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Abstract. The new approach of relevant feature selection in machine learning is 
proposed for the case of ordered features. Feature selection and regularization 
of decision rule are combined in a single procedure. The selection of features is 
realized by introducing weight coefficients, characterizing degree of relevance 
of respective feature. A priori information about feature ordering is taken into 
account in the form of quadratic penalty or in the form of absolute value penalty 
on the difference of weight coefficients of neighboring features. Study of a 
penalty function in the form of absolute value shows computational complexity 
of such formulation. The effective method of solution is proposed. The brief 
survey of author’s early papers, the mathematical frameworks, and 
experimental results are provided. 
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1   Introduction 

The pattern recognition problem in the presence of a large amount of features (in 
comparing with training set size) known as the “curse of dimensionality”. There are 
two standard approaches to tackle the case, namely, by a priori restrictions 
impositions (decision rule regularization) or dimensionality reduction by most 
informative features selection. The approach of joining these two techniques is 
proposed in the paper. The selection of informative features in pattern recognition 
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problem in the case of their ordering is considered. Feature ordering is typical for 
tasks of signal and image learning. Only one-dimensional ordering is accented in this 
work. Indeed, most of techniques for feature selection consider feature vector as non-
ordered set of numbers, moreover a lot of methods accept hypothesis that features are 
independent. However, there is exists a number of tasks where features are 
consecutive measurements along the axis of some argument, for example, observation 
of some signal along time axis, components of a spectrum, etc.  

In previous articles the authors already proposed methods of decision rule 
regularization and methods of feature selection. In the early papers [1,2] the method 
of regularization which takes into account a priori information about feature 
interrelation was described. At the same time the research of modality combination in 
data mining was developed, and actually the effective technique for informative 
feature selection was suggested [3-5]. Taking into account a priori information about 
one-dimensional ordering of features directly for a selection method requires 
development of modified procedures. Such attempt was done in [6] where the model 
of feature interrelation was represented as quadratic penalty on difference between the 
informative weights of neighbor features. In this paper we will investigate the new 
penalty criterion in the form of the absolute value function.  

It should be noted, that the method of potential functions is chosen as a theoretical 
background for suggested algorithms. The reason for such selection is high popularity 
of the method as the basis for support vector machine learning [7]. 

The paper has the following structure – in the second section the idea of the 
support vector machine learning will be briefly reminded. In the third section the 
effective feature selection procedure regardless to their relationship will be described. 
The fourth section focuses on the idea of the learning regularization for the case of 
ordered features. The next three sections are devoted to algorithms of regularized 
order-based feature selection. Experimental results are presented in the eighth section. 

2   SVM – the Basis for Modifications 

We will develop methods of learning with respect to structural relations between 
features by insertion of additional penalties into existing well known criteria. The 
incorporated into the model coefficient of regularization will define the balance 
between “classical” approach and regularization based on a priory information. 

Let ( , ), 1,...,j jg j N=x  – will be a training set, where ( , 1,..., ) n
ix i n= = ∈x R  – 

real-valued feature vector of recognition object, { 1}g = ±  – index of classification; 
{ , 1,..., } n

ia i n= = ∈a R  – directional vector of the optimal separable hyperplane and 
b∈R  is its shift defined as decision of well-known criterion [7]: 
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Here the non-negative parameter C  and auxiliary variables jδ , 1,...,j N= , 
introduced for the case of linear non-separability of objects of two classes. Usually 
the task (1) is solved in the dual form:  
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as the task of quadratic programming related to the non-negative Lagrange multipliers 
, 1,...,j j Nλ = . The relation of coefficients of the directional vector of the optimal 

separable hyperplane and Lagrange multipliers is defined as follows: 

: 0

, 1,..., .
j

i j j ij
j

a g x i n
λ >

= λ =∑  (3) 

The simplicity of algorithmic and numerical realization of this method, the evident 
reference to the so-called support elements in the training set (only they, in fact, form 
the separable hyperplane), and good experimental results have made this formulation 
of the pattern recognition problem the most popular in recent times. These are the 
reasons for such criterion to be the basis for constructing our method of feature 
selection in the case of feature ordering or interrelation. 

