Chapter 8

A Simple Distributed Particle Swarm
Optimization for Dynamic and Noisy
Environments

Xiaohui Cui, Jesse St. Charles, and Thomas E. Potok

Abstract. In this paper, we present a Simple Distributed Particle Swarm Optimiza-
tion (SDPSO) algorithm that can be used to track the optimal solution in a dynamic
and noisy environment. The classic PSO algorithm lacks the ability to track chang-
ing optimum in a dynamic environment. Several approaches have been investigated
to enhance the PSO algorithm’s ability in dynamic environments. However, in deal-
ing with dynamic environments, these approaches have lost PSO’s original strengths
of decentralized control and ease of implementation. The SDPSO algorithm pro-
posed in this paper maintains these classic PSO features as well as provides the op-
timum result tracking capability in dynamic environments. In this research, the DF1
multimodal dynamic environment generator proposed by Morrison and De Jong is
used to evaluate the classic PSO, SDPSO and other two adaptive PSOs.

8.1 Introduction

In the real world, we have to frequently deal with searching and tracking an opti-
mal solution in a dynamic and noisy environment. This demands that the algorithm

Xiaohui Cui

Computational Sciences and Engineering Division,

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6085
e-mail: cuix@ornl.gov

Jesse St. Charles

Department of Computer Science and Engineering,
University of Tennessee Chattanooga, TN 37403
e-mail: jesse-stcharles@utc.edu

Thomas E. Potok

Computational Sciences and Engineering Division,

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6085
e-mail: potokte@ornl.gov

N. Krasnogor et al. (Eds.): Nature Inspired Cooperative Strate. for Optimization, SCI 236, pp. 89
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

90 X. Cui, J.S. Charles, and T.E. Potok

not only find the optimal solution but also track the trajectory of the non-stationary
optimal solution. Particle Swarm Optimization (PSO) [1] has been proven to be
both effective and efficient in solving a diverse set of optimization problems [2, 3].
In the past several years, PSO has been successfully applied in many research and
application areas. It has been demonstrated that PSO outperforms other optimiza-
tion methods in static environments [4]. However, despite the successful application
of Particle Swarm Optimization (PSO) techniques to many complex optimization
problems, classic PSO solutions are often fragile and easily fail when the problem
changes. The classic PSO algorithm lacks the ability to track non-stationary optimal
solutions and does not have a mechanism to detect dynamic environment change [5].

There is a recent growing interest in designing PSO algorithms for dynamic
environments[5, 6,7, 8,9, 10]. To deal with dynamic environments, these algorithms
normally consider two main aspects [6]: (1) detecting the environment change and
(2) reacting to the change so that the optimum can be tracked as closely as possible.
Several approaches [7, 8] have been investigated to enhance the PSO algorithm’s
ability in dynamic environments. However, most approaches depend on adding so-
phisticated mechanisms for detecting environment change and/or maintaining the
particle diversity for dealing with these changes. These approaches achieve the dy-
namic environment optimum result tracking capability by forfeiting PSO’s original
strengths of decentralized control and ease of implementation. The major reasons
that PSO is attractive are that the algorithm is easy to implement, non-centralized,
and require few parameters to adjust. In this paper, we propose a simple distributed
PSO (SDPSO) for searching and tracking the non-stationary optimum solution in a
dynamical environment. The SDPSO algorithm proposed in this paper retains the
positive features of classic PSO while providing the optimum-solution tracking ca-
pability for dynamic environments.

The remainder of this paper is organized as follows: in section 8.2, a brief
overview of classic PSO and a discussion of the shortcomings of PSO in a dy-
namic environment are presented. Various modified PSO approaches for dynamic
environment are introduced in section 8.3. In section 8.4, the SDPSO approach is
described in detail. In section 5, the DF1 multi-modal dynamic environment gener-
ator proposed by Morrison and De Jong is described and used as the test dynamic
environment to evaluate the performance of the algorithms. Experiment setup and
implementation in comparisons the performance of SDPSO and other modified PSO
algorithms in the dynamical environment are presented in section 6. Experiment re-
sults are presented in section 8.7. Discussion and Conclusion are in section 8.8.

