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Abstract. The notion of distance is the most important basis for classi-
fication. This is especially true for unsupervised learning, i.e. clustering,
since there is no validation mechanism by means of objects with known
groups. But also for supervised learning standard distances often do not
lead to appropriate results. For every individual problem the adequate
distance is to be decided upon. This is demonstrated by means of three
practical examples from very different application areas, namely social
science, music science, and production economics. In social science, clus-
tering is applied to spatial regions resulting in unconnected clusters.
However, connectedness is sometimes important for interpretation, and
may have to be taken into account for clustering. In statistical musicol-
ogy the main problem is often to find an adequate transformation of the
input time series as an adequate basis for distance definition. Also, local
modelling is proposed in order to account for different subpopulations,
e.g. instruments. In production economics often many quality criteria
have to be taken into account with very different scaling. In order to find
a compromise optimum classification, this leads to a pre-transformation
onto the same scale, called desirability.

1 Introduction

The notion of distance is the most important basis for classification. This is
especially true for unsupervised learning, i.e. clustering, since there is no valida-
tion mechanism by means of objects with known groups. But also for supervised
learning standard distances often do not lead to appropriate results. For every
individual problem the adequate distance is to be decided upon. Obviously, the
choice of the distance measure determines whether two objects naturally go to-
gether (Anderberg, 1973). Therefore, the right choice of the distance measure is
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one of the most decisive steps for the determination of cluster properties. The
distance measure should not only adequately represent the relevant scaling of
the data, but also the study target to obtain interpretable results.
Some classical distance measures in classification are discussed in the following.
In supervised statistical classification distances are often determined by distri-
butions. A possible distance measure treats each centroid and covariance matrix
as the characteristics of a normal distribution for that class. For each new data
point we calculate the probability that that point came from each class; the data
point is then assigned to the class with the highest probability. A simplified dis-
tance measure assumes that the covariance matrices of each class are the same.
This is obviously justified if the data is similarly distributed for each class, how-
ever, nothing prevents from using this assumption if this is unclear. Examples for
the application of such measures are Quadratic and Linear Discriminant
Analysis (QDA and LDA) (Hastie et al., 2001, pp. 84). For a more general
discussion of distance measures in supervised classification see Gnanadesikan
(1977).
With so-called kernels, standard transformations are explicitly introduced in
classification methods, e.g., like in Support Vector Machines (SVM) (Hastie
et al., 2001, p. 378), in order to transform the data so that it can be separated
linearly as with LDA.
For decision trees, e.g., a measure for the distance between partitions is pro-
posed such that the selected split attribute in a node induces the partition which
is closest to the correct partition of the subset of training examples correspond-
ing to this node (Lopez De Mantaras, 1991). However, also the standard CART
decision tree (Breiman et al., 1983) can be interpreted to be associated with
a distance measure as follows: Identify splits with maximally distant nodes by
maximizing

d(split(node)) = i(node)− pL · i(nodeL)− pR · i(nodeR)

with the Gini-index or the entropy as impurity measures i, and pL, pR as the
proportion of elements of node split into the left node nodeL and the right node
nodeR, respectively.
In unsupervised classification Euclidean distance is by far the most chosen dis-
tance for metric variables. One should notice, however, that the Euclidean dis-
tance is well-known for being outlier sensitive. This might motivate switching
to another distance measure like, e.g., the Manhattan-distance (Tan et al.,
2005). Moreover, one might want to discard correlations between the variables
and to restrict the influence of single variables. This might lead to transforma-
tions by means of the covariance or correlation matrices, i.e. to Mahalanobis-
distances (Tan et al., 2005). Any of these distances between two data points
can then be used for defining the distance between groups of data. Examples
are the minimum distance between the elements of the groups (single linkage),
the maximum distance (complete linkage), and the average distance (average
linkage) (Hastie et al., 2001, p. 476). For non-metric variables often methods
are in use, which, e.g., count the number of variables with matching values in
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the compared objects, examples are the Hamming-, the Jaccard- and the
simple matching distances (Tan et al., 2005). E.g., the Jaccard-distance is
defined for binary problems by

dJac(X,Y ) =
no.(non-matching entries in X and Y)

no.(double-positives + non-matching)
.

