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Abstract. Regression models are often required for controlling produc-
tion processes by predicting parameter values. However, the implicit as-
sumption of standard regression techniques that the data set used for
parameter estimation comes from a stationary joint distribution may
not hold in this context because manufacturing processes are subject to
physical changes like wear and aging, denoted as process drift. This can
cause the estimated model to deviate significantly from the current state
of the modeled system. In this paper, we discuss the problem of esti-
mating regression models from drifting processes and we present ensem-
ble regression, an approach that maintains a set of regression models—
estimated from different ranges of the data set—according to their predic-
tive performance. We extensively evaluate our approach on synthetic and
real-world data.

Keywords: Ensemble Method, Regression, Process Drift.

1 Introduction

Regression models are important tools in scientific, industrial, and many other
application areas. They are used to learn a functional dependency between a
numeric target variable and other variables of a given data set. Knowledge of
such dependencies is often required to control industrial production processes.

A concrete example in semiconductor manufacturing is etching, a process
where material is physically removed with means like acid or plasma to cre-
ate the layout of integrated circuits. In this setting, the time that is required
to etch a specific amount of material is an important process parameter. The
time heavily influences the width of the structures that are etched, which de-
fines the electrical properties of the final integrated circuit. Hence, the correct
etch time has to be determined to attain a product that fulfills defined spec-
ifications on this most important quality measure. Naturally, etch times that
deviate from the ideal time will result in lower product quality. Semiconductor
manufacturing is technologically growing fast. Companies enhance their manu-
facturing processes continuously while creating products of smaller and smaller
structure widths. Maintaining production processes that operate in such small
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dimensions—e.g., 22nm—requires extensive use of regression models for control,
since theoretical research alone cannot provide the required models [1,2,3].

Creating regression models for process control requires a sufficiently large
data set. In single-lot semiconductor manufacturing, where only few expensive
products of a certain design are manufactured in complex and long-running
processes, this creates a new challenge. Since the acquisition of the data set
expands over a long period of real time, elements of the production process
change in the meantime and the examples basically represent different processes.
In our example of etching, chemicals used in the process are subject to aging.
Hence, an acid might react more slowly, thereby removing less material per unit
of time. A control model that predicts etch time therefore ideally has to consider
the age of the chemical. However, the knowledge to describe such aging processes
is typically not readily available.

In this paper, we consider drifting processes, i.e., processes that observably
change over time. Aging is an example of a continuous drift, since it continuously
changes the process. Estimating a regression model from examples of a drifting
process violates the basic assumption that the data set has been drawn from
one joint distribution of the involved variables. If regression is done anyway, the
resulting model will not reflect the current state of the process but an average
state over time. Note that such drifts occur in many industrial processes, since
every machine wears and ages. In the context of single-lot semiconductor manu-
facturing, drift may result in direct monetary loss, since even small errors in the
estimates of process parameters are critical. Besides continuous drift, there are
also abrupt drifts. In our example, they may result from a change of the etching
chemical. The effect on estimated regression models is similar to the effect of
continuous drift, i.e., the estimated model does not reflect the current state of
the modeled system.

One basic approach to handle drift is to restrict the data set to the most re-
cent examples, which represent the current state of the system best. However, this
restricted data set may not contain enough information to estimate complex func-
tional dependencies, like those that occur in semiconductor manufacturing. There-
fore, a tradeoff between a current model and a stable model, in terms of average
prediction error, must be found. In this paper, we describe drifting processes and
how drift influences regression models that have been estimated from examples
generated by such processes (Section 2). In Section 3, we then propose ensemble
regression, an approach that learns a composite regression model that reduces the
prediction error when used as a model of the current state of the system. Ensem-
ble regression uses a set of regression models estimated from different ranges of
the complete data set and maintains this set according to the predictive perfor-
mance of the models. Predictions are drawn from the ensemble using a weighted
average of the predictions of all ensemble members. Our approach can be used in
connection with any regression method. We extensively evaluate the effects of cer-
tain types of drift as well as the predictive performance of models estimated by
our approach on synthetic and real-world data in Section 4. Section 5 describes
related work and Section 6 concludes the paper.
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2 Drifting Processes and Regression

We consider the problem of regression on data from drifting processes. Regres-
sion is the task of estimating or learning a function ŷ = f(x) from a data set
D consisting of n examples di = (yi, xj,i), j = 1, . . . , k, i = 1, . . . , n where y is
the numeric label (the dependent variable) and xj are the k features (the inde-
pendent variables). In our etching example, the time of etching is the dependent
variable, while the structural width—and thereby the amount of material—is the
independent variable. Each time the etching process is executed, we can acquire
an example of an etch time and the structural width that has been reached.

The basic assumption in regression is that the data set has been drawn from
exactly one joint distribution of dependent and independent variables [4] that
captures the dependencies between them. If the joint distribution is stationary
when the examples are acquired, the examples represent exactly one functional
dependence, i.e., one function, disregarding the uncertainty introduced by noise
that may be introduced by measurement equipment.

In this paper, we consider the case when the data set is acquired from a drifting
process. Such a data set is not distributed according to just one distribution.
Instead, the distribution function is a function of time and drift is the change that
occurs over time. Therefore, the examples acquired from the process represent
a set of functional dependencies between dependent and independent variables.
Each of these functions governed the process at a time when an example was
drawn. Therefore, we denote a system that yields data according to a changing
underlying functional dependency as a drifting process. The effect of drift is that
the same input values may result in different output values when determined
at different points in time. In terms of the governing function, drift may be
viewed as a change in functional form or as a change in the parameters. We now
illustrate this view with a simple example from physics.

The electrical resistance of an object is a measure of the amount of opposition
against an electric current, which is described by Ohm’s law: R = UI−1. If we
want to determine the electrical resistance of an object experimentally, one way is
to put it into an electrical circuit, set a certain voltage U and measure the current
I. Performing this repeatedly for different values of U enables the estimation of
R using linear regression, where U = y and I = x. However, electrical resistance
also depends on the temperature of the resistor; higher temperatures will result
in higher resistance. Therefore, if the temperature during the experiment is not
constant, the examples (U, I) will represent different underlying functions U =
RiI, where Ri is the resistance at the time a particular measurement was taken.

In physics, this problem has been solved by analyzing the impact of temper-
ature on the electrical resistance and extending the basic dependence in a form
that treats the resistance as a function of temperature R(θ). However, deriving
such laws requires significant insight into the observed system and is not feasible
for complex real-world processes like single-lot semiconductor manufacturing.
Even if the influence factors and their functional form were all known, some
factors might not be observable at all or not observable with acceptable cost.
Additionally, real-world drifts may behave non-deterministically with abrupt
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Fig. 1. Effect of an abrupt drift from the first to the second true dependency on a
regression model estimated from mixed samples

changes and may be subject to random fluctuations. In our example of etching,
these obstacles circumvent the modeling of the behavior of the drift. Therefore,
an approach is required to estimate regression models from the data of drifting
processes while minimizing the error introduced by the drift. We now present
the characteristics of this error using another simple example that is depicted in
Figure 1.

Consider a linear functional dependence y = f(x) = ax + b from univariate
input x to univariate output y. Suppose further that the functional form stays
constant, but drift occurs in parameter a. Hence, a(t) is a function of time
and y = ft(x) = a(t)x + b. Figure 1 depicts two such functions at different
times t. An abrupt drift has occurred while gathering the examples. For the
first five examples (the circles) a(t) = 1 and for the last five examples (the
triangles) a(t) = 3. For presentation purposes, we excluded the presence of any
measurement noise.

In general, n examples are acquired that can be indexed by 1, . . . , n in the or-
der of the time they have been drawn from the process. When using the complete
data set, i.e., d1, . . . , dn, to estimate the parameters â and b̂ of the linear model,
an average over the underlying functions is the result, since the discrepancies
between the examples from the different underlying functions are implicitly dis-
carded as noise by the regression method. Applying this approach to our example
results in the dotted line in Figure 1. The estimated model and the current un-
derlying function (line with triangles) are different and there will be an error
when using the estimated model for prediction.