8.2 Classic Particle Swarm Models

PSO was originally developed by Eberhart and Kennedy in 1995 [1], inspired by
the social behavior of bird flocks. In the PSO algorithm, birds in a flock are symbol-
ically represented as particles. These particles can be considered as simple agents
"flying" through a problem space. A problem space in PSO may have as many di-
mensions as are needed to model the problem space. A particle’s location in the

8 A SDPSO for Dynamic and Noisy Environments 91

multi-dimensional problem space represents one solution for the problem. When a
particle moves to a new location, a different problem solution is generated. This
solution is evaluated by a fitness function that provides a quantitative value of the
solution’s utility. The velocity and direction of each particle moving along each
dimension of the problem space are altered at each generation of movement. It
is the particle’s personal experience combined with its neighbors’ experience that
influences the movement of each particle through a problem space. For every gener-
ation, the particle’s new location is computed by adding the particle’s current veloc-
ity V —vector to its location X — vector. Mathematically, given a multi-dimensional
problem space, the ith particle changes its velocity v;4(#) and location x;4(f) accord-
ing to the following equations [4, 11]:

Vvig(t+1) = wX (vig(t) + ¢y X randy X (pia(t) — xig(1)) + c2 X randy X (pga(t) = xia(1)))
(8.1)
Xig(t+ 1) = x;q(0) +vig(t + 1) (8.2)

where, vjq(?) and v;4(t + 1) represent the ith particle’s velocity in dimension d at time
t and 7+ 1; xj4(f) and x;4(z + 1) represent the ith particle’s location in dimension d at
time ¢ and 7+ 1; pj4 is the location where the best fitness value that ith particle has
ever found since time f; pgq is the location where the the highest fitness value that
the whole particle population have ever found since time #; ¢1 and ¢, are two positive
acceleration constants; d is the number of dimensions of the problem space; rand,
rand, are random values in the range of (0,1). w is called the constriction coefficient
[4]. Equation 8.1 requires each particle to record its current position x;4, its velocity
vig, its personal best fitness value location vector p;; and the whole population’s
best fitness value location vector pgq. The best fitness values are updated at each
generation based on equation 8.3, where the symbol f denotes the fitness function;
P;(%) denotes the best fitness coordination; and t denotes the generation.

Pi(n); i f(Xi(r+ 1)) < f(Pi(D)

Xt + 1); if fXit+ 1) > f(Pi1)) (8.3)

Pi(t+1)= {

The P;; and Py and their fitness values f(P;g) and f(Pgq) can be considered as
each individual particle’s experience or knowledge and equation 8.3 is the particle’s
knowledge updating mechanism. In PSO, particles’ knowledge will not be updated
until the particle encounters a new vector location with a higher fitness value than
the value currently stored in its memory. However, in a dynamic environment, the
fitness value of each point in the problem space may change over time. The loca-
tion vector with the highest fitness value ever found by a specific particle may not
have the highest fitness value after several generations. It requires the particle to re-
new its memory whenever the real environment status does not match the particle’s
memorized knowledge. However, the traditional PSO lacks an updating mechanism
to monitor the change of the environment and update each particle’s memory when
a change is detected. As a result, the particle continually uses the outdated experi-
ence/knowledge to direct its search, which inhibits the particle from following the

92 X. Cui, J.S. Charles, and T.E. Potok

moving path of the current optimal solution and causes it to become trapped in the
region of the former optimal solution.

8.3 Related Work in PSO for Dynamic Environment

To stop particles using the outdated knowledge in a dynamic environment, Carlisle
[5] and Eberhart [7] proposed to periodically reset all particle memory and replace
each particle’s best fit value and location vector with its current location vector and
fitness value to force the particle to "forget" its former experience. One major disad-
vantage of this reset mechanism is the difficulty of determining the reset frequency.
Without prior-knowledge about the environment changing frequency, the particle’s
memory reset frequency needs to be set to a high value to capture the changing step
of the environment.

However, a high resetting frequency reduces the efficiency of the convergence of
the PSO. The essence of the PSO algorithm lies in each particle’s learning from both
its past search experience and its neighbor’s past search experience and utilizing
this knowledge to guide its next moving velocity. Periodic resetting will cause all
particles to lose their knowledge gathered during the search and force them to restart
learning. This decreases the search efficiency of the swarm. Frequently resetting the
personal best vector may cause particles unable to quickly converge on the vicinity
of the optimal solution, especially during the initial period of searching. Following
each reset, the optimization algorithm needs extra time to re-evaluate each particle’s
current fitness value. In [12], Hu and Eberhart present a knowledge retaining PSO
algorithm by only re-initializing a portion of the swarm when environment changes
are detected. By resetting only a portion of the swarm, the old swarm particles can
maintain memory of the previous environment.

To detect environment change, Carlisle [8] introduced a new notion, "sentry", in
his APSO algorithm. The "sentry" is one or many special designed particles that are
deployed in the problem space to monitor the environment changes. Different from
other particles, the "sentry" does not move. Every time step, the "sentry" compares
its current fitness value with the value in previous time step. If the value changed,
it indicates the environment changed. When the "sentry" detects a change in the en-
vironment, it informs all others and forces other particles to recalculate the fitness
value of the current personal best vector. Each particle then replaces p;;(¢) value in
8.1 with its current position’s fitness value if the p;;(7) value is less fit than its current
position. However, the "sentry" can only detect the local changes where the "sentry"
point resides. Some complex environments only exhibit local changes, which may
not be detected by a "sentry". In most real world applications, the fitness value is
not stable because of environmental noise interference. The "sentry" may be con-
stantly triggered by the environment noise, requesting all other particles react to the
false environment change alarm. In addition, this algorithm alters the classic PSO’s
decentralized processing model into an essentially centralized control model. All
other particles have to depend on one or a limited number of sentries for detecting
and reacting to the change of the environment. If the environment change pattern is

8 A SDPSO for Dynamic and Noisy Environments 93

non-linear, it is possible that the fitness value of the "sentry" doesn’t change when
the environment changed. This will make the system unable to detect the environ-
ment change. At the same time, if the the "sentry" fitness value is polluted by noise,
the "sentry" may generate fault alarm. Designing a particle that is capable of work-
ing as a sentry to monitor the environment will also increase the complexity of the
entire system.

8.4 Simple Distributed PSO Approach

In [13], we presented a distributed adaptive PSO (DAPSO) algorithm for dynamic
environments. In this algorithm, each particle monitors its personal performance at
each generation. When the particle personal best value does not get updated for a
pre-defined period, the particle will reset its personal best and global best value and
change it with the current position fitness value. At the same time, the particle’s
velocity will be re-initialized. However, the performance monitoring mechanism
increases the computation complexity of each particle, causing the algorithm to take
longer to converge to the optimum. and can not maintain the optimum result tracking
if the environment changes back to static environment.

In this research, we present a modified DAPSO, the simple distributed PSO ap-
proach (SDPSO). SDPSO has a simpler particle design for tracking and searching
unstable optimum solution in dynamic environments, such as the DF1 test envi-
ronment proposed by Morrison and De Jong [14]. In SDPSO, there is no specially
designed particle to monitor changes in an environment, no additional fitness eval-
uation, and no performance monitoring. Like the classic PSO, each particle uses
equation 8.1 to determine its next velocity. The only difference in the SDPSO algo-
rithm is the particle’s best fitness value update mechanism. Instead of using equation
8.3 to update the fitness value, we use equation equation 8.4 for the fitness value up-
date. Equation 8.4 is slightly different compared to the classic PSO fitness value
update function equation 8.3.

Pi)XT; if f(Xi(t+ 1) < f(Pi(0)xXT

Pie+1)= {Xi<r+ D if fX(r+ 1) > f(PAO)XT @4
In equation 8.4, a notion, the evaporation constant 7, is introduced. T has a value
between 0 and 1. The personal fitness value that is stored in each particle’s memory
and the global fitness value of the particle swarm will gradually evaporate (decrease)
at the rate of the evaporation constant 7" in each iteration. Eventually, the personal
and global best fitness value will be lower than the fitness value of a particle’s current
location and the best fitness value will be replaced by the particle’s current fitness
value. Although all particles have the same evaporation constant 7', each particle
may update the best fitness value more frequently than other particles. The updating
frequency depends on the particle’s previous personal best fitness value f(P) and
the current fitness value f(X) that the particle acquired. The particle will update
its best fitness value more frequently by using the current fitness value when the

94 X. Cui, J.S. Charles, and T.E. Potok

f(P) is lower and the f(X) is higher. However, when the f(P) is higher and the
f(X) is lower in a changing environment, it indicates the particle’s current location
is far away from the current optimal solution compared to the distance between the
optimal solution and the best fitness value’s position stored in the particle’s memory.

Usually the new environment (after changing) is closely related to the previous
environment from which it evolves. It is beneficial to use knowledge/experience
about the previous search space to help searching for the new optima. In this situa-
tion, the particle will keep the best fitness value in its memory until that value be-
comes obsolete. There is a concern that the swarm global best value may be updated
too frequently because each particle in the swarm will decrease the existing global
best value. However, according to our experiment, the quickly decreased global best
will be quickly updated with the latest global best value. This quick global best value
updating helps the particle swarm reacts quickly to the fast changing environment.
The fitness value update equation enables the swarm to collectively self-adapt to
the changing environment even without any mechanism to monitor environment
change.

8.5 Dynamic Environment Generator

8.5.1 Environment Landscape

In [15], Angeline proposes three different types of dynamic, linear, circular and ran-
dom trajectories for generating dynamic environment. However, real world dynamic
problems are often much more complex, highly nonlinear, and frequently have high
multimodality. In this research, we decided to use the dynamic environment gener-
ator originally proposed by Morrison and De Jong [14]. This dynamic environment
generator allows us to create non-stationary environments with different degrees of
complexity by controlling the morphology of the fitness landscapes as well as the
types of changes that can be produced and the severity of those changes. In the DF1
test landscape, a "field of cones" of different heights and different slopes are ran-
domly deployed across the field. The landscape can be specified for any number of
dimensions. For a two dimensional case, the landscape fitness evaluation function
in DF1 is defined as the following:

F(X,Y) = MAX[H; - R; X \/(x- X2+ (Y =y)2; (i=1,...N) (8.5)

Where N denotes the number of peaks in the environment and (x;,y;) represents
each cone’s location. R; and H; represent the cone’s height and slope.

8.5.2 Dynamics Generator

The movement of the problem solutions and consequently the change of the fitness
value of each solution is simulated with the change in position and height of the

8 A SDPSO for Dynamic and Noisy Environments 95

0.8
0.8
a7
0.6

0.5

Y Value

0.4

0.3

0z

a1

Fig. 8.1. Step size values generated by logic function with different A value [14]

cones in the DF1 generated landscape. Different movement functions generate dif-
ferent types of dynamic environments. In this research, the environment changing
rate is controlled by using following discrete moving step size function [14] and the
dynamic environment is simulated by the movement of the cone’s location (x;,y;).

Yi=AXYi 1 x(1-Yiy) (8.6)

Where A is a constant and Y; is the step size at the iteration i. The Y value produced
each iteration will be used to control the changing step sizes of the dynamic environ-
ment. In this function, the constant A is the only parameter that can be adjusted for
producing different movement behavior. As A is increased, movement will become
more complex through the generation of variable moving step sizes. The step size
value map generated by equation 8.5 with different A values is shown in figure 8.1.
As shown in figure 8.1, when A’s value is located in the range of 1 to 3, the func-
tion will generate a constant ¥ value on each iteration. When A’s value reaches the
range of 3 to 3.4, the function will generate two different values of Y for alternate
iterations, which represents two step size of the moving cones. When the A’s value
increases above 3.5, the function will generate chaotic sequences of Y values.

8.5.3 Measurement for Tracking Optimum Result

The ability for the algorithm to track the optimum in a dynamic environment is mea-
sured by the offline error at each iteration. This measurement is the distance between
the particle with the best fitness value and the cone centre with the highest peak. The
distance value shows the tracking ability of the algorithm during the entire search
procedure. If the algorithm can keep at least one particle located in a short distance
from the optimal solution at each iteration, regardless of the solution’s movement,
this distance value will be kept in low value in the whole searching period. The
offline error is defined as:

96 X. Cui, J.S. Charles, and T.E. Potok

Distance

1
Iteration

Fig. 8.2. The performance comparing of different PSO algorithms on static environment

eof fline(t) = min(dy(pi,h)); (i=1....N) (8.7)

Where d;(p;, h) is the distance between particles and the optimum at the iteration 7.
N denotes the number of particles in the environment.

8.6 Experiment Implementation

To evaluate the ability of the SDPSO algorithm in tracking the movement of the
optimum in a dynamic environment, the performance of the SDPSO algorithm and
the three other PSO algorithms are compared over the twelve different dynamic
environments generated by DF1 function. Besides the proposed SDPSO algorithm
and classic PSO algorithm, two modified PSO algorithms, RPSO10 and RPSO50
are included.

For all PSO algorithms, the factors ¢ and ¢, are set to 2.01 and these two fac-
tors produce an inertia weight w of 0.729844. The particle population is set to 30,
which is considerably smaller than many dynamic PSO approaches. The particles
are randomly distributed in a two dimensional environment with 100 units in each
dimension. The initial moving velocity of each particle is set to equal to half of the
environment width. This will guarantee that at least half of the particles will not
run off the environment board in the first move. All particles can only acquire the
noise added fitness value f"(x) instead of real fitness value f(x), as discussed in
section 5.3. The evaporation constant 7', for the personal best fitness value and the
constant T’ for the global best fitness value in SDPSO are set as 0.85 and 0.9. The
details of discovering the values of T}, and T, are discussed in [13]. The RPSO10
and RPSO50 adopts the algorithm in [12]. RPSO10 re-initializes 10% of particles
every 10 iterations and RPSOS50 re-initializes 50% of particles every 10 iterations.
There are no specially designed environment monitoring particles for monitoring
the environment change.

A landscape generated by the DF1 function is used as the test environment in all
experiments. Fifty cone shape peaks are randomly deployed in the environment. The

8 A SDPSO for Dynamic and Noisy Environments 97

height of all peaks are random values in the range of [0, 1]. One peak height is in-
tentionally set to 1.1 to make it as the highest peak. The severity of the environment
dynamics is controlled by the moving step size of the landscape. In our simulation
studies, the height and range of slope for each cone in the environment landscape
are set to be constant. All cones in the environment are moved in a step size gen-
erated by equation 8.5. Four different A values 1.2,2.2,3.3,3.9 are used in equation
8.5 for generating four different kinds of movement behavior models. The A = 1.2
value generates 0.1667 constant step size. The A = 2.2 value generates 0.5455 con-
stant step size. The A = 3.3 value generates pairs of step size 0.8236 and 0.4794.
When the A = 3.9 value, the step size generated in each iteration will be varied in
the range 0 to 1. Considering the size of the environment, the actual moving step size
of all cones is ten times the Y value generated by equation 8.5. In our research, we
chose three different change rates, r = 1,5, 10, as the dynamic environment change
frequency, which indicates all cones in the environment will move to a new location
every r iterations. The whole iteration number for searching optimum are set as 300.
Each algorithm’s implementation will run 100 times, and the distance value between
the swarm’s global best location and the optimum location at every iteration is av-
eraged over 100 runs. The algorithms are implemented with Matlab 6.5 and run on
a 3.0GHz CPU and 2.0GB memory Windows XP platform.

8.7 Experiment Results

In the first experiment, we evaluated the performance of the four algorithms in lo-
cating the optimal solution in static environment. The results are shown in figure
8.2. Figure 8.2 displays the shortest distance values between the optimal solution
and the particle that has the highest fitness value. The smaller the distance value, the
better the algorithm’s solution in the environment. As shown in Figure 8.2, at the
initial stage, particles are randomly deployed in the environment and the distance
between the particle and the optimal solution are usually high. After 50 iterations
all four algorithms can find the optimal solution in the static environment.

Figure 8.3, 8.4, 8.5 show the four different PSO algorithms’ performances on
a range of different dynamic environments. The A value control the environment
changing speed through the 8.5. The r value represents how many time steps the
environment will change once. The higher the r value, the slower the environment
change. The X — axis is the iteration number and Y — axis is the distance between
the particle swarm’s global best location vector and the actual optimum location
vector. The distance value represents the algorithm’s optimum result tracking per-
formance. The smaller the distance value, the better the algorithm’s performance. As
shown in Figure 8.3 8.4 8.5, the blue line (the bottom lines in monochrome figures)
is the performance of SDPSO algorithm. It maintains near zero Y — axis (distance)
value in the whole 300 iterations. The red line (the zigzag lines located on top of
the monochrome figures) is PSO tracking performance. The huge changing in the

