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Abstract. We show how, given a program and its separation logic proof,
one can parallelize and optimize this program and transform its proof
simultaneously to obtain a proven parallelized and optimized program.
To achieve this goal, we present new proof rules for generating proof
trees and a rewrite system on proof trees.

1 Introduction

As the trend towards multi-core processors is growing, software developers must
write parallel code. Because writing parallel software is notoriously harder than
writing sequential software, inferring parallelism automatically is a possible so-
lution to the challenges faced by software developers. A well-known technique
for inferring parallelism is to detect pieces of programs that access disjoint parts
of the heap. Previously [24,19,21], various pointer analysis have been used to
achieve this goal for programs manipulating simple data structures and arrays.

In this paper, we describe a new technique to infer parallelism from proven
programs. Instead of designing ad-hoc analysis techniques, we use separation
logic [34] to analyze programs before parallelizing them. We use separation logic’s
? operator – which expresses disjointness of parts of the heap – to detect poten-
tial parallelism. Compared to [24,19,21], using the ? operator avoids relying on
reachabality properties. This permits to discover disjointness of arbitrary data
structures, paving the way to parallelize and optimize object-oriented programs
proven with separation logic [32].

Contrary to most previous works that manipulate proofs [5,29,33], our al-
gorithms manipulate proof trees representing derivations of Hoare triplets. The
overall procedure is as follows: we generate a proof tree P of a program C, then
we rewrite P, C into P ′, C ′ such that P ′ is a proof of C ′ and C ′ is a parallelized
and optimized version of C. The generation of proof trees is done with a modified
version of smallfoot [8] and the rewrite system is implemented in tom [4].

Our algorithm for rewriting proof trees focuses on two rules of separation
logic: the (Frame) and the (Parallel) rules. First, the (Frame) rule [34] allows
reasoning about a program in isolation from its environment, by focusing only on
the part of the heap that this program accesses. Second, the (Parallel) rule [30]
allows reasoning about parallel programs that access disjoint parts of the heap.

{Ξ}C{Ξ ′}
(Frame)

{Ξ ? Θ}C{Ξ ′ ? Θ}
{Ξ}C{Θ} {Ξ ′}C ′{Θ′}

(Parallel)
{Ξ ? Ξ ′}C‖C ′{Θ ? Θ′}



The basic idea of our reasoning is depicted by the following rewrite rule:

{Ξ}C{Θ}
(Frame)

{Ξ ? Ξ ′}C{Θ ? Ξ ′}
{Ξ ′}C ′{Θ′}

(Frame)
{Θ ? Ξ ′}C ′{Θ ? Θ′}

(Seq)
{Ξ ? Ξ ′}C; C ′{Θ ? Θ′}

↓Parallelize1

{Ξ}C{Θ} {Ξ ′}C ′{Θ′}
(Parallel)

{Ξ ? Ξ ′}C‖C ′{Θ ? Θ′}

The diagram above should be read as follows: Given a proof of the sequential
program C; C ′ we rewrite this proof into a proof of the parallel program C‖C ′.
If the initial proof tree is valid, this rewriting yields a valid proof tree because
the leaves of the rewritten proof tree are included in the leaves of the initial
proof tree.

Our procedure differs from recent and concurrent work [33] on three main
points: (1) instead of attaching labels to heaps, we use the (Frame) rule to stat-
ically detect independent parts of the program, leading to a technically simpler
procedure; (2) we express optimizations by rewrite rules on proof trees, allow-
ing us to feature other optimizations than parallelization and to use different
optimization strategies; and (3) we have an implementation. Having said these
differences, both our work and Raza et al.’s work [33] build upon the insight
that separation logic proofs are a convenient tool to detect parallelism.

Contributions We present the careful design of proof rules adapted for our
rewrite rules (Section 3). These proof rules are derived from [8]’s proof rules.
We present sound rewrite rules from proof trees to proof trees that yield opti-
mized programs (Section 4). Considered optimizations are parallelization, early
disposal, late allocation, early lock releasing, and late lock acquirement. We
present an implementation of our algorithms that uses smallfoot [7] as the proof
tree generator and tom [4] as the rewrite engine (Section 5). We illustrate our
algorithms by two examples (Section 6).

Outline The rest of the paper is organized as follows: we present the formal
language we use throughout the paper in Section 2, we show how our technique
will benefit from the recent advances of separation logic in Section 7, we discuss
related work in Section 8, and we conclude in Section 9.