Thus, data type is an important indicator for distance selection. E.g., in Perner
(2002), distance measures for image data are discussed. However, distance mea-
sures can also be related to other aspects like, e.g., application. E.g. time-series
representing music pieces need special distances (Weihs et al. 2007). Other im-
portant aspects of distance are translation, size, scale and rotation invariance,
e.g. when technical systems are analysed (Perner, 2008).
Last but not least, variable selection is a good candidate to identify the ad-
equate space for distance determination for both supervised and unsupervised
classification. For an overview over variable selection methods in classification
see, e.g., Dash and Liu (1997).
In practice, most of the time there are different plausible distance measures
for an application. Then, quality criteria are needed for distance measure selec-
tion. In supervised classification the misclassification error rate estimated, e.g.,
on learning set independent test sets, is the most accepted choice. In unsuper-
vised learning, one might want to use background information about reasonable
groupings to judge the partitions, or one might want to use indices like the ratio
between within and between cluster variances which is also optimized in discrim-
inant analysis in the supervised case.
In what follows examples are given for problem specific distances. The main
ideas are as follows. Clusters should often have specific properties which are not
related to the variables that are clustered, but to the space where the clusters
are represented. As an example city districts are clustered by means of social
variables, but represented on a city map. Then, e.g., the connection of the indi-
vidual clusters may play an important role for interpretation. This may lead to
an additional objective function for clustering which could be represented by a
distance measure for unconnected cluster parts. These two objective functions
or distance measures could be combined to a new measure. Another, much sim-
pler, possibility would be, however, just to include new variables in the analysis
representing the district centres. By differently weighting the influence of these
variables the effect of the variables can be demonstrated. This will be further
discussed in section 2.1.
Often, the observed variables are not ideal as a basis for classification. In-
stead, transformations may be much more sensible which directly relate to a
re-definition of the distance measure. Also, in supervised classification the ob-
served classes may not have the right granularity for assuming one simple dis-
tance measure per class. Instead, such distances may be more adequate for sub-
classes, which may be, e.g., defined by known subpopulations across the classes
or by unknown subclasses of the classes. Distances then relate to, e.g., distri-
butions in subclasses, i.e. to mixtures of distributions in classes. This will be
further discussed in section 2.2.
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Another example for more than one objective function is given for production
economics. Typically, for more than one objective function there is the problem
of weighting the different targets. In contrast to section 2.1 this can also be
achieved by transformation to a common scale by means of different so-called
desirability functions. The overall distance is then typically related to some com-
bination of the different desirabilities in a so-called desirability index. This will
be further discussed in section 2.3.

2 Case-based distance measures

2.1 Additional variables

In social science clustering is often applied to spatial regions with very irregular
borders. Then adequate spatial distances may have to be taken into account for
clustering. Clusters of spatial regions should most of the time represent similar
properties of the predefined regions. However, for better interpretation the ques-
tion arises as well whether the resulting clusters are connected in space. Then,
two different kinds of distances have to be compared, namely the distance of
regions in clusters related to given properties and the spatial dispersion of the
clusters.
Assume that spatial regions are predefined, e.g. as city districts. Consider the
case where some clusters are already defined, e.g. by means of social proper-
ties in the regions. In more detail, social milieus were clustered by means of
six social variables (after variable selection), namely ”fraction of population of
60-65”, ”moves to district per inhabitant”, ”apartments per house”, ”people per
apartment”, ”fraction of welfare recipients” and ”foreigners share of employed
people”. Then, the question arises whether clusters represent connected regions
in space.

In Roever and Szepannek, 2005, cluster dispersion was not explicitly utilized
as a criterion for good clustering. They just minimize the Classification Entropy

CE = − 1

N

N∑
i=1

k∑
j=1

(uij log2 uij),

where N = number of observations, k = number of clusters, uij = probability
that observation i belongs to cluster j. Using this fitness function and some vari-
ables’ subgrouping, k = 4 clusters were produced similar to Figure 1 by means
of genetic programming. Note that the white areas were not clustered.
In order to represent the connectedness of the individual clusters, an additional
objective function for clustering could represent a distance measure for uncon-
nected cluster parts. The then resulting two objective functions or distance mea-
sures could be combined to a new measure. In this paper, however, we have
tried to take into account cluster dispersion explicitly in that we introduced new
variables representing the x- and y-coordinates of the district centres. By this,
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Fig. 1. Clusters of districts of the City of Dortmund (Germany)

distance of district centres are also taken into account with clustering. When
these centre variables were weighted only 20% of the other variables the result
was hardly influenced (Figure 2, left). After they were weighted twice as much
as the other variables, however, the result was totally different and the clusters
were much more connected (Figure 2, right).

2.2 Transformations and local modelling

In statistical musicology the main problem is often to find the right transfor-
mation of the input time series adequate for analysis. Also, local modelling is
proposed in order to account for different subpopulations, e.g. instruments.
This example of distance definition concerns supervised classification. In music
classification the raw input time series are seldom the right basis for analysis.
Instead, various transformations are in use (see, e.g., Weihs et al., 2007). Since
with music frequencies play a dominant role, periodograms are a natural repre-
sentation for observations. From the periodogram corresponding to each tone,
voice characteristics are derived (cp. Weihs and Ligges, 2003). For our purpose
we only use the mass and the shape corresponding to the first 13 partials, i.e.
to the fundamental frequency (FF) and the first 12 overtones (OTs), in a pitch
independent periodogram (cp. Figure 3). Mass is measured as the sum of the
percentage share (%) of the peak, shape as the width of the peak in parts of half
tones (pht) between the smallest and the biggest involved frequency.
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Fig. 2. Clusters with 20%- (left) and 200%- (right) weighting of district centres

Fig. 3. Pitch independent periodogram (professional bass singer)
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These 26 characteristics were determined for each individual tone, as well as
averaged characteristics over all involved tones leading to only one value for each
characteristic per singer or instrument. LDA based on these characteristics re-
sults in an astonishingly good prediction of register (classes low / high) (Weihs
et al., 2005). The register of individual tones are predicted correctly in more
than 90% of the cases for sung tones, and classification is only somewhat worse
if instruments are included in the analysis. Even better, if the characteristics are
averaged over all involved tones, then voice type (high or low) can be predicted
without any error.
However, this classification appeared, in a way, to be too good so that it was
suspected that mass and/or width might somewhat reflect frequency and thus
register though the pitch independent periodogram was used. And indeed, sim-
ulations showed that width is frequency dependent because it is measured in
number of half tones (s. Figure 4). However, if the absolute width in number of
involved Fourier-Frequencies is used instead, then this dependency is dropped
leading, though, to poorer classification quality. This example distinctly demon-
strates an effect of choosing a wrong transformation, and thus a wrong distance
measure.

Fig. 4. Width measured in parts of half-tone (pht) dependent on frequency (upper line
= fundamental frequency, lower line = first overtone)
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In subsequent analyses (Weihs et al., 2006, Szepannek et al., 2008) this re-
defined width characteristics was applied to a data set consisting of 432 tones
(= observations) played / sung by 9 different instruments / voices. In order to
admit different behaviour for different instruments, so-called local modelling
was applied building local classification rules for each instrument separately. For
this, we consider the population to be the union of subpopulations across the
classes high / low. Then, a mixture distribution is assumed for each class. The
problem to be solved consists in register prediction for a new observation if the
instrument (and thus the choice of the local model) is not known. This task
can be formulated as some globalization of local classification rules. A possible
solution is to identify first the local model, and further work only with the parts
of the mixtures in the classes corresponding to this model.
Imagine all local (subpopulation-) classifiers return local class posterior probabil-
ities P (k|l, x), where k = 1, . . . ,K denotes the class, x is the actual observation
and l = 1, . . . , L is the index of the local model, i.e. the instrument in our case.
The following Bayes Rule

k̂ = arg max
k

∑
l

P (k|l, x)P (l|x)

showed best performance for the musical register classification problem. To
implement this, an additional classifier has to be built to predict the presence of
each local model l for a given new observation x. Using LDA for both classifica-
tion models, the local models and the global decision between the local models,
leads to the best error rate of 0.263 on the data set. Note that - since only
posterior probabilities are used to build the classification rule - all models can
be built on different subsets of variables, i.e. subpopulation individual variable
selection can be performed. This may lead to individual distance measures for
the different localities (voices, instruments) and for the global decision.

