multisets (strings of sym-
bols) of certain compartments and, consequently, change the system’s configuration.
The system configurations are determined by the membrane structure and multisets
present inside membranes. The rules are applied simultaneously by observing the so-
called maximal parallelism principle, that is the rules are selected in such a way that
only “optimal” output is yielded. When it is not possible to apply any rule, the

438 A. Gutiérrez, S. Delgado, and L. Fernández

P-System halts. A designated compartment, called the output compartment, contains
the output of the computation, which is equal to the cardinality of the multiset con-
tained in it.

In the formal Transition P-Systems model can be distinguished two phases in each
evolution step: rules application and communication. Once application rules phase is
finished, then it begins communication phase, where those generated multisets travel
through membranes towards their destination in case it is another region. These sys-
tems carry out computations through transitions between two consecutive configura-
tions, what turn them into a computational model with the same capabilities as Turing
machines.

Power of this model lies in the fact that the evolution process is massively parallel
in application rules phases as well as in communication phase. The challenge for
researchers is to achieve hardware and/or software implementations of P systems
respecting the massively parallelism in both phases.

Nowadays, it is possible to find out at least three different viable architectures that
implements P Systems in a distributed cluster of processors: P2P [2], Hierarchical
P2P [3] and Master-Slave [4]. These proposed architectures have reached a certain
compromise between the massively parallelism character of the system and evolution
step times. In particular, they have focused in the second phase of an evolution step
and have obtained good results in the throughput in the external communication
among processors and parallelization levels of the system. These architectures are
based in the distribution of several membranes in each processor, the use of proxies to
control the communication between membranes and mainly, the suitable distribution
of the architecture in a balanced tree of processors. These solutions avoid communica-
tion collisions, and reduce the number and length for communication among mem-
branes. All this facts allows obtaining a better step evolution time than in others sug-
gested architectures congested quickly by the network collisions when the number of
membranes grows. The main disadvantage related with these architectures is the great
volume of possible combinations of membrane distributions over a number of proces-
sors that can vary from one to the number of membranes. If one processor is used, all
of membranes run in the same processor, so external communications is reduced to
zero but parallelization level disappears (all internal communications are sequential).
On the other side, if each membrane runs in one processor, the better parallelization
level is obtained but the increase of external communication produces network con-
gestion and the worst evolution step times. The best solution is the balanced one
where internal and external communications remain equilibrated.

In this paper, we suggest the use of Self-Organizing Neural Networks (SONN)
with growing capability, based in Fritzke work [5], to help in the search and selection
of the balanced distribution for a given P-system, with the purpose of obtaining as a
final objective the reduction of the run times of each step of evolution in this P
System.

2 P System Communication Architectures

The viable architectures that implements P Systems in a distributed cluster of proces-
sors are based on the following:

 Suitability of Using SONN in Configuring P-System Communications Architectures 439

Membranes distribution: In each processor, K membranes are located that will
evolve, at worst, sequentially. The value of K is determined by the relation between
the number of membranes M and processors P, where K ≥ 1. The benefit obtained is
that the number of the external communications decreases. The total number of com-
munications splits in two classes: a group of internal communications for pairs of
membranes located in the same processor and another group of external communica-
tions to interchange information among pairs of membranes located in different proc-
essors. Therefore, the number of external communications against the previous model
will always be smaller. Moreover, this is an important fact because the run time to
carry out the internal communications will be negligible.

For example, the 22 external communications performed by an architecture with a
membrane located in each processor (figure 1.a) have been reduced to 10 in the archi-
tecture that has located 3 membranes in 4 processors (Figure 1.b).

 (a) (b)

Fig. 1. (a) P system communications. (b) Communications with membranes distribution.

