Skip to main content

Speeding Up Local-Search Type Algorithms for Designing DNA Sequences under Thermodynamical Constraints

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5347))

Abstract

We present general techniques to speed up local search type algorithms for designing DNA sequences which satisfy thermodynamical constraints based on the minimum free energy (MFE) criteria. MFE based constraints are generally difficult to handle in local search type algorithms, since these algorithms typically require a large number of time-consuming calculations of MFE to find an improved solution. In this paper, we introduce general techniques to reduce such calculations of MFE. The ideas are based on the reuse of MFE computations and fast approximation of MFE, both of which fit the nature of local search type algorithms. In computational experiments, our techniques succeeded in speeding up typical local search type algorithms without degenerating the original performance of the algorithms.

This research partly received financial support from Scientific Research Fund of Ministry of Education, Culture, Sports, Science and Technology (KAKENHI).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Andronescu, M., Zhang, Z., Condon, A.: Secondary Structure Prediction of Interacting RNA Molecules. J. Mol. Biol. 345(5), 987–1001 (2005)

    Article  Google Scholar 

  3. Andronescu, M., Fejes, A., Hutter, F., Condon, A., Hoos, H.: A New Algorithm for RNA Secondary Structure Design. J. Mol. Biol. 336(3), 607–624 (2004)

    Article  Google Scholar 

  4. Arita, M., Nishikawa, A., Hagiya, M., Komiya, K., Gouzu, H., Sakamoto, K.: Improving Sequence Design for DNA Computing. In: Proc. of 5th Genetic Evol. Comput. Conf. (GECCO), pp. 875–882 (2000)

    Google Scholar 

  5. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Computing 20(3), 263–273 (2002)

    Article  MATH  Google Scholar 

  6. Asahiro, Y.: Simple Greedy Methods for DNA Word Design. In: Proc. of 9th World Multi-Conference on Systemics, Cybernetics and Informatics, vol. 3, pp. 186–191 (2005)

    Google Scholar 

  7. Deaton, R., Kim, J., Chen, J.: Design and test of noncrosshybridizing oligonucleotide building blocks for DNA computers and nanostructures. Appl. Phys. Lett. 82(8), 1305–1307 (2003)

    Article  Google Scholar 

  8. Flamm, C., Hofacker, I., Maurer-Stroh, S., Stadler, P., Zehl, M.: Design of multistable RNA molecules. RNA 7(2), 254–265 (2001)

    Article  Google Scholar 

  9. Garzon, M., Deaton, R., Neathery, P., Franceschetti, D., Murphy, R.: A new metric for DNA computing. In: Proc. of the 2nd Genetic Programming Conf., pp. 472–478 (1997)

    Google Scholar 

  10. Garzon, M., Phan, V., Roy, S., Neel, A.: In search of optimal codes for DNA computing. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 143–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Hernandez, R., Hoos, H., Condon, A.: Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinformatics 8(1), 34 (2007)

    Article  Google Scholar 

  12. Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast Folding and Comparison of RNA Secondary Structures. Monatsh. Chem. 125, 167–188 (1994)

    Article  Google Scholar 

  13. Kashiwamura, S., Kameda, A., Yamamoto, M., Ouchi, A.: Two-Step Search for DNA Sequence Design. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 87(6), 1446–1453 (2004)

    Google Scholar 

  14. Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M.: DNA sequence design by dynamic neighborhood searches. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 157–171. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M.: Dynamic neighborhood searches for thermodynamically designing DNA sequence. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 130–139. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Lyngsø, R., Zuker, M., Pedersen, C.: Fast evaluation of internal loops in RNA secondary structure prediction. Bioinfomatics 15, 440–445 (1999)

    Article  Google Scholar 

  17. Rose, J., Deaton, R., Suyama, A.: Statistical thermodynamic analysis and design of DNA-based computers. Natural Computing 3, 443–459 (2004)

    Article  MathSciNet  Google Scholar 

  18. Shorteed, M., Chang, S., Hong, D., Phillips, M., Campion, B., Tulpan, D., Andronescu, M., Condon, A., Hoos, H., Smith, L.: A thermodynamic approach to designing struct-free combinatorial DNA word set. Nucl. Acids Res. 33(15), 4965–4977 (2005)

    Article  Google Scholar 

  19. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucl. Acids Res. 33(3), 903–911 (2005)

    Article  Google Scholar 

  20. Tulpan, D., Hoos, H., Condon, A.: Stochastic Local Search Algorithms for DNA Word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 229–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Tulpan, D., Hoos, H.: Hybrid Randomized Neighborhoods Improve Stochastic Local Search for DNA Code Design. In: Proc. Advances in Artificial Intelligence, 16th Conference of the Canadian Society for Computational Studies of Intelligence. LNCS, vol. 671, pp. 418–433. Springer, Heidelberg (2003)

    Google Scholar 

  22. Tulpan, D., Andronescu, M., Changf, S., Shortreed, M., Condon, A., Hoos, H., Smith, L.: Thermodynamically based DNA strand design. Nucl. Acids Res. 33(15), 4951–4964 (2005)

    Article  Google Scholar 

  23. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  24. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl. Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawashimo, S., Kaow Ng, Y., Ono, H., Sadakane, K., Yamashita, M. (2009). Speeding Up Local-Search Type Algorithms for Designing DNA Sequences under Thermodynamical Constraints. In: Goel, A., Simmel, F.C., Sosík, P. (eds) DNA Computing. DNA 2008. Lecture Notes in Computer Science, vol 5347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03076-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03076-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03075-8

  • Online ISBN: 978-3-642-03076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics