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Abstract. We introduce the class of rational Kripke models and study
symbolic model checking of the basic tense logic Kt and some extensions
of it in models from that class. Rational Kripke models are based on (gen-
erally infinite) rational graphs, with vertices labeled by the words in some
regular language and transitions recognized by asynchronous two-head
finite automata, also known as rational transducers. Every atomic propo-
sition in a rational Kripke model is evaluated in a regular set of states.
We show that every formula of Kt has an effectively computable regu-
lar extension in every rational Kripke model, and therefore local model
checking and global model checking of Kt in rational Kripke models
are decidable. These results are lifted to a number of extensions of Kt.
We study and partly determine the complexity of the model checking
procedures.

1 Introduction

Verification of models with infinite state spaces using algorithmic symbolic model
checking techniques has been an increasingly active area of research over recent
years. One very successful approach to infinite state verification is based on the
representation of sets of states and transitions by means of automata. It is the
basis of various automata-based techniques for model checking, e.g., of linear
and branching-time temporal logics on finite transition systems [23,17], regular
model checking [7], pushdown systems [8,24,11], automatic structures [14,6] etc.
In most of the studied cases of infinite-state symbolic model checking (except for
automatic structures), the logical languages are sufficiently expressive for various
reachability properties, but the classes of models are relatively restricted.

In this paper we study a large and natural class of rational Kripke models,
on which global model checking of the basic tense3 logic Kt (with forward and
backward one-step modalities) and of some extensions thereof, are decidable. The
language of Kt is sufficient for expressing local properties, i.e., those referring to
a bounded width neighborhood of predecessors or successors of the current state.

3 We use the term ‘tense’ rather than ‘temporal’ to emphasize that the accessibility
relation is not assumed transitive, as in a usual flow of time.
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In particular, pre-conditions and post-conditions are local, but not reachability
properties. Kesten et al [15] have formulated the following minimal requirements
for an assertional language L to be adequate for symbolic model checking:

1. The property to be verified and the initial conditions (i.e., the set of initial states)
should be expressible in L.

2. L should be effectively closed under the boolean operations, and should possess
an algorithm for deciding equivalence of two assertions.

3. There should exist an algorithm for constructing the predicate transformer
pred, where pred(φ) is an assertion characterizing the set of states that have a
successor state satisfying φ.

Assuming that the property to be verified is expressible in Kt, the first con-
dition above is satisfied in our case. Regarding the set of initial states, it is
usually assumed a singleton, but certainly an effective set, and it can be repre-
sented by a special modal constant S. The second condition is clearly satisfied,
assuming the equivalence is with respect to the model on which the verification
is being done. As for the third condition, pred(φ) = 〈R〉φ. Thus, the basic modal
logic K is the minimal natural logical language satisfying these requirements, and
hence it suffices for specification of pre-conditions over regular sets of states. The
tense extension Kt enables specification of post-conditions, as well, thus being
the basic adequate logic for specifying local properties of transition systems and
warranting the potential utility of the work done in the present paper. In par-
ticular, potential areas of applications of model checking of the basic tense logic
to verification of infinite state systems are bounded model checking [2], applied
to infinite state systems, and (when extended with reachability) regular model
checking [7] – a framework for algorithmic verification of generally infinite state
systems which essentially involves computing reachability sets in regular Kripke
models.

The paper is organized as follows: in Section 2 we introduce Kt and rational
transducers. Section 3 introduces and discusses rational Kripke models, and in
Section 4 we introduce synchronized products of transducers and automata.
We use them in Section 5 to show decidability of global and local symbolic
model checking of Kt in rational Kripke models and in Section 6 we discuss its
complexity. The model checking results are strengthened in Section 7 to hybrid
and other extensions of Ht(U), for which some model checking tasks remain
decidable.

2 Preliminaries

2.1 The basic tense logic Kt

We consider transition systems with one transition relation R. The basic tense
logic Kt for such transition systems extends the classical propositional logic with
two unary modalities: one associated with R and the other with its inverse R−1,
respectively denoted by [R] and [R−1]. The generalization of what follows to



the case of languages and models for transition systems with many relations is
straightforward. Note that the relation R is not assumed transitive, and therefore
the language of Kt cannot express R-reachability properties.

2.2 Rational transducers and rational relations

Rational transducers, studied by Eilenberg [9], Elgot and Mezei [10], Nivat,
Berstel [1], etc., are asynchronous automata on pairs of words. Intuitively, these
are finite automata with two autonomous heads that read the input pair of words
asynchronously, i.e. each of them can read arbitrarily farther ahead of the other.
The transitions are determined by a finite set of pairs of (possibly empty) words;
alternatively, a transition can be labeled either by a pair of letters (when both
heads make a move on their respective words) or by 〈a, ǫ〉 or 〈ǫ, a〉, where a is a
letter, and ǫ is the empty word (when one of the heads reads on, while the other
is waiting). The formal definition follows.

