Skip to main content

Particle Swarm Topologies for Resource Constrained Project Scheduling

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 236))

Abstract

We analyze static and dynamic population topologies for a robust evolutionary computation algorithm, which is based on particle swarm optimization (PSO), for the resource constrained project scheduling problem (RCPSP). The algorithm incorporates well-known procedures such as the serial schedule generation scheme and forward-backward improvement. We investigate the application of PSO in combination with different population topologies in comparison to state-of-the-art methods from the literature. We conduct computational experiments using a benchmark set of problem instances. The reported results demonstrate that the proposed particle swarm optimization approach is competitive. We show that the population topology has a significant influence on the performance of the algorithm. We improve previous results of our algorithm for the RCPSP and provide new overall best average results for the medium size data set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaraz, J., Maroto, C.: A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research 102, 83–109 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alcaraz, J., Maroto, C.: A Hybrid Genetic Algorithm Based on Intelligent Encoding for Project Scheduling. In: Perspectives in Modern Project Scheduling, pp. 249–274. Springer, Berlin (2006)

    Google Scholar 

  3. Alcaraz, J., Maroto, C., Ruiz, R.: Improving the performance of genetic algorithms for the RCPS problem. In: Proceedings of the Ninth International Workshop on Project Management and Scheduling, pp. 40–43 (2004)

    Google Scholar 

  4. Blackwell, T.M., Bentley, P.: Don’t push me! Collision-avoiding swarms. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1691–1696 (2002)

    Google Scholar 

  5. Błażewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics 5, 11–24 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boctor, F.F.: Resource-constrained project scheduling by simulated annealing. International Journal of Production Research 34, 2335–2351 (1996)

    Article  MATH  Google Scholar 

  7. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research 112, 3–41 (1999)

    Article  MATH  Google Scholar 

  8. Czogalla, J., Fink, A.: Particle swarm optimization for resource constrained project scheduling. Working paper (2008)

    Google Scholar 

  9. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research 169, 638–653 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  11. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Naval Research Logistics 45, 733–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics 49, 433–448 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Howell, D.C.: Statistical Methods for Psychology, 5th edn. Duxbury, Pacific Grove (2002)

    Google Scholar 

  14. Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pp. 1147–1152. AAAI Press, Menlo Park (2007)

    Google Scholar 

  15. Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 35, 1272–1282 (2005)

    Article  Google Scholar 

  16. Jedrzejowicz, P., Ratajczak, E.: Population Learning Algorithm for the Resource-Constrained Project Scheduling. In: Perspectives in Modern Project Scheduling, pp. 275–297. Springer, Berlin (2006)

    Google Scholar 

  17. Kennedy, J.: Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp. 1931–1938 (1999)

    Google Scholar 

  18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  19. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1671–1676 (2002)

    Google Scholar 

  20. Kochetov, Y.A., Stolyar, A.A.: Evolutionary local search with variable neighborhood for the resource constrained project scheduling problem. In: Proceedings of the 3rd International Workshop of Computer Science and Information Technologies, Ufa, Russia (2003)

    Google Scholar 

  21. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research 90, 320–333 (1996)

    Article  MATH  Google Scholar 

  22. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research 174, 23–37 (2006)

    Article  MATH  Google Scholar 

  23. Kolisch, R., Sprecher, A.: PSPLIB – A project scheduling problem library. European Journal of Operational Research 96, 205–216 (1996)

    Article  Google Scholar 

  24. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of resource-constrained project scheduling problems. Management Science 41, 1693–1703 (1995)

    Article  MATH  Google Scholar 

  25. Krink, T., Vesterstrøm, J.S., Riget, J.: Particle swarm optimisation with spatial particle extension. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1474–1479 (2002)

    Google Scholar 

  26. Li, K.Y., Willis, R.J.: An iterative scheduling technique for resource-constrained project scheduling. European Journal of Operational Research 56, 370–379 (1992)

    Article  MATH  Google Scholar 

  27. Løvbjerg, M., Krink, T.: Extending particle swarm optimisers with self-organized criticality. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1588–1593 (2002)

    Google Scholar 

  28. Mendes, R.: Population topologies and their influence in particle swarm performance. PhD thesis, Departamento de Informática, Escola de Engenharia, Universidade do Minho (2004)

    Google Scholar 

  29. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation 8, 204–210 (2004)

    Article  Google Scholar 

  30. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation 6, 333–346 (2002)

    Article  Google Scholar 

  31. Nonobe, K., Ibaraki, T.: Formulation and Tabu Search Algorithm for the Resource Constrained Project Scheduling Problem. In: Essays and Surveys in Metaheuristics, pp. 557–588. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  32. Özdamar, L., Ulusoy, G.: A note on an iterative forward/backward scheduling technique with reference to a procedure by Li and Willis. European Journal of Operational Research 89, 400–407 (1996)

    Article  MATH  Google Scholar 

  33. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. An overview. Swarm Intelligence 1, 33–57 (2007)

    Article  Google Scholar 

  34. Tormos, P., Lova, A.: A competitive heuristic solution technique for resource-constrained project scheduling. Annals of Operations Research 102, 65–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tormos, P., Lova, A.: An efficient multi-pass heuristic for project scheduling with constrained resources. International Journal of Production Research 41, 1071–1086 (2003)

    Article  MATH  Google Scholar 

  36. Tormos, P., Lova, A.: Integrating heuristics for resource constrained project scheduling: One step forward. Technical Report, Department of Applied Statistics, Operations Research and Quality, Polytechnic University of Valencia (2003)

    Google Scholar 

  37. Valls, V., Ballestín, F.: A population-based approach to the resource-constrained project scheduling problem. Annals of Operations Research 131, 305–324 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Valls, V., Ballestín, F., Quintanilla, S.: Justification and RCPSP: A technique that pays. European Journal of Operational Research 165, 375–386 (2005)

    Article  MATH  Google Scholar 

  39. Valls, V., Ballestín, F., Quintanilla, S.: A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research 185, 495–508 (2008)

    Article  MATH  Google Scholar 

  40. Xie, X.F., Zhang, W.J., Yang, Z.L.: Dissipative particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1456–1461 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Czogalla, J., Fink, A. (2009). Particle Swarm Topologies for Resource Constrained Project Scheduling. In: Krasnogor, N., Melián-Batista, M.B., Pérez, J.A.M., Moreno-Vega, J.M., Pelta, D.A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2008). Studies in Computational Intelligence, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03211-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03211-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03210-3

  • Online ISBN: 978-3-642-03211-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics