Abstract
In this paper, we propose a framework for iterative knowledge discovery from unstructured text using Formal Concept Analysis and Emergent Self Organizing Maps. We apply the framework to a real life case study using data from the Amsterdam-Amstelland police. The case zooms in on the problem of distilling concepts for domestic violence from the unstructured text in police reports. Our human-centered framework facilitates the exploration of the data and allows for an efficient incorporation of prior expert knowledge to steer the discovery process. This exploration resulted in the discovery of faulty case labellings, common classification errors made by police officers, confusing situations, missing values in police reports, etc. The framework was also used for iteratively expanding a domain-specific thesaurus. Furthermore, we showed how the presented method was used to develop a highly accurate and comprehensible classification model that automatically assigns a domestic or non-domestic violence label to police reports.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hatchuel, A., Weil, B.: A new approach of innovative design: an introduction to C – K theory. In: Proc. of ICED 2003, August 2003, Stockholm, Sweden, p. 14 (2003)
Ultsch, A., Moerchen, F.: ESOM-Maps: Tools for clustering, visualization, and classification with Emergent SOM. Technical Report Dept. of Mathematics and Computer Science, University of Marburg, Germany, No. 46 (2005)
Ultsch, A., Hermann, L.: Architecture of emergent self-organizing maps to reduce projection errors. In: Proc. ESANN 2005, pp. 1–6 (2005)
Ultsch, A.: Density Estimation and Visualization for Data containing Clusters of unknown Structure. In: Proc. GFKI 2004 Dortmund, pp. 232–239 (2004)
Ultsch, A.: Maps for visualization of high-dimensional Data Spaces. In: Proc. WSOM 2003, Kyushu, Japan, pp. 225–230 (2003)
Ultsch, A., Siemon, H.P.: Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis. In: Proc. Intl. Neural Networks Conf., pp. 305–308 (1990)
Van Hulle, M.: Faithful Representations and Topographic Maps from distortion based to information based Self-Organization. Wiley, New York (2000)
Ultsch, A.: Data mining and knowledge discovery with Emergent SOFMS for multivariate Time Series. In: Kohonen Maps, pp. 33–46 (1999)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)
Priss, U.: Formal Concept Analysis in Information Science. In: Cronin, B. (ed.) Annual Review of Information Science and Technology, ASIST, vol. 40 (2005)
Wille, R.: Why can concept lattices support knowledge discovery in databases? Journal of Experimental & Theoretical Artificial Intelligence 14(2), 81–92 (2002)
Stumme, G., Wille, R., Wille, U.: Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS (LNAI), vol. 1510, pp. 450–458. Springer, Heidelberg (1998)
Stumme, G.: Formal Concept Analysis on its Way from Mathematics to Computer Science. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS, vol. 2393, p. 2. Springer, Heidelberg (2002)
van Dijk, T.: Huiselijk geweld, aard, omvang en hulpverlening. Ministerie van Justitie, Dienst Preventie, Jeugd-bescherming en Reclassering (1997)
Brachman, R., Anand, T.: The process of knowledge discovery in databases: a human-centered approach. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in knowledge discovery and data mining. AAAI/MIT Press (1996)
Brachman, R.J., Selfridge, P.G., Terveen, L.G., Altman, B., Borgida, A., Halper, F., Kirk, T., Lazar, A., Mc Guinnes, D.L., Resnick, L.A.: Integrated support for data archaeology. International Journal of Intelligent and Cooperative Information Systems 2, 159–185 (1993)
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: An exploration into the power of Formal Concept Analysis for domestic violence analysis. In: Perner, P. (ed.) ICDM 2008. LNCS, vol. 5077, pp. 404–416. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G. (2009). A Case of Using Formal Concept Analysis in Combination with Emergent Self Organizing Maps for Detecting Domestic Violence. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2009. Lecture Notes in Computer Science(), vol 5633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03067-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-03067-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03066-6
Online ISBN: 978-3-642-03067-3
eBook Packages: Computer ScienceComputer Science (R0)