The dashed line in Figure 1 represents a model that has been estimated from
a window of size 6, i.e., the more recent half of the data set and the last example
from the first underlying function. This model resembles the recent state much
closer. The sum of the squared prediction errors of this model is about a tenth

Final edited form was published in "Machine Learning and Data Mining in Pattern Recognition. 
 6th International Conference. Leipzig 2009", S. 221-235, ISBN 978-3-642-03070-3 

https://doi.org/10.1007/978-3-642-03070-3_17 

4 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



of the error of the model that had been estimated from the whole data set.
This example gives an indication that using older data may result in a greater
prediction error. We can minimize the prediction error by using only the last
example. However, this is not feasible when the functional dependence is of a
more complex nature (e.g., polynomial) or when non-parametric regression is
used.

3 Ensemble Regression for Drifting Processes

We are given a data set D = {di}, i = 1, . . . , n, where di are examples from a
drifting process and di = (yi, xj,i), j = 1, . . . , k, y is the numeric label and xj

are the k features to be used in the calculation of the prediction ŷ. The core
idea to reduce the effect of drift on the estimated model is to restrict the data
set used for parameter estimation to a window of examples, thereby excluding
older examples that do not represent the current state of the modeled system.
The basic approach consists of estimating a regression model from a window of
examples d(n−w), . . . , dn, where n is the index of the most recent example and w
is the number of examples in the window. Whenever a new example is acquired,
n is incremented to represent the expanded data set. The right border of the
estimation window is fixed to the current value of i, since the most recent example
represents the current state of the modeled system best. Since n increases with
each example, the whole window is shifted and therefore older data is excluded.

The difficulty with this approach lies in determining the window size w that
results in a model with a small prediction error. An analytic solution requires
knowledge about the characteristics of the drift of the modeled process, i.e.,
rate of drift or cycle length. In our application setting—single-lot semiconductor
manufacturing—this knowledge is often not available. Additionally, drift may
be discontinuous, e.g., abrupt and random, which causes the optimal window
size to change as well within the lifetime of a prediction model. Therefore, we
need an adaptive solution, where the window size is set as part of the training
process. Changes in the characteristics of the drift can then be compensated.
Since an exact determination of the window size is not possible in our setting, we
avoid determining one best-effort window size. Instead, we use several windows of
different size for training several regression models that are maintained according
to predictive performance, i.e., when a model is not sufficient anymore, it is
replaced.

To maintain this set of models, the following statistics are needed for each
model modelm. First of all, there is lm, the left border of the window of examples
for estimating the associated model. Second, there is the number of positive posm

and negative negm predictions that were made with the associated model. The
counters are based on tests performed on new examples and a local threshold
te for the acceptable error. Finally, there is the weight wm, which is used for
calculating overall predictions from the ensemble. We describe the statistics more
detailed in the following. The statistics and the model form a member Mm that
can be uniquely identified by an index m. A set of members forms an ensemble
E = {Mm}, m = 1, . . . , |E|.
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Algorithm 1. Training algorithm for ensemble regression.
Require: emax: the maximum number of members in the ensemble
Require: te: threshold for prediction error
Require: tr: threshold for the performance ratio
1: E ← ∅; D ← ∅; n← 1
2: for each new d do
3: n← n + 1; dn ← d
4: D ← D ∪ dn

5: for each Mm ∈ E do
6: if not is stable(modelm) then
7: modelm ← train(lm, n); next
8: end if
9: err ← error(yn, predict(modelm, xn))

10: if err < te then
11: posm ← posm + 1
12: else
13: negm ← negm + 1
14: end if
15: if posm(posm + negm)−1 < tr then
16: E ← E\M
17: else
18: modelm ← train(lm, n)
19: end if
20: end for
21: posT =

∑|E|
m=1 posm

22: for each stable Mm ∈ E do
23: wm ← posmpos−1

T

24: end for
25: if |E| < emax then
26: E ← E ∪ new member(dn)
27: end if
28: end for

We now present the algorithm (see Algorithm 1) that is used to maintain an
ensemble by describing several iterations and the resulting state of the ensemble
after each of them. The example is based on the data set depicted in Figure 1,
which contained an abrupt drift after the fifth of ten examples. As initialization,
we start with an empty data set D and an empty ensemble E. The main loop
of the algorithm (line 2) is executed whenever a new example d is acquired. The
index for the most recent example n is increased by one and the example is
added to the data set D as dn. Hence, in the first iteration, D = {d1}. Since the
ensemble is empty, lines 5 to 24 have no effect and the first member is added
to the ensemble in line 26. Members are added to the ensemble as long as the
maximum number of members emax is not reached. This is a technical parame-
ter to limit the required computational resources. The method new member(dn)
initializes the statistics of the new member and estimates the associated regres-
sion model from a minimal window containing only the most recent example dn.
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The current value of n will be stored as left border lm of the estimation window.
After this first iteration, E = {M1}.

When the next example d is acquired, it is added to the total data set as
d2 and therefore D = {d1, d2}. Since the ensemble now contains one member,
line 6 is executed for member M1. The method is stable(modelm) tests whether
a member may be considered as stable, i.e whether the estimation window con-
tains enough examples. The exact definition for stability depends on the used
regression method. For linear regression, a stable fit requires at least as many
examples as coefficients to be estimated. In our example, we use linear regres-
sion and two coefficients have to be estimated. Hence, M1 is still unstable in
step two, because the current window for estimation contains only one example.
In line 7, the model is now estimated from a larger window [lm, n] = [1, 2]. In
general, the window associated with a member grows by one example for each
example acquired. After this training, all other steps involving M1 are skipped.
The second iteration of the algorithm is completed after adding the second mem-
ber M2, which is associated with a model that was estimated from d2. Hence,
E = {M1, M2}.

In the third step, M1 has finally become stable and therefore the following
steps from lines 9 to 19 are performed on it. First, M1 is tested by using the
associated model modelm to predict the known label of the new example (line 9).
Then, the prediction error is calculated using a given metric error, e.g., the root
mean squared error. We use this testing scheme, since the most recent example
represents the current underlying function best and since the most recent exam-
ple has not been used in model estimation so far. In our example, no drift has
occurred in this third iteration. Therefore, the error is err = 0.

In lines 10 to 14, the error determined in the test is classified as positive or
negative and the according counter (posm or negm) is incremented. The parame-
ter te that defines this local error threshold is intuitive to set. A larger threshold
will result in more predictions classified as positive. In some application areas,
like semiconductor manufacturing, this parameter is derivable from application
knowledge, like quality specifications. In our example, the number of positive
tests for M1 is pos1 = 1 in the third iteration, since err = 0 and because we set
te = 1.

In line 15, the test for eviction is performed. We propose a threshold-based
criterion, where a member is evicted when posm(posm + negm)−1 < tr, i.e., when
the ratio of positive test predictions to all test predictions falls below a given
value 0 ≤ tr ≤ 1. This criterion has several important properties. It is resistant
to outliers, since single negative predictions, e.g., those caused by noise, have
limited influence when a member has reached a stable state. A member may
even recover from a series of negative predictions, e.g., in cases of cyclic drift.
Most importantly, members that have accumulated a large number of positives,
and therefore have been in the ensemble for a long time, are harder to evict
than members with fewer positives, since they can accumulate more negatives
before fulfilling the eviction criterion. Therefore, mature members are favored
but can still be evicted if a permanent drift occurs that makes them unusable.
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Fig. 2. Window size, number of positive and negative predictions of the ensemble
members. Data set from Figure 1.

Note that the prediction weight of such a member can decrease even while it
is still in the ensemble, which accounts for the fact of decreasing predictive
performance. In our example, M1 stays in the ensemble since the ratio of positive
test predictions to all test predictions is one and we set tr = 0.5. Members
with sufficient predictive performance remain in the ensemble and the associated
model is trained on the window [lm, n], thereby including the new example. The
threshold on the performance ratio influences how fast the ensemble reacts to
drift, whereby a larger ratio implies that few negative predictions are tolerated
and eviction may happen early.

Figure 2 depicts the further evolution of the ensemble. White squares repre-
sent examples from the first underlying function, while gray squares represent
examples from the second underlying function. The examples are ordered from
left to right with ascending index. The rectangles below depict the window that
each member in the ensemble used to estimate its associated model. The number
in the rectangle is the member identification m and at the left, the column P
shows posm, while N shows negm. Figure 2(a) shows the state of the ensemble
after the completion of the third iteration. Three members have been added so
far. M1 uses the largest window and is the only stable member.

Figure 2(b) depicts the state after the fifth example has been incorporated.
There are five members now, which means that the set emax is reach. No fur-
ther member will be added. Each member has been estimated from a different
window, with the first member still using the largest window. It also has the
largest number of positive predictions, since no drift has occurred yet. Member
M5 is still considered unstable. Member M4 is stable but has not been tested yet
on a new example, since the fourth and fifth examples were used in parameter
estimation. No member has made any negative predictions.
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Figure 2(c) depicts the state after the seventh example has been incorporated.
There are again five members, but members M4 and M3 have been replaced by
the new members M6 and M7. Member M4 was evicted in the previous step,
while member M3 was evicted in the seventh step. Interestingly, member M5 is
still in the ensemble, although its window covers an example from the previous
underlying function.

Figure 2(d) depicts the state after the ninth example has been incorporated.
The members M1 and M2 have been evicted, since they were unable to perform
any more positive predictions, thereby dropping below the required performance
ratio. Member M5 remained in the ensemble, since more and more current ex-
amples helped to improve the fit of the underlying function.

So far we have not discussed the determination of overall predictions ŷ from
the ensemble. ŷ is determined by calculating ŷm = predict(modelm, x) for each
member in the ensemble and then calculating a weighted average ŷ =

∑|E|
m=1

wmŷm, whereby the weights wm are determined as part of Algorithm 1 in
two steps. First, in line 21, the total number of positive predictions posT =
∑|E|

m=1 posm of the members in the ensemble is determined. Then, this sum is
used to determine the prediction weight of each member in lines 22 to 24. It is
defined as the ratio of positive predictions of the member to the sum of posi-
tive predictions of all members: posmposT

−1. Hence, if a member has made only
a small number of positive predictions, while other members have made large
numbers of positive predictions, its weight will be low and vice versa. Mature
members are therefore favored. Most importantly, the weight of a member can
decrease if it does not make positive predictions while other members do (e.g.,
newer members).

4 Evaluation

In this section, we evaluate our approach on several types of synthetic data
as well as a real-world data set. Our goal is to determine the prediction error
when using different approaches to estimate regression models from drifting pro-
cesses. We compare ensemble regression using different weighting schemes with
the baseline (performing regression on the complete data set) as well as with
the sliding window approach. A simulation environment with these algorithms
was implemented in R. We used lm, included in the standard stats package, to
estimate linear regression models. Since we restricted our experiments to the use
of linear models in the ensembles, we also restricted our experiments to linear
underlying functions. This ensures that the models are capable of representing
the governing functions and no error can be induced from an improper func-
tional form. Our systematic evaluation is therefore only valid for data sets from
drifting processes that are governed by a linear dependency. However, we also
present results based on a non-linear, real-world data set that indicate that our
approach performs well in that setting, too.

Formally, our synthetic data sets were generated using a governing function
y = f(x) =

∑K
k=1 wk(t)xk + N(0, σ2) where K is the number of independent
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variables, wk(t) is the time-dependent weight of attribute xk and N(0, σ2) is a
normal random variable that represents measurement noise. In this setting, drift
manifests itself in changing values of wk(t), while the functional form of f(x)
stays fixed. We define three different functional forms of wk(t):

Linear Drift. wk(t) = at + b, where slope a determines the speed of the drift.
We fix b since it has no influence on the prediction error, while a is varied.
Results are presented in Figures 3(a) and 3(b).

Autoregressive Drift. wk(t) = wk(t−1)+N(μ, σ2); wk(0) = N(μ, σ2), where
wk(t−1) is the weight determined for the previous example and wk(0) is the
random starting weight. N(μ, σ2) is a normally distributed random variable
with mean μ and variance σ2. In our experiments, we vary μ while we fix σ.
Results are presented in Figures 3(c) and 3(d).

Mixture Drift. wk(t) = wk(t−1)+a+ I(p)N(μ, σ2); wk(0) = N(μ, σ2), where
wk(t − 1) is the weight determined for the previous example, wk(0) is the
random starting weight and a is the slope. I(p) yields either 1 with proba-
bility p or 0 with probability (1−p), i.e., I(p) follows a binomial distribution
with n and k fixed to 1. I(p)N(μ, σ2) represents abrupt drift of random mag-
nitude. This drift contains a fixed linear and a stochastic component and is
therefore more realistic than the other two. In our experiments, we vary a
and μ while we fix σ and p. Results are presented in Figures 3(e) and 3(f).