98 X. Cui, J.S. Charles, and T.E. Potok

=& SOPS0

4 SDPS0
= RPSOI0

]
e
e
g

+ RPSOS0

—4— PSO

SRR
e

Distance

=& SOPS0O

Distance
2 3

(c) A=3.3,1=10 (d) A=3.9, r=10

Fig. 8.3. The performance comparing of different PSO algorithms on various dynamic envi-
ronments with changing frequency r = 10

Y —acis value represents the PSO lack the capability in tracking the optimum re-
sult. The green and black lines (located in the middle part of monochrome figures)
can track the optimum result when environment does change very fast. Compared
to the other three algorithms, SDPSO performs efficiently in all dynamic environ-
ments. Although the optimum is continually changing in the entire searching period,
the SDPSO algorithm can maintain the lowest distance (below 5) between the best
fitness value particle and the optimal solution.

The RPSO10 and RPSOS50 algorithms were originally designed for reinitializing
a subset of the swarm particles when an environment change is detected. Without
the mechanism for detecting the environment change, both algorithms’ initializing
frequencies are pre-set as 10 iterations. As shown in Figure 8.3 8.4 8.5, only when
the moving step size of the dynamic environment is small (A = 1.2, step size =
1.667), the optimum result tracking performances of both algorithms are acceptable.
The RPSO50’s performance is better than RPSO10 because 50% of particles are re-
initialized to avoid been trapped in local outdated area.

8 A SDPSO for Dynamic and Noisy Environments 99

4~ SDPS0
—— RPSOI0

—~ SOPS0
— 1

v RPE0S0 140 ReSo

—~ PEO

Distance
=

S
|

T
T
PR

Distance

(c¢) A=3.3,r=5 (d) A=3.9, r=5

Fig. 8.4. The performance comparing of different PSO algorithms on various dynamic envi-
ronments with changing frequency r =5

The distance values for the classic PSO model are very high for most iterations;
this indicates that the classic PSO totally failed in the tracking of the movement of
the optimum. The saw shape patterns are caused by the cone movement design in
the implementation. In our implementation program, if the peak cone approaches
the board of the environment, it will automatically reverse its movement direction to
avoid moving out of the boundary. This causes the optimum to move back to its orig-
inal location where the classic particles are trapped. The higher the cone’s moving
step size value, the quicker the optimum cone move back to its original location. The
distance patterns of classic PSO in figure Figure 8.3 8.4 8.5, indicate these features.

The quantitative comparison of the tracking performances between different PSO
models is shown in Table 8.1. The average of the distance values of each PSO model
in dynamic environment (A = 2.2,r = 5) are listed in the table. To avoid the impact
of the initial particles’ location, only distance values between the 50th and 300th
iteration are averaged. The average value in the table shows that SDPSO has the
lowest distance value; this indicates the SDPSO can maintain the shortest distance
between the swarm global best vector and the actual optimum location.

100 X. Cui, J.S. Charles, and T.E. Potok

—= SDPS0

—= SDPS0

Pty
gt

.

Distance

(c) A=3.3,r=1 (d) A=3.9,r=1

Fig. 8.5. The performance comparing of different PSO algorithms on various dynamic envi-

ronments with changing frequency r = 1

Table 8.1. The average distance value between the optimal solution and the particle that has
the highest fitness evaluation value after 50 Iterations for environment (A = 3.9,r = 10)

Algorithms Average distance after 50 iteration

SDPSO 3.8493

RPS 010 41.1411

RPS 050 33.7604
PSO 89.5743

8.8 Discussion and Conclusion

Most papers discussing applications of optimization algorithms only discuss the sce-
nario of the static environment. The performance evaluation of various approaches
is mainly based on how fast an approach can find the optimal point in the benchmark
problems. It has been proven that PSO is very effective in applications with a static

8 A SDPSO for Dynamic and Noisy Environments 101

environment. However, the real world is rarely static, and a frequently changing so-
Iution space may cause the optimal solutions to change over time. The optimal so-
Iution found at time 7'y may no longer be valid at time 7>. When the problem space
is changing, the goal of optimization is not only to acquire the optimal solution
but also to track the solution’s trajectory as closely as possible. Several approaches
have been investigated to enhance the PSO algorithm’s ability in dynamic environ-
ments. However, most approaches depended on adding sophisticated mechanisms
for detecting the environment change and maintaining the particle diversity for re-
acting to the environment change. These approaches achieved high performance at
the cost of exchanging the classic PSO’s ideally decentralized processing model
with a more centralized and harder to implement algorithm. The major reasons that
Particle Swarm Optimization (PSO) is attractive are that the algorithm is easy to
implement, non-centralized, and requires few parameters to adjust. There are only
ten lines of code to implement the original PSO algorithm [1]. The complexity in
many PSO approaches makes them difficult to compete with modified EA algorithm
for optimization in dynamic environment.