Definition 1. A (rational) transducer is a tuple T = 〈Q,Σ, Γ, qi, F, ρ〉 where
Σ and Γ are the input and output alphabets respectively, Q a set of states, qi ∈ Q
a unique starting state, F ⊆ Q a set of accepting states and ρ ⊆ Q× (Σ∪{ε})×
(Γ ∪ {ε})×Q is the transition relation, consisting of finitely many tuples, each
containing the current state, the pair of letters (or ε) triggering the transition,
and the new state. Alternatively, one can take ρ ⊆ Q×Σ∗ × Γ ∗ ×Q.

The language recognized by the transducer T is the set of all pairs of words
for which it has a reading that ends in an accepting state. Thus, the transducer
T recognizes a binary relation R ⊆ Σ∗ × Γ ∗.

This is the ‘static’ definition of rational transducers; they can also be defined
‘dynamically’, as reading an input word, and transforming it into an output
word, according to the transition relation which is now regarded as a mapping
from words to sets of words (because it can be non-deterministic).

Example 1. For T = 〈Q,Σ, Γ, qi, F, ρ〉 let: Q = {q1, q2} ; Σ = {0, 1} = Γ ; qi =
q1; F = {q2} ; ρ = {(q1, 0, 0, q1) , (q1, 1, 1, q1) , (q1, ǫ, 0, q2) , (q1, ǫ, 1, q2)}

Notice that in the representation of T there is only one edge between two
states but that an edge may have more than one label.

A relation R ⊆ Σ∗ × Γ ∗ is rational if it is recognizable by a rational trans-
ducer. Equivalently (see [1]), given finite alphabets Σ,Γ , a (binary) rational
relation over (Σ,Γ ) is a rational subset of Σ∗× Γ ∗, i.e., a subset generated by
a rational expression (built up using union, concatenation, and iteration) over a
finite subset of Σ∗ × Γ ∗. Hereafter, we will assume that the input and output
alphabets Σ and Γ coincide.

Besides the references above, rational relations have also been studied by
Johnson [13], Frougny and Sakarovich [12], and more recently by Morvan [20]. It
is important to note that the class of rational relations is closed under unions,
compositions, and inverses [1]. On the other hand, the class of rational relations
is not closed under intersections, complements, and transitive closure (ibid).



Fig. 1. The transducer T which recognizes pairs of words of the forms (u, u0)
or (u, u1) where u ∈ Σ∗

q1 q2
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3 Rational Kripke models

3.1 Rational graphs

Definition 2. A graph G = (S,E) is rational, if the set of vertices S is a
regular language in some finite alphabet Σ and the set of edges E is a rational
relation on Σ.

Example 2. The infinite grid. Let Σ = {0, 1}, then the infinite grid with ver-
tices in Σ∗ is given by Figure 2 and the edge relation of this graph is recognized
by the transducer given in Figure 2.

Fig. 2. The infinite grid with set of vertices S = 0∗1∗ and a transducer that
recognizes the infinite grid.
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Example 3. The complete binary tree Λ.
Figure 3 contains the complete binary tree with vertices in {0, 1}∗ and labeled

by Γ = {a, b}, as well as the transducer recognizing it, in which the accepting
states are labeled respectively by a and b. The pairs of words for which the
transducer ends in the accepting state q4 belong to the left successor relation in
the tree (labeled by a), and those for which the transducer ends in the accepting
state q5 belong to the right successor relation in the tree (labeled by b).

Fig. 3. The complete binary tree Λ and a labeled transducer recognizing it.
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An important and extensively studied subclass of rational graphs is the class
of automatic graphs [14,6]. These are rational graphs whose transition relations
are recognized by synchronized transducers.

As shown by Blumensath [5], the configuration graph of every Turing machine
is an automatic graph. Consequently, important queries, such as reachability,
are generally undecidable on automatic graphs, and hence on rational graphs.
Furthermore, Morvan showed in [20] that the configuration graphs of Petri nets
[21] are rational (in fact, automatic) graphs, too.

Moreover, Johnson [13] proved that even very simple first-order definable
properties of a rational relation, e.g., reflexivity, transitivity, symmetry, turn out
to be undecidable (with an input the transducer recognizing the relation), by re-
duction from the Post Correspondence Problem (PCP). Independently, Morvan
[20] has shown that the query ∃xRxx on rational frames is undecidable, as well.
The reduction of PCP here is straightforward: given a PCP {(u1, v1), . . . , (un, vn)},
consider a transducer with only one state, which is both initial and accepting,
and it allows the transitions (u1, v1), . . . , (un, vn). Then, the PCP has a solution
precisely if some pair (w,w) is accepted by the transducer. Inclusion and equality
of rational relations are undecidable, too, [1].

Furthermore, in [22] W. Thomas has constructed a single rational graph with
undecidable first-order theory, by encoding the halting problem of a universal
Turing machine.



3.2 Rational Kripke models

Rational graphs can be viewed as Kripke frames, hereafter called rational Kripke
frames.

Definition 3. A Kripke model M = (F , V ) = (S,R, V ) is a rational Kripke
model (RKM) if the frame F is a rational Kripke frame, and the valuation V

assigns a regular language to each propositional variable, i.e., V (p) ∈ REG (Σ∗)
for every p ∈ Φ. A valuation satisfying this condition is called a rational valua-
tion.