It is necessary to note that formulation (1) is most simple one, so to speak the 
academic one from the number of criteria, joined by the common title of support 
vector machines. In this form the solution based on inner products between feature 
vectors of objects. The decision rule is linear in the initial feature space. There are 
exist formulations with another type of kernels, another kind of penalties for non-
separable cases. There are discussions in literature about relationship of SVM and 
method of potential functions [3], methods of featureless pattern recognition [5]. For 
clarity of our reasoning we will rely on the canonical formulation of the problem (1). 

3   Feature Selection Based on Potential Functions Combining  

The method of the potential functions (or kernels) combining in featureless pattern 
recognition and regression estimation was published in [3,4]. It has been shown that 
this technique can be transferred on the case where objects are presented by their 
features and can be efficiently applied as a non-iterative informative feature selection. 
The non-negative weights 0, 1,...,ir i n≥ = , each of which is corresponds to 
component of the directional vector of the sought for separable hyperplane, are 
incorporated into the “classical” Vapnik’s (1) SVM criterion as it was proposed in [8]: 
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here µ  is non-negative parameter of selectivity [9]. 
We propose to solve the problem of minimizing criterion (4) using the method of 

Gauss-Seidel by separating the variables into two groups: first – , 1,..., , ,ia i n b=  
0, 1,...,j j Nδ ≥ = , and second 0, 1,...,ir i n≥ = , and implement step-by-step 

minimization criteria for one group of variables, with a fixed second one.  
While coefficients , 1,...,ir i n=  are fixed the initial problem is actually reduced to 

the classical training problem by support vectors. The dual form of criterion related to 
non-negative Lagrange multipliers , 1,...,j j Nλ =  almost coincide with criterion (2) 
of SVM: 
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The difference between the last criterion and “classical” formulation is the 
presence of additional coefficients , 1,...,ir i n=  in the matrix of quadratic form. The 
restrictions remain unchanged, while coefficients of the directional vector of the 
separable hyperplane are calculated using the rule: 

1
, 1,...,N

i i j j ijj
a r g x i n

=
= λ =∑ . 

While parameters , 1,..., , , 0, 1,...,i ja i n b j N= δ ≥ =  are fixed the calculation of 
weighted coefficients is utterly simple: 
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The stopping rule of the iterative process of learning can be defined, for example, 

on the condition of convergence of sequences , 1,...,ir i n= : 1

1
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− < ε∑ , 

0ε > . 
It is necessary to make a reservation that introducing the notion of “informative 

feature” we do not have in mind the actual informational characteristic of feature like 
it was introduced for Akaike informational criterion or Shannon entropy criterion. We 
only suggest that for the whole set of measurable features there are exist subsets of 
features which adequate to either data analysis task. As a synonym of “informative 
feature” it is possible to consider term of “adequate feature” or “relevant feature”. 
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4   The Regularization of Signal Recognition: the Principle of 
Decision Rule Smoothness 

In early works [1] the approach to decision rule regularization was proposed by taking 
into account a priori information about the features ordering. To make the learning 
process prefer decision rules with smooth changing of coefficients of the directional 
vector of the separable hyperplane we propose to incorporate the additional quadratic 
penalty on difference of neighboring component to the criterion (1):  

2 2
1 1 1

1 2 1

( ) min( ,..., , , ,..., ).
n n N

i i i j n N
i i j

a a a C a a b−
= = =

+α − + δ → δ δ∑ ∑ ∑  (7) 

Here and further coefficient 0α ≥  define the ratio of penalty on unsmoothness of 
ordering coefficients of the sought for optimal separable hyperplane. From the 
computational point of view both primal and dual tasks remain quadratic. The 
difference from the classical criterion is in incorporating the additional component 
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Therefore, it is more convenient to write the objective function in the problem of 
finding parameters of the optimal separable hyperplane (7) in the vector form:  
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under the same restrictions. It is obvious that matrix B  is positive defined. The 
criterion in dual form also does not undergo changes, but the matrix of quadratic form 
will be slightly corrected: 
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The directional vector of the optimal separable hyperplane will be calculated by 
following formula: 1

: 0

( )
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= + α λ∑a I B x . 
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5   Selection of Subsets of Ordering Features 

The feature selection procedure described in third section does not take into account 
the specificity of tasks of signal and image analysis. The classical formulation of the 
pattern recognition problem suppose that objects of recognition are represented by 
their features and it the order they where recorded does not matter. Roughly speaking, 
if somebody reorders components of feature vectors then the result of building of 
decision rule or the result of feature selection will not change. But we also draw 
attention to following fact: for some specific objects like signals and images 
peculiarity of their registration, namely, neighborhood of observations 
(samples/pixels) can be taken into account. Imposing such restrictions is called 
regularization (sometimes stabilizing) of decision rules of recognition. How to take 
into account such structural restrictions on a directional vector is shown in Section 4. 
In this section we will demonstrate how it is possible to join these two techniques: 
feature selection and assumption that on the set of features there are exist more or less 
informative groups. 

Let modify criterion (4), namely, we will add extra penalty on difference of 
neighboring weighted coefficients 0, 1,...,ir i n≥ =  under the previous constraints:  
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We propose to solve the problem of minimizing criterion (8) using the method of 
Gauss-Seidel by separating the variables into two groups: first – , 1,..., , ,ia i n b=  

0jδ ≥ , 1,...,j N= , and second 0, 1,...,ir i n≥ = , and implement step-by-step 
minimization criteria for one group of variables, with a fixed second one. There is no 
difficulty to certain that if coefficients , 1,...,ir i n=  are fixed than solution in dual 
form is coincide with task (5). But finding just informative weights would not be so 
simple as (6). Therefore, for the search of weight coefficients at the each step of 
coordinate-wise optimization it is necessary to find the minimum of following 
criterion (here, for short, we introduce new notions 2 1/i ic a= + µ , 1,...,i n=  and 

1 1/d = µ + + µ , remind that on this substep of iterative procedure values of ia , 
1,...,i n=  already found and fixed): 
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In the two next sections we will consider different ways of penalties on differences 
between weighted coefficients associated with neighboring ordered features of 
recognition object (for example, signal), namely we will consider penalties in the 
form of quadratic function and in the form of absolute value function. It is necessary 
to note, that in this approach the a priori information about feature ordering possess 
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restrictions on weighted coefficients of feature informativeness, but not on 
components of directional vector of the separable hyperplane as, for example, in [2]. 

6   Feature Subset Selection with Taking into Account Quadratic 
Difference between Neighboring Weight Coefficients 

In this section we will consider situation where the penalty function is quadratic: 
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The search of minimum of (10) reduced to the solution of system of nonlinear 
equations for the parameters , 1,...,ir i n= : 
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Each equation in this system includes only 2-3 unknown variables. The method of 
simple iterations can be used to solve the problem. 

7   Feature Subset Selection with Taking into Account Absolute 
Value of Difference between Neighboring Weight Coefficients  

Numerous experiments have shown that taking into account the interrelation between 
features in the form of a quadratic penalty «dilutes» an informative subarea in the 
space of the ordered features. To avoid this disadvantage, it was decided to use the 
absolute value function as the penalty on difference of weight coefficients. 
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The search algorithm for optimum values for the coefficients of the direction vector 
remains the same, but the minimization of criterion concerning weight factors 
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0, 1,...,ir i n≥ = , represents a new problem. Let us substitute variables: 
ln , 1,i iu r i n= = K , then the criterion (12) can be rewritten in the following form: 
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Let us denote the functions of one variable in criterion (13) as ( )i iuψ = iu
i ic e du− + , 

and functions of two variables as 1 1( , )i i i i iu u u u− −γ = α − . Then the objective function 
in criterion (13) takes more general form: 
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The objective function (14) represents the sum of functions no more than two 
variables. We will call functions of this structure pair-wise separable. The pair-wise 
separability of the objective function (14) allows us to take advantages of the 
minimization procedure based on a principle of Dynamic Programming [11]. The 
procedure in this case is based on a recurrent decomposition of the initial problem of 
optimization of a function of n  variables into a succession of n  elementary 
problems, each of which consists in optimization of a function of only one variable. 
The elementary functions of one variable ( )i iJ u% , to be minimized at each step of 
minimization of separable function are called here Bellman functions, as well as in 
the classical dynamic programming procedure.  

