Skip to main content

Computational Heuristics for Simplifying a Biological Model

  • Conference paper
Book cover Mathematical Theory and Computational Practice (CiE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Included in the following conference series:

  • 863 Accesses

Abstract

Computational biomodelers adopt either of the following approaches: build rich, as complete as possible models in an effort to obtain very realistic models, or on the contrary, build as simple as possible models focusing only on the core aspects of the process, in an effort to obtain a model that is easier to analyze, fit, and validate. When the latter strategy is adopted, the aspects that are left outside the models are very often up to the subjective options of the modeler. We discuss in this paper a heuristic method to simplify an already fit model in such a way that the numerical fit to the experimental data is not lost. We focus in particular on eliminating some of the variables of the model and the reactions they take part in, while also modifying some of the remaining reactions. We illustrate the method on a computational model for the eukaryotic heat shock response. We also discuss the limitations of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology, 2nd edn. Garland Science (2004)

    Google Scholar 

  2. Ciocca, D.R., Calderwood, S.K.: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress and Chaperones 10(2), 86–103 (2005)

    Article  Google Scholar 

  3. El-Samad, H., Kurata, H., Doyle, J., Gross, C.A., Khamash, M.: Surviving heat shock: control strategies for robustness and performance. PNAS 102(8), 2736–2741 (2005)

    Article  Google Scholar 

  4. El-Samad, H., Prajna, S., Papachristodoulu, A., Khamash, M., Doyle, J.: Model validation and robust stability analysis of the bacterial heat shock response using sostools. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 3766–3741 (2003)

    Google Scholar 

  5. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: Copasi – a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  6. Kampinga, H.K.: Thermotolerance in mammalian cells: protein denaturation and aggregation, and stress proteins. J. Cell Science 104, 11–17 (1993)

    Google Scholar 

  7. Kline, M.P., Morimoto, R.I.: Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Molecular and Cellular Biology 17(4), 2107–2115 (1997)

    Article  Google Scholar 

  8. Kurata, H., El-Samad, H., Yi, T.M., Khamash, M., Doyle, J.: Feedback regulation of the heat shock response in e.coli. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp. 837–842 (2001)

    Google Scholar 

  9. Liu, B., DeFilippo, A.M., Li, Z.: Overcomming immune toerance to cancer by heat shock protein vaccines. Molecular cancer therapeutics 1, 1147–1151 (2002)

    Google Scholar 

  10. Lukacs, K.V., Pardo, O.E., Colston, M.J., Geddes, D.M., Eric WFW Alton: Heat shock proteins in cancer therapy. In: Habib (ed.) Cancer Gene Therapy: Past Achievements and Future Challenges, pp. 363–368 (2000)

    Google Scholar 

  11. Peper, A., Grimbergent, C.A., Spaan, J.A.E., Souren, J.E.M., van Wijk, R.: A mathematical model of the hsp70 regulation in the cell. Int. J. Hyperthermia 14, 97–124 (1997)

    Article  Google Scholar 

  12. Lepock, J.R., Frey, H.E., Ritchie, K.P.: Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. The Journal of Cell Biology 122(6), 1267–1276 (1993)

    Article  Google Scholar 

  13. Lepock, J.R., Frey, H.E., Rodahl, A.M., Kruuv, J.: Thermal analysis of chl v79 cells using differential scanning calorimetry: Implications for hyperthermic cell killing and the heat shock response. Journal of Cellular Physiology 137(1), 14–24 (1988)

    Article  Google Scholar 

  14. Petre, I., Mizera, A., Hyder, C.L., Mikhailov, A., Eriksson, J.E., Sistonen, L., Back, R.-J.: A new mathematical model for the heat shock response. In: Kok, J. (ed.) Algorithmic bioprocesses, Natural Computing. Springer, Heidelberg (2008)

    Google Scholar 

  15. Petre, I., Hyder, C.L., Mizera, A., Mikhailov, A., Eriksson, J.E., Sistonen, L., Back, R.-J.: A simple mathematical model for the eukaryotic heat shock response (manuscript, 2009)

    Google Scholar 

  16. Graham Pockley, A.: Heat shock proteins as regulators of the immune response. The Lancet 362(9382), 469–476 (2003)

    Article  Google Scholar 

  17. Rieger, T.R., Morimoto, R.I., Hatzimanikatis, V.: Mathematical modeling of the eukaryotic heat shock response: Dynamics of the hsp70 promoter. Biophysical Journal 88(3), 1646–1658 (2005)

    Article  Google Scholar 

  18. Tomlin, C.J., Axelrod, J.D.: Understanding biology by reverse engineering the control. PNAS 102(12), 4219–4220 (2005)

    Article  Google Scholar 

  19. Workman, P., de Billy, E.: Putting the heat on cancer. Nature Medicine 13(12), 1415–1417 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petre, I., Mizera, A., Back, RJ. (2009). Computational Heuristics for Simplifying a Biological Model. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics