Skip to main content

The Conformal Monogenic Signal of Image Sequences

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5604))

Abstract

Based on the research results of the Kiel University Cognitive Systems Group in the field of multidimensional signal processing and Computer Vision, this book chapter presents new ideas in 2D/3D and multidimensional signal theory. The novel approach, called the conformal monogenic signal, is a rotationally invariant quadrature filter for extracting i(ntrinsic)1D and i2D local features of any curved 2D signal - such as lines, edges, corners and circles - without the use of any heuristics or steering techniques. The conformal monogenic signal contains the monogenic signal as a special case for i1D signals - such as lines and edges - and combines monogenic scale space, local energy, direction/orientation, both i1D and i2D phase and curvature in one unified algebraic framework. The conformal monogenic signal will be theoretically illustrated and motivated in detail by the relation of the 3D Radon transform and the generalized Hilbert transform on the sphere. The main idea of the conformal monogenic signal is to lift up 2D signals by stereographic projection to a higher dimensional conformal space where the local signal features can be analyzed with more degrees of freedom compared to the flat two-dimensional space of the original signal domain. The philosophy of the conformal monogenic signal is based on the idea to make use of the direct relation of the original two-dimensional signal and abstract geometric entities such as lines, circles, planes and spheres. Furthermore, the conformal monogenic signal can not only be extended to 3D signals (image sequences) but also to signals of any dimension.

The main advantages of the conformal monogenic signal in practical applications are the completeness with respect to the intrinsic dimension of the signal, the rotational invariance, the low computational time complexity, the easy implementation into existing Computer Vision software packages and the numerical robustness of calculating exact local curvature of signals without the need of any derivatives.

We acknowledge funding by the German Research Foundation (DFG) under the projects SO 320/4-2 and We 2602/5-1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory (Graduate Texts in Mathematics), vol. 137. Springer, Heidelberg (2002)

    Google Scholar 

  2. Bernstein, S.: Inverse Probleme. Technical report, TU Bergakademie Freiberg (2007)

    Google Scholar 

  3. Brackx, F., De Knock, B., De Schepper, H.: Generalized multidimensional Hilbert transforms in Clifford analysis. International Journal of Mathematics and Mathematical Sciences (2006)

    Google Scholar 

  4. Delanghe, R.: Clifford analysis: History and perspective. Computational Methods and Function Theory 1(1), 107–153 (2001)

    MathSciNet  MATH  Google Scholar 

  5. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  6. Felsberg, M.: Low-level image processing with the structure multivector. Technical Report 2016, Kiel University, Department of Computer Science (2002)

    Google Scholar 

  7. Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  8. Grau, V., Becher, H., Alison Noble, J.: Phase-based registration of multi-view real-time three-dimensional echocardiographic sequences. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 612–619. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Gürlebeck, K., Habetha, K., Sprössig, W.: Funktionentheorie in der Ebene und im Raum (Grundstudium Mathematik). Birkhäuser, Basel (2006)

    Google Scholar 

  10. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House Inc., Boston (1996)

    Google Scholar 

  11. Kovesi, P.: Phase congruency detects corners and edges. In: The Australian Pattern Recognition Society Conference, pp. 309–318 (2003)

    Google Scholar 

  12. Kovesi, P., Videre, A.: Image features from phase congruency. Journal of Computer Vision Research 1(3) (1999)

    Google Scholar 

  13. Krause, M., Sommer, G.: A 3D isotropic quadrature filter for motion estimation problems. In: Proc. Visual Communications and Image Processing, Beijing, China, vol. 5960, pp. 1295–1306. The International Society for Optical Engineering, Bellingham (2005)

    Google Scholar 

  14. Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Isophote properties as features for object detection. In: CVPR, vol. (2), pp. 649–654 (2005)

    Google Scholar 

  15. Needham, T.: Visual Complex Analysis. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  16. Reisfeld, D.: The constrained phase congruency feature detector: Simultaneous localization, classification and scale determination  17(11), 1161–1169 (1996)

    Google Scholar 

  17. Toft, P.: The Radon Transform - Theory and Implementation. PhD thesis, Technical University of Denmark (1996)

    Google Scholar 

  18. Wietzke, L., Fleischmann, O., Sommer, G.: 2D image analysis by generalized Hilbert transforms in conformal space. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 638–649. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Wietzke, L., Sommer, G.: The conformal monogenic signal. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 527–536. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Wietzke, L., Sommer, G., Schmaltz, C., Weickert, J.: Differential geometry of monogenic signal representations. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 454–465. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Zang, D., Sommer, G.: Detecting intrinsically two-dimensional image structures using local phase. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 222–231. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Zang, D., Wietzke, L., Schmaltz, C., Sommer, G.: Dense optical flow estimation from the monogenic curvature tensor. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 239–250. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wietzke, L., Sommer, G., Fleischmann, O., Schmaltz, C. (2009). The Conformal Monogenic Signal of Image Sequences. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics