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Abstract. Nowadays, it is possible to find out different viable architectures that 
implements P Systems in a distributed cluster of processors. These proposed  
architectures have reached a certain compromise between the massively paral-
lelism character of the system and the evolution step times. They are based in 
the distribution of several membranes in each processor, the use of proxies to 
control the communication between membranes and mainly, the suitable distri-
bution of the architecture in a balanced tree of processors. For a given P-system 
and K processors, there exists a great volume of possible distributions of  
membranes over these. The main disadvantage related with these architectures 
is focused in the selection of the distribution of membranes that minimizes the 
external communications between them and maximizes the parallelism grade. 
In this paper, we suggest the use of Self-Organizing Neural Networks (SONN) 
with growing capability to help in this selection process for a given P-system. 

1   Introduction 

Possibilities offered by Natural Computation and, specifically P-Systems, for solving 
NP-problems, have made researchers concentrate their work towards HW and SW 
implementations of this new computational model. Transition P-Systems were intro-
duced by Păun [1], and were inspired by "basic features of biological membranes". 
One membrane defines a region where there are a series of chemical components 
(multisets) that are able to go through chemical reactions (evolution rules) to produce 
other elements. Inside the region delimited by a membrane can be placed other mem-
branes defining a complex hierarchical structure that can be represented as a tree. 
Generated products by chemical reactions can remain in the same region or can go to 
another region crossing a membrane. 

A P-System is a computational device which is an abstract representation of a par-
ticular membrane structure. Each region is populated by a multiset of symbols. These 
multisets are materialized as strings of symbols. In addition, each region is associated 
with a set of rewriting rules. These rules are applied to the multisets (strings of sym-
bols) of certain compartments and, consequently, change the system’s configuration. 
The system configurations are determined by the membrane structure and multisets 
present inside membranes. The rules are applied simultaneously by observing the so-
called maximal parallelism principle, that is the rules are selected in such a way that 
only “optimal” output is yielded. When it is not possible to apply any rule, the  



438 A. Gutiérrez, S. Delgado, and L. Fernández 

P-System halts. A designated compartment, called the output compartment, contains 
the output of the computation, which is equal to the cardinality of the multiset con-
tained in it. 

In the formal Transition P-Systems model can be distinguished two phases in each 
evolution step: rules application and communication. Once application rules phase is 
finished, then it begins communication phase, where those generated multisets travel 
through membranes towards their destination in case it is another region. These sys-
tems carry out computations through transitions between two consecutive configura-
tions, what turn them into a computational model with the same capabilities as Turing 
machines. 

Power of this model lies in the fact that the evolution process is massively parallel 
in application rules phases as well as in communication phase. The challenge for 
researchers is to achieve hardware and/or software implementations of P systems 
respecting the massively parallelism in both phases.   

Nowadays, it is possible to find out at least three different viable architectures that 
implements P Systems in a distributed cluster of processors: P2P [2], Hierarchical 
P2P [3] and Master-Slave [4]. These proposed architectures have reached a certain 
compromise between the massively parallelism character of the system and evolution 
step times. In particular, they have focused in the second phase of an evolution step 
and have obtained good results in the throughput in the external communication 
among processors and parallelization levels of the system. These architectures are 
based in the distribution of several membranes in each processor, the use of proxies to 
control the communication between membranes and mainly, the suitable distribution 
of the architecture in a balanced tree of processors. These solutions avoid communica-
tion collisions, and reduce the number and length for communication among mem-
branes. All this facts allows obtaining a better step evolution time than in others sug-
gested architectures congested quickly by the network collisions when the number of 
membranes grows. The main disadvantage related with these architectures is the great 
volume of possible combinations of membrane distributions over a number of proces-
sors that can vary from one to the number of membranes. If one processor is used, all 
of membranes run in the same processor, so external communications is reduced to 
zero but parallelization level disappears (all internal communications are sequential). 
On the other side, if each membrane runs in one processor, the better parallelization 
level is obtained but the increase of external communication produces network con-
gestion and the worst evolution step times. The best solution is the balanced one 
where internal and external communications remain equilibrated. 

In this paper, we suggest the use of Self-Organizing Neural Networks (SONN) 
with growing capability, based in Fritzke work [5], to help in the search and selection 
of the balanced distribution for a given P-system, with the purpose of obtaining as a 
final objective the reduction of the run times of each step of evolution in this P  
System. 

2   P System Communication Architectures 

The viable architectures that implements P Systems in a distributed cluster of proces-
sors are based on the following:  
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Membranes distribution: In each processor, K membranes are located that will 
evolve, at worst, sequentially. The value of K is determined by the relation between 
the number of membranes M and processors P, where K ≥ 1. The benefit obtained is 
that the number of the external communications decreases. The total number of com-
munications splits in two classes: a group of internal communications for pairs of 
membranes located in the same processor and another group of external communica-
tions to interchange information among pairs of membranes located in different proc-
essors. Therefore, the number of external communications against the previous model 
will always be smaller. Moreover, this is an important fact because the run time to 
carry out the internal communications will be negligible.  