For each of these three types of drift, we fixed a set of values for the parameters
that are varied, which resulted in 97 parameter sets. For each of them, 10 data
sets were created, with each data set containing 1,000 examples. The values of the
xn were drawn from a uniform distribution, while the wk(t) were calculated and
the weighted sum yielded the associated yn as defined above. We then simulated
the repeated estimation of a regression model from each of these data sets and
recorded the root squared error for overall predictions from the ensemble. The
results are distributions of the error per regression approach over all parameter
sets and they are depicted in Figure 3 with one row of box plots per drift type.
Since the variance in the error differs significantly, the results are shown on two
scales. The maximum displayed root squared error RSEmax is 1, 000 and 100 in
the left and right column respectively.

In each diagram, five box plots are shown. The labels on the x-axis correspond
to the following five approaches:

bl. This is the baseline approach of estimating a regression model from the
complete data set whenever a new example is added. This approach is clearly
the worst because of the large median error and large error variance for all
three drift types. This approach is neither accurate nor stable. However,
even for this approach small errors were observed, which can be explained
by the dependence of the error on the value of the independent variables
xn. This was illustrated in Figure 1, where the smallest error for the model
estimated from the whole data set is zero at the intersection with the most
recent underlying function.

win. The windowing approach achieved very good results on the linear data
set, where the median and the first quartile are the lowest of all approaches.
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This changes for the autoregressive data set where the median and the first
quartile are equal to our proposed approach (labeled as ens-g). For the
mixture drift, window is the second-best approach. These results also confirm
our assumption that a restriction of the data set used for estimation can
result in a smaller prediction error.

ens-e. This approach is identical to our proposed ensemble regression scheme,
except that it does not use the calculated weights. Instead, the overall pre-
dictions are determined as an equally weighted linear combination. The ap-
proach outperforms baseline on the linear and the autoregressive data sets,
but it is worse on the mixture drift data set. This can be explained by the
relatively strong changes caused by the abrupt component in the mixture
drift, which invalidates members very fast. Since it takes some time until the
members are evicted, they contribute a large error that is propagated into
the final prediction, since all weights are equal.

ens-l. This approach is identical to our proposed ensemble regression scheme,
except that it employs the local performance ratio posm(posm +negm)−1 as
weight, which seems to be an intuitive choice. However, the variance of the
prediction error is even larger than when using equal weights.

ens-g. This is the approach proposed in this paper and it uses the global weight
posmpos−1

T . It yields the best overall performance, since it has the lowest
error variance for all three drift types. For linear and autoregressive drift, the
median error is slightly worse or equal to the median error of the windowing
approach. However, the median error is significantly lower for the mixture
drift.

In a second set of examples, we examined the influence of the maximum number
of ensemble members emax and the eviction ratio tr on the distribution of the
prediction error. We executed the simulation using different values for emax and
tr on the data sets of all three drift types. The results were similar with respect
to the observed influence. We therefore show only the error distribution based
on the linear drift data sets.

In Figure 4(a) the error distribution using different values of emax is depicted.
It can be seen that emax has only a limited influence on the prediction error,
although the median error and the error variance seem to increase slightly with
increasing emax. However, we cannot conclude that using fewer members is a
good strategy, since a smaller value of emax causes an increased chance of a
completely unstable ensemble. This situation occurs when all stable members
are evicted at once and new unstable members—being introduced one by one—
still have to gather examples to be regarded as stable. In our experiments, we
defined members with a window size smaller than 4 as unstable, since we used
linear regression and since 3 coefficients had to be estimated. Otherwise, the
underlying equation system would be under-determined and the resulting model
insufficient. Using larger emax can reduce the likelihood of this situation. We
can only conclude that future work is required for application settings were this
behavior of our approach is unacceptable. In the first set of experiments, depicted
in Figure 3, emax was set to 10.
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(a) Linear drift; RSEmax = 1, 000 (b) Linear drift; RSEmax = 100

(c) Autoreg. drift; RSEmax = 1, 000 (d) Autoreg. drift; RSEmax = 100

(e) Mixture drift; RSEmax = 1, 000 (f) Mixture drift; RSEmax = 100

Fig. 3. Distribution of root squared error for different types of drift
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(a) Influence of emax (b) Influence of tr

Fig. 4. Parameter influence on the distribution of root squared error

In Figure 4(b), the influence of the eviction ratio is depicted. Obviously, a
higher value of tr results in a lower median error and a decreased error variance.
In the first set of experiments, depicted in Figure 3, tr was set to 0.2. We did
not study the impact of te further, since—as we argued in Section 3—if possible,
it should be set using application knowledge. In the first set of experiments, we
fixed it to be 0.1% of the total spread of the values of y, which translates to an
absolute value of te = 5.

In Figure 5, we report results on a real-world data set from semiconductor
manufacturing. To prevent any deductions about the underlying processes, we
just report signed, relative errors. The data set is high-dimensional, non-linear
and contains a relatively small continuous drift. The baseline approach yields
a median error of about 1.3%, which is reduced to −0.1% by using ensemble
regression . The model yielded by ensemble regression is therefore much better
centered, while the error variance is identical.

●

●●

●

●●

baseline ensemble

−
10

0
5

10
15

20

Fig. 5. Distribution of relative error for a real-world data set

Final edited form was published in "Machine Learning and Data Mining in Pattern Recognition. 
 6th International Conference. Leipzig 2009", S. 221-235, ISBN 978-3-642-03070-3 

https://doi.org/10.1007/978-3-642-03070-3_17 

13 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



5 Related Work

In this paper, we consider the problem of estimating a regression model from
data of a drifting process, whereby the most recent underlying function is to be
approximated. To the best of our knowledge, this problem has not been consid-
ered so far. Current approaches in industrial applications can often use specially
designed control models [5] to correct process drift and therefore eliminate the
cause of the type of error investigated in this paper. Hence, standard regression
techniques can be applied there. However, these approaches are not feasible in
our application setting because of the indeterministic nature of drift and still
ongoing theoretical research on the underlying physical phenomenons [1,2,3].

Concept drift is a related problem in classification and was introduced in [6].
Concept drift occurs when a hidden context exists and changes while examples
are gathered. Changes in the hidden context can induce changes in the target
concept. Analogous, in our problem setting, the underlying function changes
and therefore influences the regression models estimated from a yielded data
set. A number of approaches for handling concept drift exist. In [7] a system is
presented that uses a sliding window of examples to construct concept descrip-
tions using a description language. In [8] an algorithm for mining decision trees
from a sliding window on a continuously changing data stream was presented.
Adaptation to concept drift is performed by replacing subtrees or by building
alternative subtrees. All these approaches enhance particular classification meth-
ods to be able to adapt to concept drift. In [9,10] an approach is presented where
ensembles of base classifiers are built from sequential chunks of data. Using such
jumping windows is not appropriate in our application context, since the newest
examples always have to be incorporated. In [11] dynamic weighted majority was
proposed for tracking concept drift. It uses an ensemble of base classifiers that
are built from growing windows. However, the different learning task made it
necessary to use a different eviction criterion and weighting scheme. Regarding
the latter, members start with a fixed weight and each false prediction is penal-
ized by reducing the weight by a constant fraction and normalizing the weights
afterwards. In this approach, new members have a larger influence than in our
approach, where the predictive weight is gathered slowly.

6 Conclusion and Outlook

Regression is an important, widely used tool, although the implicit assumption
of a stationary joint distribution may not be met. Using regression on data from
drifting processes results in a model that does not represent the current state
of the process well. In application areas like semiconductor manufacturing, this
induces an error that can be critical. In this paper, we presented ensemble regres-
sion, an approach that uses a set of regression models estimated from different
ranges of the complete data set. The ensemble is maintained according to the
predictive performance of the members, thereby yielding a low prediction error
and a low error variance. In future work, we plan to widen our empirical study
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to the examination of the effects of drift and the performance of our approach on
non-linear dependencies as well. This will be accompanied by the use of nonlin-
ear and nonparametric regression techniques as base learners. Additionally, we
plan to investigate the use of sophisticated heuristics for adding new members
to the ensemble.
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