2.3 Common scale

In production economics often many quality criteria have to be taken into ac-
count with very different scaling. In order to find a compromise optimum, a
pre-transformation, called desirability, onto the same scale may be used.
In a specific clustering problem in production economics product variants should
be clustered to so-called product families so that production interruptions caused
by switching between variants (so-called machine set-up times) are minimal
(Neumann, 2007). Three different distance measures (Jaccard, simple-matching,
and Euclidean) and many different clustering methods partly based on these
distance measures are compared by means of four competitive criteria charac-
terizing the goodness of cluster partitions, namely the similarity of the product
variants in the product families, the number of product families, the uniformity of
the dispersion of the product variants over the product families, and the number
of product families with very few product variants. Therefore, partition quality
is measured by d = 4 criteria. Overall, the problem is therefore to identify the
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cluster method and the corresponding distance measure, as well as the number
of clusters, i.e. the number of product families, optimal to all four criteria. In
order to rely on only one compromise criterion a so-called desirability index is
derived.
In order to transform all these criteria to a common scale, the four criteria are
first transformed to so-called desirabilities wi, a value in the interval [0, 1],
where 1 stands for best and 0 for worst, unacceptable quality. In order to join
the criteria to one objective function, a so-called desirability index W (Har-
rington, 1965) is defined

W : {w1, w2, . . . , wd} → [0, 1].

Harrington (1965) suggests the geometric mean for W :

W (w1, . . . , wd) = d

√√√√ d∏
i=1

wi.

This choice has the advantage that W = 0 already if one desirability wi =
0, and W = 1 only if all wi = 1. Another reasonable index choice would be
min(w1, . . . , wd) with the same properties. The geometric mean will be used
here.
In order to minimize the average machine set-up time the following desirability
is defined:

w1(C(k)) = 1−
k∑

i=1

∑
Xj ,Xl∈Ci,j 6=l

dJac(Xj , Xl),

where C(k) is a partition with k clusters, and dJac(Xj , Xl) is the Jaccard
distance between product variants Xj and Xl characterizing the machine set-up
time between these products.
In this application, for the number of product families a certain range is assumed
to be optimal. This lead to the desirability function w2 indicated in Figure
5, where the number of product families with desirability = 1 are considered
optimal.

For application roughly equal sized clusters are of advantage. This leads to a
criterion based on the number nw of within cluster distances of a partition, i.e.
the number of distances between objects in the same cluster. When minC(k)(nw)
is the minimal number of distances over all possible partitions of size k with n
objects, and maxC(k)(nw) the corresponding maximum, this leads, e.g., to the
following criterion to measure how imbalanced the cluster sizes are:

w3(C(k)) = 1− nw −minC(k)(nw)

maxC(k)(nw)−minC(k)(nw)
.

Product families with less than five product variants are not desirable. This
leads, e.g., to the criterion:
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Fig. 5. Desirability function w2

w4(C(k)) = 2−a

with a = number of product families with less or equal five variants.
All these desirability functions are to be maximized, and thus also the desir-

ability index. No attempt has been undertaken up to now to find an adequate
distance measure between partitions C(k) based on desirability indices. That
such a task might not be trivial might be derived from an attempt to find the
distribution of desirability index (Trautmann and Weihs, 2006). Therefore, stan-
dard cluster methods are applied to the problem.
Some results of different cluster methods (for each method based on the most
appropriate distance measure) evaluated with the desirability index of the four
desirability criteria are shown in Figure 6. Obviously, Ward clustering (Ward,
1963) appears to be best, and for about the intended number of product families
the index is maximal.

3 Conclusion

In section 2 it is demonstrated by means of examples from very different appli-
cation areas that various transformations might be necessary to be able to use
an adequate distance measure for unsupervised and supervised classification. In
section 2.1 additional variables were added with tentative weights, in section
2.2 the original variables were transformed before application of standard meth-
ods and local measures appeared adequate, in section 2.3 original criteria were
transformed to a common scale and combined to one criterion used for optimal
clustering. All these examples showed that application of standard methods to
originally observed variables might not be adequate for problem solution.
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Fig. 6. Desirability index for different cluster methods
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