The procedure of dynamic programming finds a global minimum of pair-wise 
separable function in two passes, at first in forward direction, and then in the 
backward direction.  

On forward pass 1,...,i n=  the Bellman functions are determined in accordance 
with forward recurrent relation 

Last Bellman function ( )n nJ u%  directly shows, how the minimum value of 
criterion, as a whole, depends on value of the variable nu  and therefore, its optimum 

value can be found as ˆ arg min ( )n n n
un
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which is the inverted form of forward recurrent relation (15).  
Application of this relation on the backward move is obvious:  

1 1ˆ ( )i i tu u u− −= % , 1, ,1i n= − K  (17) 
Thus, regardless of the form of functions ( )i iuψ  and 1( , )i i iu u −γ  in pair-wise 

separable objective function, the algorithm of the dynamic programming finds the 
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point of its global minimum, if, of course, such combination of values of variables 
exists within the area of their variation, executing the known number of operations, 
proportional to the number of variables. 

In the case of continuous variables, e.g. if iu ∈R , a numerical realization of the 
dynamic programming procedure, is possible only if there exists a finitely 
parameterized function family ( , )J u q%  concordant with node functions ( )i iuψ  and 
edge functions ( )1i i iu u−γ ,  in the sense that Bellman functions ( )i iJ u%  belong to this 
family at each step. In this case, the forward pass of the procedure consists in a 
recurrent re-evaluating of parameters iq%  that completely represent the Bellman 
functions ( ) ( , )i iJ u J u= q% % % . In particular, as is shown in [11], if the node and edge 
functions are quadratic, the Bellman functions will be quadratic too. The parametric 
representation is also possible in the case of using absolute value of difference of 
adjacent variables instead of quadratic node functions [12]. 

It can be easily proven, in such a case, that if the node functions ( )i iuψ  and edge 
functions 1( , )i i iu u−γ  are convex, all the Bellman functions are also convex. As it is 
shown in [12], if the function 1( , )i i iu u−γ  in the objective function (14) has the form 

1 1( , )i i i i iu u u u− −γ = α − , 0α > , and functions ( )i iuψ  are convex and everywhere 
differentiable in the range of definition, the procedure of dynamic programming can 
be rewritten in terms of recurrent recalculation of derivatives of the Bellman 
functions, and the forward recurrent relation (15) takes the form: 
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where 1iu−α
−%  and 1iuα

−%  can be obtained as the solution of equations 
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Then, backward recurrent relation (16) gets the simple form: 
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When parameters ic  and d  are nonnegative, the functions ( )i iuψ = iu
i ic e du− +  are 

convex. The derivative of the first Bellman function 1 1( )J u%  is equal to the derivative 

of the function 1 1( )uψ , i.e. 1 1( )J u′% 1 1exp( )c u d= − − + . In accordance with the 
expression (18), the derivatives of the other Bellman functions are composed from the 
fragments of functions in the form of exp( )k kq u p− + , where k  is the number of the 
fragment. Therefore the boundaries of the fragments, as well as parameters kq and kp  
for each fragment k , constitute parameters of the Bellman function derivatives. The 
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leftmost boundary of the fragments coincides with 1iu−α
−%  and the rightmost boundary 

will coincides with 1iuα
−% .  

Thus, for the objective function (13) there exists a parameterized Bellman 
functions family, concordant with node functions ( )i iuψ  and edge functions 

( )1i i iu u−γ , , that makes it possible to use the non-iterative minimization procedure 
(15-17) on the basis of Dynamic Programming principle, described above.  
1. 1 1 1 1( ) exp( )J u c u d′ = − − +% , 1 1ln[( ) / ]u d c−α = − +α% , 1 1ln[( ) / ]u d cα = − −α% . 
2. For 2,i n= K ,  
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3. nu% : ( ) 0n nJ u′ =% % . 
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One can easily see that the evaluated value of 1iu −%  is completely defined by the value 
of adjacent variable iu  in the range of 1 1i i iu u u−α α

− −< <% % , and is independent of it at the 
rest of the value area of the variable iu . It is just the fact that gives such a procedure 
the ability to preserve abrupt changes of the parameters, and accordingly not "dilute" 
an informative subarea in the space of the ordered features.  

8   Experimental Results 

8.1   Experiments on Model Data 

For the experimental research of proposed algorithms test data were generated as 
described below. Two classes of recognition data were distributed near two centers. 
The centre of the first class is 100 artificial observations with values equal to zero. 
The centre of second class differs from the first one on interval from 70-th to 80-th 
samples. Second signal has values of 0.4 instead of 0 (Fig.1). 

The examples of weight coefficients values , 1,...,100ir i =  for the SVM, “pure” 
feature selection, and selection of feature subsets with penalties in form of quadratic 
function and absolute value function are shown in Fig. 2. 
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Fig. 1.  Centers of first and second classes (left) and examples of recognition objects (right). 

 

 

Fig. 2. Examples of weight coefficients values (from the top): SVM (1), SVM with feature 
selection (4), SVM and feature subset selection taking into account quadratic difference of 
neighbor weight coefficients (10), SVM and feature subset selection taking into account 
absolute value difference of neighbor weight coefficients (12). 
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Experimental results in the form of average error rate on test sets for different sizes 
of training sets (20-200 objects) are shown in Fig.3. It is clear that adding of the 
regularization, based on the search of informative subarea in feature space (criterion 
(10) – dotted line, criterion(12) – dashed line) lead to better predicted properties of 
decision rule as standard SVM (solid line). 

 

Fig. 3.  Experimental results (error rate on test set vs. number of objects in training set). 

8.2   Experiments on Real Data 

In standard approaches of feature selection there is no take proper account of feature 
ordering in the tasks of signal or image analysis. The classical statement of pattern 
recognition theory is guesses that objects are represented by their features and the 
order of features is unimportant. Roughly speaking, if order of components in feature 
vector will be changed the results of decision rule making or feature selection will 
stay stable. Moreover, for example, in tasks of NIPS 2003 Feature Selection 
Challenge [14] features of datasets (even in “signal” tasks) were randomly reordered. 
The organizers explain this reordering of features by purity of competition 
experiment. This fact makes difficulties for finding real-world tasks for experiments. 
After enduring search the Data on cardiac Single Proton Emission Computed 
Tomography (SPECT Heart Data Set) [15] were chosen as experimental material. 
Files of data are available in UCI machine learning repository. Data are groups of 22 
features measured on patients in rest and stress. Each of the patients is classified into 
two categories: normal and abnormal. Data set is divided on two subsets – training 
(87 objects) and test (80 objects). In [15] two-class task were investigated by CLIP3 
algorithm and accuracy on test set of 84 percent were demonstrated. Examples of 
recognition objects of different classes are shown in Fig.4. 
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Fig. 4. Example of different recognition objects from SPECT database. 

The results of applying proposed methods of selection of subset of features for 
SPECT data are demonstrated in Table 1. 

Table 1. Accuracy for objects of test set for database SPECT 

Algorithm Accuracy, % 
SVM 72.19 
SVM+features selection 74.3 
SVM+subsets of features selection 
(quadratic function) 77.4 

SVM+subsets of features selection 
(absolute value function) 78.1 

 
It is clear that using technique of subsets of features selection is improving 

predictive power decision rules; however we can’t exceed best result of 84 percent of 
accuracy on the test set published in [15]. 

The choice of optimal value for the depth of regularization parameter α  remains 
an open question. We used the procedure of cross validation to find the best value.  

9   Conclusion 

Article shows a way to combine relevant feature selection and restrictions on such 
selection, reasonable for the solved task, in one criterion. The summarizing review of 
our early publications, which actually lead to the proposed idea, has done. The basic 
idea of the proposed approach is to formalize idea of taking into account the one-
dimensional ordering of features, which is typical for the tasks of signals analysis. 
The criterion is constructed and the scheme of its numerical optimization is offered. It 
is necessary to provide additional comprehensive analysis of the behavior of the 
proposed algorithm of selection of subset of relevant features in both modeling and 
real data experiments. It also seems reasonable to extend the methodology to the case 
of the two dimensional ordering, that is especially important for image analysis tasks. 
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