For example, the 22 external communications performed by an architecture with a 
membrane located in each processor (figure 1.a) have been reduced to 10 in the archi-
tecture that has located 3 membranes in 4 processors (Figure 1.b). 

                                         (a)                                                                     (b)  

Fig. 1. (a) P system communications. (b) Communications with membranes distribution. 

Proxy for processor: When a membrane wants to communicate with another one 
located at a different processor, the first one uses a proxy (programs or device located 
in the processor that carries out an action in representation of another), instead of 
doing it directly. Therefore, the communications that use the common line (external 
communications to the processor) are carried out between proxies, not between mem-
branes. This intermediate element located between the bus and the membranes con-
centrates the information in two stages: 

a) N multisets of N membranes located in a processor that has a common father 
membrane in another processor, becoming integrated in a single multiset that 
is the one that will be sent.  

b) The S communication packet of L length necessary to communicate between 
S pairs of membranes located in 2 different processors are reduced to one 
single packet of S.L length. 

The benefit of using proxies in the communication among membranes against di-
rect communication is double: 

a) Due to the first stage previously described, the amount of information sent is 
smaller. This is produced by the fact that the N packet necessary to communi-
cate N membranes with the same father, are transformed into a single packet of 
the length of a single multiset. 
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b) Due to the second stage, the number of external communications is smaller al-
though packets are bigger. But, considering that the communication protocols 
penalize the transmission of small packets because to the data encapsulated 
processes and to the time safety intervals between future transmissions, it is 
better to send one packet of length equal S.L than S packets of length equal L. 

Figure 2.a shows that if proxies are introduced in the processors, then the number 
of external communications is reduced to 8. 

 
Tree topology of processors: In graph theory it is established that P −1 connections 
is the minimum number required to interconnect a connected graph of P processors. 
This restriction imposes on the graph a tree topology. The benefit obtained with the 
tree topology of processor is that it minimizes the total number of external communi-
cations made as the proxies interchange information only with its direct predecessor 
and its direct successors, and therefore the total number of external communications 
in each evolution step is 2(P − 1).  

Figure 2.b shows that external communications are reduced to 6 when a tree topol-
ogy of processors is used to connect them. 

                                           (a)                                                                        (b)  

Fig. 2. (a) Communications with a proxy for processor. (b) Communications using a tree 
topology. 

3   Fritzke’s Self-Organizing Neural Networks (SONN) 

Self-Organizing Map (SOM) is an artificial neural network model with competitive 
and unsupervised training. SOM network has two main characteristics: it makes pos-
sible obtaining a simplified model of the training data (normally high-dimensional) 
and it has the capacity to project them on a two dimensional map that shows the exist-
ing relations among them. In 1982, Kohonen [5] proposed first model of SOM, where 
the complete network structure had to be specified in advance and remained static 
during all the training process. When Kohonen’s SOM is used, the choice of inappro-
priate parameters to define the architecture can degrade the posterior performance of 
the network. In 1994, B. Fritzke [6] proposed a SOM model called Growing Cell 
Structure (GCS) where this static structure limitation was eliminated. In addition, the 
flexibility that offers the possibility of inserting and removing neurons on the output 
layer of the network during the training phase causes that the GCS network receives 
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better value associated to the topology preserving term, understanding this like the 
grade that defines the quality of the simplified model that the network represents. 
There exist other models of SOM networks that usually offer better topology preserv-
ing grades than GCS, as GNG[7] and ESOM[8], where there no exist so strict  
structural organization of the output layer. Nevertheless, this feature causes that they 
cannot be used directly to generate two-dimensional graphs to show the relations of 
the input patterns, being necessary using dimension reduction algorithms (like 
Sammon’s projection) to visualize the prototype nodes and their relations. With the 
purpose of exploiting this characteristic when the input patterns present more than 
two dimensions we decided to use GCS model. 

GCS is a two-layer architecture network (Fig 3). Neurons located at the input layer 
are fully connected with those in the output one. These connections have associated a 
weight, wij, where i identify the input neuron and j the output one. There exist as 
many input neurons as dimension has the input vectors. Neurons in the output layer 
have neighbor connections between them presenting a topology formed by groups of 
basic k-dimensional hyper-tetrahedrons structures. In order to facilitate the visualiza-
tion of the output layer, in this work a value of k=2 has been used, so output units are 
connected forming triangle groups.  

Every output c unit has an n-dimensional synaptic vector wc = (w1c, …, wnc) associ-
ated. This vector can be seen as the position of c in the input vector space. Each time 
a new input pattern e = (e1, …, en) is processed, only one output neuron is activated, 
called the best matching unit (bmu), that is the one with the synaptic vector that 
matches best with the input pattern. Formally: 
                                                   .minarg cbmu weS −=                                          (1) 

Thereby ǁ·ǁ denotes the Euclidean vector norm. By this the input vector space is 
partitioned into a set of regions, each consisting of the locations having a common 
nearest synaptic vector.  This way, the set of all synaptic vectors of the output layer 
can be seen as a simplified model of the input vector space.  