In this paper, we present a new approach, SDPSO, a modified PSO, for track-
ing the optimization solution in a dynamic environment. Unlike other adaptive
PSO algorithms designed for dynamic environments, which need one or more
specially designed "sentry" particles to detect change in the environment and to
control other particles’ actions, each particle in SDPSO individually updates its
knowledge based on the local environment status that the particle perceives. All par-
ticles in the SDPSO system are homogenous. The SDPSO algorithm maintains these
classic PSO features as well as provides the optimum result tracking capability
in dynamic environments. Our simulation experiment results indicate that SDPSO
can efficiently track the movement of an optimal solution in different kinds of dy-
namic environments generated by the DF1 function. Because each particle updates
its memory only based on its perception and its knowledge evaporation rate, this
SDPSO algorithm can avoid failing to tracking the optimal solution as happens in
other modified PSO approaches that are based on resetting the memory periodically.

References

[1] Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, Nagoya,
Japan, pp. 3943 (1995)

[2] Cui, X., Potok, T.E.: Document Clustering Analysis Based on Hybrid PSO+K-means
Algorithm. Journal of Computer Sciences Special Issue, 27-33 (2005)

[3] van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm opti-
mization. In: 2003 Congress on Evolutionary Computation, Canberra, ACT, Australia,
December 8-12, pp. 215-220 (2003)

[4] Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary Computation 6,
58-73 (2002)

102

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

X. Cui, J.S. Charles, and T.E. Potok

Carlisle, A., Dozier, G.: Adapting particle swarm optimization to dynamic environ-
ments. In: Proceedings of the International Conference on Artificial Intelligence, Las
Vegas, NV, USA, pp. 429-433 (2000)

Li, X., Khanh Hoa, D.: Comparing particle swarms for tracking extrema in dynamic
environments, Canberra, ACT, Australia, pp. 1772-1779 (2003)

Eberhart, R.C., Yuhui, S.: Tracking and optimizing dynamic systems with particle
swarms, Seoul, South Korea, pp. 94-100 (2001)

Carlisle, A., Dozler, G.: Tracking changing extrema with adaptive particle swarm opti-
mizer. In: Soft Computing, Multimedia Biomedicine, Image Processing and Financial
Engineering, Orlando, FL, USA, pp. 265-270 (2002)

Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments, Coim-
bra, Portugal, pp. 489-500 (2004)

Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Transactions on Evolutionary Computation 10, 440458
(2006)

Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Compu-
tation, Washington, DC, USA, pp. 1951-1957 (1999)

Hu, X., Eberhart, R.C.: Adaptive particle swarm optimization: detection and response
to dynamic systems, Honolulu, HI, USA, pp. 1666—-1670 (2002)

Cui, X., Potok, E.T.: Distributed Adaptive Particle Swarm Optimizer in Dynamic En-
vironment. In: 21st IEEE International Parallel & Distributed Processing Symposium.
IEEE Computer Society, Long Beach (2007)

Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environ-
ments, Washington, DC, USA, pp. 2047-2053 (1999)

Angeline, P.J.: Tracking extrema in dynamic environments, Indianapolis, IN, USA, pp.
335-345 (1997)

Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems
through particle swarm optimization. Natural Computing 1, 235-306 (2002)

	A Simple Distributed Particle Swarm Optimization for Dynamic and Noisy Environments
	Introduction
	Classic Particle Swarm Models
	RelatedWork in PSO for Dynamic Environment
	Simple Distributed PSO Approach
	Dynamic Environment Generator
	Environment Landscape
	Dynamics Generator
	Measurement for Tracking Optimum Result

	Experiment Implementation
	Experiment Results
	Discussion and Conclusion
	References