Proxy for processor: When a membrane wants to communicate with another one
located at a different processor, the first one uses a proxy (programs or device located
in the processor that carries out an action in representation of another), instead of
doing it directly. Therefore, the communications that use the common line (external
communications to the processor) are carried out between proxies, not between mem-
branes. This intermediate element located between the bus and the membranes con-
centrates the information in two stages:

a) N multisets of N membranes located in a processor that has a common father
membrane in another processor, becoming integrated in a single multiset that
is the one that will be sent.

b) The S communication packet of L length necessary to communicate between
S pairs of membranes located in 2 different processors are reduced to one
single packet of S.L length.

The benefit of using proxies in the communication among membranes against di-
rect communication is double:

a) Due to the first stage previously described, the amount of information sent is
smaller. This is produced by the fact that the N packet necessary to communi-
cate N membranes with the same father, are transformed into a single packet of
the length of a single multiset.

440 A. Gutiérrez, S. Delgado, and L. Fernández

b) Due to the second stage, the number of external communications is smaller al-
though packets are bigger. But, considering that the communication protocols
penalize the transmission of small packets because to the data encapsulated
processes and to the time safety intervals between future transmissions, it is
better to send one packet of length equal S.L than S packets of length equal L.

Figure 2.a shows that if proxies are introduced in the processors, then the number
of external communications is reduced to 8.

Tree topology of processors: In graph theory it is established that P −1 connections
is the minimum number required to interconnect a connected graph of P processors.
This restriction imposes on the graph a tree topology. The benefit obtained with the
tree topology of processor is that it minimizes the total number of external communi-
cations made as the proxies interchange information only with its direct predecessor
and its direct successors, and therefore the total number of external communications
in each evolution step is 2(P − 1).

Figure 2.b shows that external communications are reduced to 6 when a tree topol-
ogy of processors is used to connect them.

 (a) (b)

Fig. 2. (a) Communications with a proxy for processor. (b) Communications using a tree
topology.

3 Fritzke’s Self-Organizing Neural Networks (SONN)

Self-Organizing Map (SOM) is an artificial neural network model with competitive
and unsupervised training. SOM network has two main characteristics: it makes pos-
sible obtaining a simplified model of the training data (normally high-dimensional)
and it has the capacity to project them on a two dimensional map that shows the exist-
ing relations among them. In 1982, Kohonen [5] proposed first model of SOM, where
the complete network structure had to be specified in advance and remained static
during all the training process. When Kohonen’s SOM is used, the choice of inappro-
priate parameters to define the architecture can degrade the posterior performance of
the network. In 1994, B. Fritzke [6] proposed a SOM model called Growing Cell
Structure (GCS) where this static structure limitation was eliminated. In addition, the
flexibility that offers the possibility of inserting and removing neurons on the output
layer of the network during the training phase causes that the GCS network receives

 Suitability of Using SONN in Configuring P-System Communications Architectures 441

better value associated to the topology preserving term, understanding this like the
grade that defines the quality of the simplified model that the network represents.
There exist other models of SOM networks that usually offer better topology preserv-
ing grades than GCS, as GNG[7] and ESOM[8], where there no exist so strict
structural organization of the output layer. Nevertheless, this feature causes that they
cannot be used directly to generate two-dimensional graphs to show the relations of
the input patterns, being necessary using dimension reduction algorithms (like
Sammon’s projection) to visualize the prototype nodes and their relations. With the
purpose of exploiting this characteristic when the input patterns present more than
two dimensions we decided to use GCS model.

GCS is a two-layer architecture network (Fig 3). Neurons located at the input layer
are fully connected with those in the output one. These connections have associated a
weight, wij, where i identify the input neuron and j the output one. There exist as
many input neurons as dimension has the input vectors. Neurons in the output layer
have neighbor connections between them presenting a topology formed by groups of
basic k-dimensional hyper-tetrahedrons structures. In order to facilitate the visualiza-
tion of the output layer, in this work a value of k=2 has been used, so output units are
connected forming triangle groups.

Every output c unit has an n-dimensional synaptic vector wc = (w1c, …, wnc) associ-
ated. This vector can be seen as the position of c in the input vector space. Each time
a new input pattern e = (e1, …, en) is processed, only one output neuron is activated,
called the best matching unit (bmu), that is the one with the synaptic vector that
matches best with the input pattern. Formally:
 .minarg cbmu weS −= (1)

Thereby ǁ·ǁ denotes the Euclidean vector norm. By this the input vector space is
partitioned into a set of regions, each consisting of the locations having a common
nearest synaptic vector. This way, the set of all synaptic vectors of the output layer
can be seen as a simplified model of the input vector space.

The training phase in GCS network adapts synaptic vectors looking for that each
output neuron represents a group of similar input patterns. At the beginning of the
training phase the output layer of the network has only three neurons interconnected
via neighbor relations (k=2). During the training process a set of input patterns is
presented to the network iteratively. In each adaptation step an input pattern is proc-
essed, the bmu is calculated and its synaptic vector and its topological neighbor’s
synaptic vectors are modified using equations 1 and 2 respectively (where εb > εn).

() .
bmu

webbmuw −=Δ ε (2)

() .) ofneigbor all(for bmuc
c

wencw −=Δ ε (3)

After a fixed number of adaptation steps a new output unit is inserted and is con-
nected to other cells in such a way that the triangular groups of neighbor units are
guaranteed. The place where new unit is inserted is determined using two different
criteria: “looking for the unknown probability distribution of the input patterns”
(LUPD) or “looking for equalize accumulated error measure” (LEAE) [6]. Periodi-
cally superfluous neurons are removed in order to obtain better results when input

442 A. Gutiérrez, S. Delgado, and L. Fernández

Fig. 3. GCS network topology with k=2, N input neurons and 5 output units that exhibit
neighbors connections in groups of figures of triangles

space consists of several separate regions of positive probability density. An output
neuron can be considered superfluous if it has a synaptic vector in a region with very
low probability density (a region without any training pattern). A constant threshold,
η, is used to eliminate those neurons with probability density below this value. The
removal process ensures the triangular architecture of the output layer, but the output
neighbor mesh can results broken in several sub-meshes. In this work the modifica-
tion of the GCS training algorithm proposed in [9] has been used in order to achieve a
better interpretation of the removal parameters.

In a trained network the output layer map can be seen as a projection of the input
vector space in a bi-dimensional plane that exhibits the relations of the input patterns.
Printing the output layer map data inherent knowledge can be discovered.

4 Experiments and Results

To test the system we have selected thirty P-System models generally used in the
literature of P-System. Different membrane distributions between different number of
processors have been generated for every P-System, observing how the resulting com-
munications of the distribution affect to the parallelization grade. For each data set asso-
ciated to a concrete P-System diverse GCS networks have trained with the intention of
visualize the output layer and establish the optimal distribution, which will be the one
that balances the degrees of external communications and parallelization.

For space reasons in this section only the results of one of the multiple GCS trained
networks is showed, in particular the one trained with the P-System of the fig. 1.a,
with distributions that uses four processors. First of all, 15 feasible combinations of
12 membranes have been generated in 4 processors that have resulted in 180
bi-dimensional labeled vectors. Each vector maintains the volume of internal and
external communications for a concrete membrane-processor-distribution and it has
associate a label that identifies these three elements. With this patterns a GCS net-
work has been trained, with LEAE insertion criterion, εb = 0.06, εn = 0.002, µ =0.006,
and concluding when at least 6 isolated clusters of output units are obtained. After the
training phase the output units of the network has been marked with the union of the
labels of all those input patterns that fall inside its Voronoi region. Figure 4 shows the
scattergram of this GCS network, where the position of each output unit is determined
by the two components of its synaptic vector. X-axis coordinates indicates the internal

 Suitability of Using SONN in Configuring P-System Communications Architectures 443

Fig. 4. Left: Scattergram of a GCS network. Points represent neurons and lines between them
neighbor connections. Units are grouped in bad, medium and good classes on the basis of the
external communication degree. Right: Distribution of membranes C13.

degree of communications and Y-axis the external one. We have grouped the neurons
into three classes: bad (from 1 to 11), medium (from 14 to 18) and good (from 19 to
28). Within each of these three groups we have ordered neurons from highest to low-
est level of external communication and for those with a similar value, from highest to
lowest level of internal communication. Based on this information has been deter-
mined that the best distribution is the C13, that contains 1 bad neuron, 4 medium
neurons and 7 good neurons. Moreover, this distribution has one of the best ratios of
communication (with a volume of 183 for internal communications and 83 for exter-
nal communications).

5 Conclusions

GCS networks have demonstrated to be a useful tool to P-System in the searching of
membrane balanced distributions. Although the example that has been used to docu-
ment the methodology has a small volume of membranes, the feature of simplified
model associated to GCS networks allows working with high volumes of membranes
where the distribution possibilities go off.

The analysis of the information of a GCS network could be automated for feeding
a system of automatic membrane distribution over processors. In particular, this tool
is being adapted to be used in the distributed system of membranes based on micro-
controllers exposed in [10][11].

Given the good results obtained in the experiments, as future extensions the possi-
bility of working with vectors of greater dimension is considered, what will allow to
fit the search of suitable balanced P-System, for example generating a single vector
for each membrane distribution or working with fuzzy values for determining the

444 A. Gutiérrez, S. Delgado, and L. Fernández

degree of internal and external communications of a processor. This will require
working with new visualizations of the output layer of the GCS network, such as
those exposed in [12].

References

1. Păun, G.: Computing with membranes. Journal of Computer and System Sciences, 61
(2000), and Turku Center for Computer Science-TUCS Report No 208 (1998)

2. Tejedor, A., Fernandez, L., Arroyo, F., Bravo, G.: An architecture for attacking the bottle-
neck communication in P Systems. In: Sugisaka, M., Tanaka, H. (eds.) Proceedings of the
12th Int. Symposium on Artificial Life and Robotics, Beppu, Oita, Japan, pp. 500–505
(2007)

3. Bravo, G., Fernández, L., Arroyo, F., et al.: A hierarchical architecture with parallel com-
munication for implementing P-Systems. In: ITA 2007 Xth Joint International Scientific
Events on Informatics, Varna, Bulgaria (2007)

4. Bravo, G., Fernández, L., Arroyo, F., et al.: Master-Slave Distributed Architecture for
Membrane Systems Implementation. In: 8th WSEAS Int. Conf. on Evolutionary Comput-
ing (EC 2007), Vancouver, Canada (2007)

5. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biologi-
cal Cybernetics 4359–4369 (1982)

6. Fritzke, B.: Growing Cell Structures – A Self-organizing network for Unsupervised and
Supervised learning. Neural Networks 7(1), 1441–1460 (1994)

7. Fritzke, B.: A growing neural gas network learns topologies. Advances in neural informa-
tion processing systems 7, 625–632 (1995)

8. Deng, D., Kasabov, N.: On-line pattern analysis by evolving self-organising maps. Neuro-
computing 51, 87–103 (2003)

9. Delgado, S., Gonzalo, C., Martínez, E., Arquero, A.: Improvement of Self-Organizing
Maps with Growing Capability for Goodness Evaluation of Multispectral Training Pat-
terns. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 564–
567 (2004)

10. Gutiérrez, A., Fernández, L., Arroyo, F., Alonso, S.: Hardware and Software Architecture
for Implementing Membrane Systems: A Case of Study to Transition P Systems. In: Gar-
zon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 211–220. Springer, Heidel-
berg (2008)

11. Gutierrez, A., Fernández, L., Arroyo, F., Alonso, S.: Suitability of Using Microcontrollers
in Implementing new P System Communications Architectures. In: AROB 2008, XIII In-
ternational Symposium on Artificial Life and Robotics, Oita, JAPAN, January 31-February
2 (2008)

12. Delgado, S., Gonzalo, C., Martinez, E., Arquero, A.: Visualizing High-Dimensional Input
Data with Growing Self-Organizing Maps. In: Sandoval, F., Prieto, A.G., Cabestany, J.,
Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 580–587. Springer, Heidelberg
(2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