The training phase in GCS network adapts synaptic vectors looking for that each 
output neuron represents a group of similar input patterns. At the beginning of the 
training phase the output layer of the network has only three neurons interconnected 
via neighbor relations (k=2). During the training process a set of input patterns is 
presented to the network iteratively. In each adaptation step an input pattern is proc-
essed, the bmu is calculated and its synaptic vector and its topological neighbor’s 
synaptic vectors are modified using equations 1 and 2 respectively (where εb > εn).  

( ) .    
bmu

webbmuw −=Δ ε  (2) 

( ) .   ) ofneigbor   all(for   bmuc
c

wencw −=Δ ε  (3) 

After a fixed number of adaptation steps a new output unit is inserted and is con-
nected to other cells in such a way that the triangular groups of neighbor units are 
guaranteed. The place where new unit is inserted is determined using two different 
criteria: “looking for the unknown probability distribution of the input patterns” 
(LUPD) or “looking for equalize accumulated error measure” (LEAE) [6]. Periodi-
cally superfluous neurons are removed in order to obtain better results when input  
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Fig. 3. GCS network topology with k=2, N input neurons and 5 output units that exhibit 
neighbors connections in groups of figures of triangles 

space consists of several separate regions of positive probability density. An output 
neuron can be considered superfluous if it has a synaptic vector in a region with very 
low probability density (a region without any training pattern). A constant threshold, 
η, is used to eliminate those neurons with probability density below this value. The 
removal process ensures the triangular architecture of the output layer, but the output 
neighbor mesh can results broken in several sub-meshes. In this work the modifica-
tion of the GCS training algorithm proposed in [9] has been used in order to achieve a 
better interpretation of the removal parameters.  

In a trained network the output layer map can be seen as a projection of the input 
vector space in a bi-dimensional plane that exhibits the relations of the input patterns. 
Printing the output layer map data inherent knowledge can be discovered. 

4   Experiments and Results 

To test the system we have selected thirty P-System models generally used in the  
literature of P-System. Different membrane distributions between different number of 
processors have been generated for every P-System, observing how the resulting com-
munications of the distribution affect to the parallelization grade. For each data set asso-
ciated to a concrete P-System diverse GCS networks have trained with the intention of 
visualize the output layer and establish the optimal distribution, which will be the one 
that balances the degrees of external communications and parallelization. 

For space reasons in this section only the results of one of the multiple GCS trained 
networks is showed, in particular the one trained with the P-System of the fig. 1.a, 
with distributions that uses four processors. First of all, 15 feasible combinations of 
12 membranes have been generated in 4 processors that have resulted in 180  
bi-dimensional labeled vectors. Each vector maintains the volume of internal and 
external communications for a concrete membrane-processor-distribution and it has 
associate a label that identifies these three elements. With this patterns a GCS net-
work has been trained, with LEAE insertion criterion, εb = 0.06, εn = 0.002, µ  =0.006, 
and concluding when at least 6 isolated clusters of output units are obtained. After the 
training phase the output units of the network has been marked with the union of the 
labels of all those input patterns that fall inside its Voronoi region. Figure 4 shows the 
scattergram of this GCS network, where the position of each output unit is determined 
by the two components of its synaptic vector. X-axis coordinates indicates the internal  
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Fig. 4. Left: Scattergram of a GCS network. Points represent neurons and lines between them 
neighbor connections. Units are grouped in bad, medium and good classes on the basis of the 
external communication degree. Right: Distribution of membranes C13. 

degree of communications and Y-axis the external one. We have grouped the neurons 
into three classes: bad (from 1 to 11), medium (from 14 to 18) and good (from 19 to 
28). Within each of these three groups we have ordered neurons from highest to low-
est level of external communication and for those with a similar value, from highest to 
lowest level of internal communication. Based on this information has been deter-
mined that the best distribution is the C13, that contains 1 bad neuron, 4 medium 
neurons and 7 good neurons. Moreover, this distribution has one of the best ratios of 
communication (with a volume of 183 for internal communications and 83 for exter-
nal communications). 

5    Conclusions 

GCS networks have demonstrated to be a useful tool to P-System in the searching of 
membrane balanced distributions. Although the example that has been used to docu-
ment the methodology has a small volume of membranes, the feature of simplified 
model associated to GCS networks allows working with high volumes of membranes 
where the distribution possibilities go off.  

The analysis of the information of a GCS network could be automated for feeding 
a system of automatic membrane distribution over processors. In particular, this tool 
is being adapted to be used in the distributed system of membranes based on micro-
controllers exposed in [10][11]. 

Given the good results obtained in the experiments, as future extensions the possi-
bility of working with vectors of greater dimension is considered, what will allow to 
fit the search of suitable balanced P-System, for example generating a single vector 
for each membrane distribution or working with fuzzy values for determining the 
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degree of internal and external communications of a processor. This will require 
working with new visualizations of the output layer of the GCS network, such as 
those exposed in [12]. 
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