Example 4. In this example we will present a RKM based on the configuration
graph of a Petri net. To make it self-contained, we give the basic relevant def-
initions here; for more detail see e.g., [21]. A Petri net is a tuple (P, T, F,M)
where P and T are disjoint finite sets and their elements are called places and
transitions respectively. F : (P × T ) ∪ (T × P ) → N is called a flow function
and is such that if F (x, y) > 0 then there is an arc from x to y and F (x, y)
is the multiplicity of that arc. Each of the places contain a number of tokens
and a vector of integers M ∈ N

|P | is called a configuration (or, marking) of the
Petri net if the ith component of M is equal to the number of tokens at the ith

place in the Petri net. The configuration graph of N has as vertices all possible
configurations of N and the edges represent the possible transitions between
configurations.

Now, let N = (P, T, F,M) be a Petri net, where P = {p1, p2} , T =
{t} , F (p1, t) = 2, F (t, p2) = 3 and M = (4, 5). Let M = (S,R, V ) where
S = 0∗10∗, R the transition relation of the configuration graph of N and V the
valuation defined by V (p) = 0010∗ and V (q) = 0∗1000. ThenM is a RKM and
can be presented by the various machines in Figure 4.

Fig. 4. A finite presentation M: A1, A2 and A3 recognize S, V (p) and V (q)
respectively, and T recognizes R.

A1 :

q1 q2

0 0

1

A2 :

p1 p2
001

0

A3 :

r1 r2
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0
T :

s1 s2 s3
001/1 ǫ/000

0/0 0/0



4 Synchronized products of transducers and automata

In this section ǫ will denote the empty word, but will also be treated as a special
symbol in an extended alphabet.

Definition 4. Let u be a word in some alphabet Γ and γ ∈ Γ . The γ-reduction
of u, denoted u|γ, is the word obtained from u after deleting all occurrences of
γ. Likewise, if Y is a language in the alphabet Γ , then the γ-reduction of Y ,
denoted Y |γ , is the language consisting of all γ-reductions of words in Y .

Lemma 1. If Y is a regular language over an alphabet Γ then Y |γ is a regular
language over the alphabet Γ − {γ}.

Proof. (Sketch) An automatonA|γ recognizing Y |γ , called here the γ-reduction
of A can be constructed from an automaton A recognizing Y as follows:

1. Remove all γ-transitions.
2. Add (q, γ′, q′′) as a transition in A|γ whenever (q, γ, q′) and (q′, γ′, q′′) are

transitions in A and γ 6= γ′.
3. Finally, define the accepting states of A|γ as all accepting states of A plus

those states q such that (q
γ∗

→ q′) in A and q′ is an accepting state in A.

⊳

Definition 5. A run of a finite automaton A =
〈

Q,Σ, q0, F, δ
〉

is a sequence

of states and transitions of A: q0
x1→ q1

x2→ q2 · · ·
xn→ qn, such that q0 = q0,

qj ∈ Q, xj ∈ Σ, and qj ∈ δ (qj−1, xj) for every j = 1, 2, . . . , n.
A run is accepting if it ends in an accepting state.
Run and accepting runs of transducers are defined likewise.

Definition 6. A stuttering run of a finite automaton A =
〈

Q,Σ, q0, F, δ
〉

is

a sequence q0
x1→ q1

x2→ q2 · · ·
xn→ qn, such that q0 = q0, qj ∈ Q, and either xj ∈ Σ

and qj ∈ δ (qj−1, xj), or xj = ǫ and qj = qj−1 for every j = 1, 2, . . . , n.
Thus, a stuttering run of an automaton can be obtained by inserting ǫ-

transitions from a state to itself into a run of that automaton. If the latter run
is accepting, we declare the stuttering run to be an accepting stuttering run.

A stuttering word in an alphabet Σ is any word in Σ ∪ {ǫ}.
The stuttering language of the automaton A is the set Lǫ(A) of all stut-

tering words whose ǫ-reductions are recognized by A; equivalently, all stuttering
words for which there is an accepting stuttering run of the automaton.

Definition 7. Let T =
〈

QT , Σ, q
0
T , FT , ρT

〉

be a transducer, and let A be a

(non-deterministic) finite automaton given by A =
〈

QA, Σ, q
0
A, FA, δA

〉

.
The synchronized product of T with A is the finite automaton:

T ⋌A =
〈

QT ×QA, Σ,
(

q0T , q
0
A

)

, FT × FA, δT ⋌A

〉

where δT ⋌A : (QT ×QA) × (Σ ∪ {ǫ}) → P(QT × QA) is such that, for any
p1T , p

2
T ∈ QT and p1A, p

2
A ∈ QT then

(

p2T , p
2
A

)

∈ δT ⋌A

((

p1T , p
1
A

)

, x
)

if and only
if



1. either there exists a y ∈ Σ such that δA
(

p1A, y
)

= p2A and
(

p1T , x, y, p
2
T

)

∈ ρT ,

2. or
(

p1T , x, ǫ, p
2
T

)

∈ ρT and p1A = p2A.

Note that every run RT ⋌A = (p0T , p
0
A)

u1→ (p1T , p
1
A)

u2→ · · ·
un→ (pnT , p

n
T ) of the

automaton T ⋌A can be obtained from a pair:

a run RT = p0T
(u1/w1)
→ p1T

(u2/w2)
→ p2T · · ·

(un/wn)
→ pnT in T ,

and a stuttering run Rs
A = p0A

w1→ p1A
w2→ p2A · · ·

wn→ pnA in A,

by pairing the respective states pjT and pjA and removing the output symbol wj

for every j = 1, 2, . . . , n.
Let the reduction of Rs

A be the run RA = q0A
v1→ q1A

v2→ q2A · · ·
vm→ qmA , with

m ≤ n. Then we say that the run RT ⋌A is a synchronization of the runs
RT and RA.

Note, that the synchronization of accepting runs of T and A is an accepting
run of RT ⋌A. The following lemma is now immediate:

Lemma 2. Let T =
〈

QT , Σ, q
0
T , FT , ρT

〉

be a transducer recognizing the relation

R(T ) and let A =
〈

QA, Σ, q
0
A, FA, δA

〉

be a finite automaton recognizing the
language L(A). Then the language recognized by the synchronized product of T
and A is

L(T ⋌A) = {u | ∃w ∈ Lǫ(A)(uR(T )w).}

5 Model checking of Kt in rational Kripke models

In this section we will establish decidability of the basic model checking problems
for formulae of Kt in rational Kripke models.

Lemma 3. Let Σ be a finite non-empty alphabet, X ⊆ Σ∗ a regular subset, and
let R ⊆ Σ∗ ×Σ∗ be a rational relation. Then the sets

〈R〉X = {u ∈ Σ∗|∃v ∈ X(uRv)}

and
〈

R−1
〉

X = {u ∈ Σ∗|∃v ∈ X(vRu)}

are regular subsets of Σ∗.

Proof. This claim essentially follows from results of Nivat (see [1]). However, us-
ing Lemmas 1 and 2, we give a constructive proof, which explicitly produces au-
tomata that recognize the resulting regular languages. Let A be a finite automa-
ton recognizing X and T be a transducer recognizing R. Then, the ǫ-reduction
of the synchronized product of T with A is an automaton recognizing 〈R〉X ;
for

〈

R−1
〉

X we take instead of T the transducer for R−1 obtained from T by
swapping the input and output symbols in the transition relation4. ⊳

4 Note that, in general, the resulting automata need not be minimal, because they
may have redundant states and transitions.



Example 5. Consider the automaton A and transducer T in Figure 5. The lan-
guage recognized by A is X = 1∗ (1 + 0+) and the relation R recognized by T is
R =

{

(1n0, 10n1)
m (

1k, 10k
)

| n,m, k ∈ N
}

∪
{

(1n0, 10n1)
m (

01k, 11k
)

| n,m, k ∈ N
}

,
where X1X2 denotes the component-wise concatenation of the relations X1 and
X2, i.e., X1X2 = {(u1u2, v1v2) | (u1, v1) ∈ X1, (u2, v2) ∈ X2}. For instance,
if we take n = 1, m = 2 and k = 3 we obtain that (10, 101)2(13, 103) =
(1010111, 1011011000) ∈ R (coming from the first set of the union) and
(10, 101)2(013, 113) = (10100111, 1011011111) ∈ R (coming from the second set
of that union).

Then, the synchronized product T ⋌A is the finite automaton given in Figure
6 recognizing 〈R〉X = 0∗ + 0∗1+. Note that it can be simplified by removing
redundant states and edges.

Fig. 5. The automaton A and the transducer T .

A :

p1

p2

p3

0

1

1
0

T :

q1 q2

q3

ǫ/1

0/1

0/1

1/0

1/1

Fig. 6. The synchronized product T ⋌A recognizing 〈R〉X .
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ǫ

0

0
1

1

ǫ 0

0

1

1



Theorem 1. For every formula ϕ ∈Kt and rational Kripke modelM = (Σ∗, R, V ),
the set [[ϕ]]M is a rational language, effectively computable from ϕ and the ra-
tional presentation ofM.

Proof. We prove the claim by induction on ϕ.

1. If ϕ is an atomic proposition, the claim follows from the definition of a
rational model.

2. The boolean cases follow from the effective closure of regular languages under
boolean operations.

3. If ϕ = 〈R〉ψ then [[ϕ]]M = 〈R〉 [[ψ]]M, which is regular by the inductive
hypothesis and Lemma 3. Likewise for the case ϕ =

〈

R−1
〉

ψ. ⊳

We now consider the following algorithmic model checking problems, where
the Kripke model is supposed to be given by some effective presentation:

1. Local model checking: given a Kripke modelM, a state s inM, and a formula
ϕ of Kt, determine whetherM, s |= ϕ.

2. Global model checking: given a Kripke model M and a formula ϕ of Kt,
determine (effectively) the set [[ϕ]]M of all states inM where ϕ is true.

3. Checking satisfiability in a model: given a Kripke modelM and a formula ϕ
of Kt, determine whether [[ϕ]]M 6= ∅.

Corollary 1. Local model checking, global model checking, and checking satis-
fiability in a model, of formulae in Kt in rational Kripke models are decidable.

Proof. Decidability of the global model checking follows immediately from Theo-
rem 1. Then, decidability of the local model checking and of checking satisfiability
in a rational model follow respectively from the decidability of membership in a
regular language, and of non-emptiness of a regular language (see e.g., [18]). ⊳

6 Complexity

We will now attempt to analyze the complexity of global model checking a
formula in Kt on a rational Kripke model. Depending on which of these is fixed,
we distinguish two complexity measures (see e.g., [16]): formula (expression)
complexity (when the model is fixed and the formula is feeded as input) and
structure complexity (when the formula is fixed and the model is feeded as
input).

6.1 Normal forms and ranks of formulae

We will first need to define some standard technical notions.
A formula ϕ ∈ Kt is in negation normal form if every occurrence of the

negation immediately precedes a propositional variable. Clearly every formula
ϕ ∈ Kt is equivalent to a formula ψ ∈ Kt in negation normal form, of size linear



in the size ϕ. For the remainder of this section, we will assume that a formula ϕ
we wish to model check is in a negation normal form.

The modal rank of a formula counts the greatest number of nested modalities
in the formula, while the alternating box (resp., diamond) rank of a formula
counts the greatest number of nested alternations of modalities with an outmost
box (resp., diamond) in that formula. Formally:

Definition 8. The modal rank for a formula ϕ ∈ Kt, denoted by mr (ϕ) is
defined inductively as follows:

1. if p is an atomic proposition, then mr (p) = 0 and mr (¬p) = 0;
2. mr (φ1 ∨ ψ2) = mr (φ1 ∧ ψ2) = max {mr (ψ1) ,mr (ψ2)};
3. mr (△ ψ) = mr (ψ) + 1 where △∈

{

[R] , 〈R〉 ,
[

R−1
]

,
〈

R−1
〉}

.

Definition 9. The alternating box rank and alternating diamond rank
of a formula ϕ ∈ Kt, denoted respectively by ar✷(ϕ) and ar✸(ϕ), are defined by
simultaneous induction as follows, where △∈ {✷,✸}:

1. if p is an atomic proposition, then ar△ (p) = 0 and ar△ (¬p) = 0;
2. ar△ (ψ1 ∨ ψ2) = ar△ (ψ1 ∧ ψ2) = max {ar△ (ψ1) , ar△ (ψ2)};
3. ar✸ (〈R〉ψ) = ar✷ (ψ) + 1 and ar✷ (〈R〉ψ) = ar✷ (ψ).

Likewise for ar✸
(〈

R−1
〉

ψ
)

and ar✷
(〈

R−1
〉

ψ
)

.
4. ar✷ ([R]ψ) = ar✸ (ψ) + 1 and ar✸ ([R]ψ) = ar✸ (ψ).

Likewise for ar✸
([

R−1
]

ψ
)

and ar✷
([

R−1
]

ψ
)

.

Finally, the alternation rank of ϕ, denoted ar (ϕ) is defined to be

ar (ϕ) = max {ar✷ (ϕ) , ar✸ (ϕ)} .

For instance, ar✷([R] (〈R〉 [R] p∨ [R]
[

R−1
]

¬q)) = 3 and ar✸([R] (〈R〉 [R] p∨

[R]
[

R−1
]

¬q)) = 2, hence ar([R] (〈R〉 [R] p ∨ [R]
[

R−1
]

¬q)) = 3.

6.2 Formula complexity

We measure the size of a finite automaton or transducer M by the number of
transition edges in it, denoted |M|.

Proposition 1. If A is an automaton recognizing the regular language X and
T a transducer recognizing the rational relation R, then the time complexity of
computing an automaton recognizing 〈R〉mX is in O(|T |m|A|).

Proof. The size of the synchronized product T ⋌A of T and A is bounded above
by |T ||A| and it can be computed in time O(|T ||A|). The claim now follows by
iterating that procedure m times. ⊳

However, we are going to show that the time complexity of computing an
automaton recognizing [R]X is far worse.

For a regular language X recognized by an automaton A, we define RX =
{(u, ǫ) |u ∈ X}. A transducer T recognizing RX can be constructed from A by
simply replacing every edge (q, x, p) in A with the edge (q, x, ǫ, p).



Lemma 4. Let X be a regular language. Then the complementation X of X
equals [RX ] ∅.

Proof. Routine verification. ⊳

Consequently, computing [RX ] ∅ cannot be done in less than exponential time
in the size of the (non-deterministic) automaton A for X . This result suggests
the following conjecture.

Conjecture 1. The formula complexity of global model checking of a Kt-formula
is non-elementary in terms of the alternating box rank of the formula.

6.3 Structure complexity

Next we analyze the structure complexity, i.e. the complexity of global model
checking a fixed formula ϕ ∈ Kt on an input rational Kripke model. Here the
input is assumed to be the transducer and automata presenting the model.

Fix a formula ϕ ∈ Kt in negation normal form, then for any input rational
Kripke modelM there is a fixed number of operations to perform on the input
transducer and automata that can lead to subsequent exponential blowups of
the size of the automaton computing [[ϕ]]M. That number is bounded by the
modal rank mr (ϕ) of the formula ϕ, and therefore the structure complexity is
bounded above by an exponential tower of a height not exceeding that modal
rank:

2
···

(mr(ϕ) times)···
2|T ||A|

However, using the alternation rank of ϕ and Proposition 1 we can do better.

Proposition 2. The structure complexity of global model checking for a fixed

formula ϕ ∈ Kt on an input rational Kripke model M, presented by the trans-

ducer and automata {T ,A1, . . . ,An}, is bounded above by

2
···

(ar(ϕ) times)···
2P (|T |)

where P (|T |) is a polynomial in |T | with leading coefficient not greater that n2c

where c ≤ max{|Ai| | i = 1, . . . n} and degree no greater than mr (ϕ).

Proof. The number of steps in the computation of [[ϕ]]M, following the struc-
ture of ϕ, that produce nested exponential blow-ups can be bounded by the
alternation rank, since nesting of any number of diamonds does not cause an
exponential blow-up, while nesting of any number of boxes can be reduced by
double complementation to nesting of diamonds; e.g., [R] ([R] [R] p ∨

[

R−1
]

¬q)

can be equivalently re-written as ¬ 〈R〉 (〈R〉 〈R〉 ¬p ∧
〈

R−1
〉

q). The initial syn-
chronized product construction (when a diamond or box is applied to a boolean
formula) produces an automaton of size at most 2c|T |, the number of nested
product constructions is bounded above by mr (ϕ), and each of these multiplies
the size of the current automaton by |T |. In the worst case, all alternations would
take place after all product constructions, hence the upper bound. ⊳



7 Model checking extensions of Kt on rational models

7.1 Model checking hybrid extensions of Kt

A major limitation of the basic modal language is its inability to refer explicitly
to states in a Kripke model, although the modal semantics evaluates modal
formulae at states. Hybrid logics provide a remedy for that problem. We will
only introduce some basic hybrid logics of interest here; for more details consult
e.g., [3,4].

The basic hybrid tense logic Ht extends the basic tense logic Kt with a set of
new atomic symbols Θ called nominals which syntactically form a second type
of atomic formulae, which are evaluated in Kripke models in singleton sets of
states. The unique state in the valuation of a nominal is called its denotation.
Thus, nominals can be used in Ht to refer directly to states.

Here is the formal definition of the set of formulae of Ht:

ϕ = p | i | ¬ϕ | ϕ ∨ φ | 〈R〉ϕ |
〈

R−1
〉

ϕ,

where i ∈ Θ and p ∈ Φ.
The basic hybrid logic Ht can be further extended to Ht (@) by adding the

satisfaction operator @, where the formula @iϕmeans ‘ϕ is true at the denotation
of i’. A more expressive extension ofHt isHt(U) involving the universal modality
with semanticsM, v |= [U ]ϕ iffM, w |= ϕ for every w ∈ M. The operator @ is
definable in Ht(U) by @iϕ := [U ](i → ϕ). Moreover, Ht can be extended with
the more expressive difference modality 〈D〉 (and its dual [D]), where M, v |=
〈D〉ϕ iff there exists a w 6= v such thatM, w |= ϕ. Note that [U ] is definable in
Ht(D) by [U ]ϕ := ϕ ∧ [D]ϕ.

Yet another extension of Ht (@) is Ht (@, ↓) which also involves state vari-
ables and binders that bind these variables to states. Thus, in addition toHt (@),
formulae also include ↓x.ϕ for x a state variable. For a formula ϕ possibly con-
taining free occurrences of a state variable x, and w a state in a given model,
let ϕ [x← iw] denote the result of substitution of all free occurrences of x by a
nominal iw in ϕ, where w is the denotation of iw. Then the semantics of ↓x.ϕ is
defined by:M, w |=↓x.ϕ iffM, w |= ϕ [x← iw].

Proposition 3. For every formula ϕ of the hybrid language Ht(D) (and there-
fore, of Ht (@) and of Ht (U)) and every rational Kripke modelM, the set [[ϕ]]M
is an effectively computable rational language.

Proof. The claim follows from Theorem 1 since the valuations of nominals, being
singletons, are rational sets, and the difference relation D is a rational relation.
The latter can be shown by explicitly constructing a transducer recognizingD in
a given rational set, or by noting that it is the complement of the automatic rela-
tion of equality, hence it is automatic itself, as the family of automatic relations
is closed under complements (see e.g., [14] or [6]). ⊳

Corollary 2. Global and local model checking, as well as satisfiability checking,
of formulae of the hybrid language Ht(D) (and therefore, of Ht (@) and Ht (U),
too) in rational Kripke models are decidable.



Proposition 4. Model checking of the Ht (@, ↓)-formula ↓x. 〈R〉x in Ht (@, ↓)
on a given input rational Kripke model is not decidable.

Proof. Immediate consequence from Morvan’s earlier mentioned reduction [20]
of the model checking of ∃xRxx to the Post Correspondence Problem. ⊳

Proposition 5. There is a rational Kripke model on which model checking for-
mulae from the hybrid language is undecidable.

Proof. (Sketch) The rational graph constructed by Thomas [22] can be used to
prove this undecidability, since the first-order properties queried there are also
expressible in Ht (@, ↓). ⊳

7.2 Counting modalities

We now consider extensions of Kt with counting (or, graded) modalities:

– ✸
≥kϕ with semantics: ‘there exist at least k successors where ϕ holds’;

– ✸
≤kϕ with semantics: ‘there exist at most k successors where ϕ holds’;

– ✸
kϕ with semantics: ‘there exist exactly k successors where ϕ holds’;

– ✸
∞ϕ with semantics: ‘there exist infinitely many successors where ϕ holds’.

Clearly, some of these are inter-definable: ✸
kϕ := ✸

≥kϕ ∧ ✸
≤kϕ, while

✸
≥kϕ := ¬✸≤k−1ϕ and ✸

≤kϕ := ¬✸≥k+1ϕ.
We denote by Ct the extension of Kt with ✸

∞ϕ and all counting modalities
for all integers k ≥ 0. Further, we denote by C0

t the fragment of Ct where no
occurrence of a counting modality is in the scope of any modal operator.

Proposition 6. Local model checking of formulae in the language C0
t in rational

Kripke models is decidable.

Proof. First we note that each of the following problems: ‘Given an automaton A,
does its language contain at most / at least / exactly k / finitely / infinitely many
words? ’ is decidable. Indeed, the case of finite (respectively infinite) language is
well-known (see e.g., [18], pp. 186–189). A decision procedure5 for recognizing if
the language of a given automatonA contains at least k words can be constructed
recursively on k. When k = 1 that boils down to checking non-emptiness of the
language (ibid). Suppose we have such a procedure Pk for a given k. Then, a
procedure for k + 1 can be designed as follows: first, test the language L(A) of
the given automaton for non-emptiness by looking for any word recognized by
it (by searching for a path from the initial state to any accepting state). If such
a word w is found, modify the current automaton to exclude (only) w from its
language, i.e. construct an automaton for the language L(A) \ {w}, using the

5 The procedure designed here is perhaps not the most efficient one. but, it will not
make the complexity of the model checking worse, given the high overall complexity
of the latter.



standard automata constructions. Then, apply the procedure Pk to the resulting
automaton.

Testing L(A) for having at most k words is reduced to testing for at least
k + 1 words; likewise, testing for exactly k words is a combination of these.

Now, the claim follows from Theorem 1. Indeed, given a RKM M and a
formula ϕ ∈ C0

t , for every subformula ✸
cψ of ϕ, where ✸c is any of the counting

modalities listed above, the subformula ψ is in Kt, and therefore an automaton
for the regular language [[ψ]]M is effectively computable, and hence the question
whether ✸

cψ is true at the state where the local model checking is performed
can be answered effectively. It remains to note that every formula of C0

t is a
boolean combination of subformulae ✸

cψ where ψ ∈ Kt. ⊳

At present, we do not know whether any of the counting modalities preserves
regularity in rational models, and respectively whether global model checking in
rational models of either of these languages is decidable.

7.3 A presentation based extension

Here we consider a ‘presentation-based’ extension of the multi-modal version of
Kt, where the new modalities are defined in terms of word operations, so they
only have meaning in Kripke models where the states are labeled by words (such
as the rational Kripke models) hereafter called Kripke word-models.

To begin with, for a given alphabet Σ, with every language X ⊆ Σ∗ we can
uniformly associate the following binary relations in Σ∗:

X? := {(u, u) |u ∈ X};
−→
X := {(uv, v) |u ∈ X, v ∈ Σ∗}.

Proposition 7. For every regular language X ⊆ Σ∗ the relations X? and
−→
X

are rational.

Proof. For each of these, there is a simple uniform construction that produces
from the automaton recognizing X a transducer recognizing the respective re-
lation. For instance, the transducer for

−→
X is constructed as composition of the

transducers (defined just like the composition of finite automata) for the rational
relations {(u, ε) | u ∈ X} and {(v, v) | v ∈ Σ∗}. The former is constructed from
the automaton A for X by converting every a-transition in A, for a ∈ Σ, to
(a, ε)-transition, and the latter is constructed from an automaton recognizing
Σ∗ by converting every a-transition, for a ∈ Σ, to (a, a)-transition. ⊳

This suggests a natural extension of (multi-modal) Kt with an infinite family
of new modalities associated with relations as above defined over the extensions
of formulae. The result is a richer, PDL-like language which extends the star-
free fragment of PDL with test and converse by additional program constructions
corresponding to the regularity preserving operations defined above. We call that
language ‘word-based star-free PDL (with test and converse)’, hereafter denoted
WPDL.



Formally, WPDL has two syntactic categories, viz., programs PROG and
formulae FOR, defined over given alphabet Σ, set of atomic propositions AP,
and set of atomic programs (relations) REL, by mutual induction as follows:

Formulae FOR:
ϕ ::= p | la | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ

for p ∈ AP, a ∈ Σ, and α ∈ PROG, where for each a ∈ Σ we have added a special
new atomic proposition la, used further to translate extended star-free regular
expressions to WPDL-formulae.

Programs PROG:

α ::= π | α′ | α1 ∪ α2 | α1 ◦ α2 | ϕ? | −→ϕ

where π ∈ REL and ϕ ∈ FOR.
We note that WPDL is not a purely logical language, as it does not have se-

mantics on abstract models but only on word-models (including rational Kripke
models), defined as follows. Let M = (S, {Rπ}π∈REL, V ) be a Kripke word-
model over an alphabet Σ, with a set of states S ⊆ Σ∗, a family of basic
relations indexed with REL, and a valuation V of the atomic propositions from
AP. Then every formula ϕ ∈ FOR is associated with the language [[ϕ]]M ⊆ Σ∗,
defined as before, where [[p]]M := V (p) for every p ∈ AP and [[la]] := {a} ∩ S for
every a ∈ Σ. Respectively, every program α is associated with a binary relation
Rα in Σ∗, defined inductively as follows (where ◦ is composition of relations):

– Rα′ := R−1
α ,

– Rα1∪α2
:= Rα1

∪Rα2
,

– Rα1◦α2
:= Rα1

◦Rα2
,

– Rϕ? := [[ϕ]]?,

– R−→ϕ :=
−→
[[ϕ]].

Lemma 5. For every WPDL-formulae ϕ, ψ and a Kripke word-model M:

1. [[〈ϕ?〉ψ]]M = [[ϕ]]M ∩ [[ψ]]M.
2. [[〈−→ϕ 〉ψ]]M = [[ϕ]]M; [[ψ]]M (where ; denotes concatenation of languages).

Proof. Routine verification:

1. [[〈ϕ?〉ψ]]M = {w ∈ Σ∗ | wRϕ?v for some v ∈ [[ψ]]M}
= {w ∈ Σ∗ | w = v for some v ∈ [[ϕ]]M and v ∈ [[ψ]]M} = [[ϕ]]M ∩ [[ψ]]M.

2. [[〈−→ϕ 〉ψ]]M = {w ∈ Σ∗ | wR−→ϕ v for some v ∈ [[ψ]]M}

= {uv ∈ Σ∗ | u ∈ [[ϕ]]M, v ∈ [[ψ]]M} = [[ϕ]]M; [[ψ]]M.

⊳

Corollary 3. For every WPDL-formula ϕ and a rational Kripke model M,
the language [[ϕ]]M is an effectively computable from ϕ regular language.

Corollary 4. Local and global model checking, as well as satisfiability checking,
of WPDL-formulae in rational Kripke models is decidable.



Extended star-free regular expressions over an alphabet Σ are defined as
follows:

E := a | ¬E | E1 ∪ E2 | E1;E2,

where a ∈ Σ. Every such expression E defines a regular language L(E), where
¬,∪, ; denote respectively complementation, union, and concatenation of lan-
guages. The question whether two extended star-free regular expressions define
the same language has been proved to have a non-elementary complexity in [19].

Every extended star-free regular expression can be linearly translated to an
WPDL-formula:

– τ(a) := la,
– τ(¬E) := ¬τ(E),
– τ(E1 ∪ E2) := τ(E1) ∨ τ(E2),

– τ(E1;E2) := 〈
−−−→
τ(E1)〉τ(E2).

Lemma 6. Given an alphabet Σ, consider the rational Kripke modelMΣ with
set of states Σ∗, over empty sets of basic relations and atomic propositions.
Then, for every extended star-free regular expression E,

L(E) = [[τ(E)]]MΣ .

Proof. Straightforward induction on E. The only non-obvious case E = E1;E2

follows from Lemma 5. ⊳

Consequently, for any extended star-free regular expressions E1 and E2, we
have that L(E1) = L(E2) iff [[τ(E1)]]MΣ = [[τ(E2)]]MΣ iff MΣ |= τ(E1) ↔
τ(E2). Thus, we obtain the following.

Corollary 5. Global model checking of WPDL-formulae in rational Kripke
models has non-elementary formula-complexity.

Remark: since the −→ϕ -free fragment of WPDL is expressively equivalent to
Kt, a translation of bounded exponential blow-up from the family of extended
star-free regular expressions to the latter fragment would prove Conjecture 1.

8 Concluding remarks

We have introduced the class of rational Kripke models and shown that all for-
mulae of the basic tense logic Kt, and various extensions of it, have effectively
computable rational extensions in such models, and therefore global model check-
ing and local model checking of such formulae on rational Kripke models are
decidable, albeit probably with non-elementary formula complexity.

Since model checking reachability on such models is generally undecidable, an
important direction for further research would be to identify natural large sub-
classes of rational Kripke models on which model checking of Kt extended with
the reachability modality 〈R〉∗ is decidable. Some such cases, defined in terms



of the presentation, are known, e.g., rational models with length-preserving or
length-monotone transition relation [20]; the problem of finding structurally de-
fined large classes of rational models with decidable reachability is still essentially
open.

Other important questions concern deciding bisimulation equivalence be-
tween rational Kripke models, as that would allow us to transfer model checking
of any property definable in the modal mu-calculus from one to the other. These
questions are studied in a follow-up to the present work.
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