2 Background

This section recalls the relevant parts of [8]’s framework that we use in our work.
Our assertion language distinguishes between pure (heap independent) and

spatial (heap dependent) assertions:
1 To disambiguate between Hoare rules (enclosed in parentheses) and rewrite rules,

we underline rewrite rules.



x, y, z ∈ Var variables
E,F, G ::= nil | x expressions

b ::= E = E | E 6= E boolean expressions
Π ::= b | Π ∧Π pure formulas

f, g, fi, l, r, . . . ∈ Fields fields
ρ ::= f1 : E1, . . . , fn : En record expressions
S ::= E 7→ [ρ] | ls(E,F ) | tree(E) simple spatial formulas
Σ ::= emp | S | Σ ? Σ spatial formulas

Ξ,Θ ∈ Π ¦ Σ formulas

The meaning of simple spatial formulas is as follows: E 7→ [ρ] represents a
heap containing one cell at address E with content ρ, ls(E,F ) represents a
heap containing a linked list segment from address E to address F , and tree(E)
represents a heap containing a tree whose root is at address E and whose left
and right subtrees can be dereferenced with fields l and r. The formula E 7→ [ρ]
can mention any number of fields in ρ: the values of omitted fields are implicitly
existentially quantified. Top-level formulas are pairs Π ¦ Σ where Π is a ∧-
separated sequence of pure formulas (indicating equalities/inequalities between
expressions) and Σ is a ?-separated sequence of spatial formulas (indicating facts
about the heap). The semantics of formulas is omitted and can be found in [8].

Entailment between formulas is written Ξ ` Θ. We lift ` to pure formulas
and ? to formulas (note that ¦ binds tighter than ?) as follows:

Π ` Π ′ ∆= Π ¦ emp ` Π ′ ¦ emp Π ¦ Σ ? Π ′ ¦ Σ′ ∆= (Π ∧Π ′) ¦ (Σ ? Σ′)

We use σ to range over substitutions of the form x0/y0, . . . , xn/yn. Below we
abusively write Π ` x0/y0, . . . , xn/yn to denote Π ` x0 = y0 ∧ · · · ∧ xn = yn.
We define a syntactical equivalence relation between formulas as follows:

Π ¦ Σ ⇔ Π ′ ¦ Σ′ iff
{

Π is a permutation of Π ′

∃σ,Π ` σ and Σ[σ] is a permutation of Σ′

Hoare triplets have the form {Ξ}C{Θ} where C is a command. Atomic com-
mands A and commands C are defined by the following grammar (where p ranges
over procedure names):

A ::= x := E | x := E→f | E→f := F | x := new() | dispose(E)
C ::= A | empty | if b then C else C | while(b){C}

| lock(r) | unlock(r) | p(E1;E2) | C; C | C‖C ′

Atomic command x := E → f looks up the content of field f of cell at
address E, while E→f := F mutates the content of field f of cell at address E.
In lock(r) and unlock(r)2, r is a lock or a resource [30]. Resources are declared

2 To smallfoot’s experts: smallfoot uses conditional critical regions with do endwith

instead of lock/unlock commands. However, because smallfoot generates verifica-
tion conditions [8], conditional critical regions are treated like lock/unlock com-
mands in smallfoot’s implementation. That is why we use lock/unlock commands.



in the (omitted) program’s header and come with a resource invariant, i.e., a
formula describing the part of the heap guarded by the resource. Intuitively, when
a resource is locked by a process, the resource’s invariant is transferred to the
process; while when a resource is unlocked, the resource’s invariant is transferred
from the process back to the resource. In procedure calls p(E1;E2), E1 are the
parameters that are unchanged in p’s body, while E2 are the parameters that
are assigned in p’s body.

To mutate and lookup the content of records, we use the following notations:

mutate(ρ, f, F ) =
{

f : F, ρ′ if ρ = f : E, ρ′

f : F, ρ if f 6∈ ρ
lkp(ρ, f) =

{
E if ρ = f : E, ρ′

x fresh if f 6∈ ρ

3 Derived Rules with Explicit Antiframes and Frames

In this section we show how to generate proof trees where antiframes [13] (por-
tions of the state needed to execute a command) and frames (portions of the
state useless to execute a command) are made explicit. Making antiframes and
frames explicit will be needed in Section 4 for our rewrite rules to work.

The (Frame) rule is one of the central ingredients of separation logic’s success.
It allows reasoning with small axioms [31] about atomic commands. In practice,
however, the small axioms are not used and frames are not computed at each
atomic command. Consider, for example, the rule for field lookup used in [8]3:

Π ` F = E x′ fresh lkp(ρ, f) = G

{Π ¦ Σ ? F 7→ [ρ]}x := E→f{x = G[x′/x] ∧Π[x′/x] ¦ (Σ ? F 7→ [ρ])[x′/x]}

This rule does not frame the precondition: the whole pure part of the pre-
condition (Π) is used to show F = E and the substitution x′/x is applied to
the whole precondition (Π ¦ Σ ? F 7→ [ρ]). In other words, this rule does not
exhibit the part of the precondition that is framed i.e., (1) the pure part of the
precondition that is useless to show F = E and (2) the part of the precondition
that is left unaffected by the substitution x′/x.

Fig. 1 shows rules (derived from [8]) for each atomic command where an-
tiframes and frames are made explicit. In these rules, we subscript formulas
representing antiframes by a and formulas representing frames by f . We indi-
cate on the right-hand side of applications of (Frame) the formula being framed.
Finally, extra side conditions of (Frame) are indicated as additional premises.

To help the reader understand these rules, we detail the rule exhibiting the
antiframe and frame at a field lookup command (the second rule). The antiframe
consists of (1) the pure part of the precondition which is necessary to show
F = E: it is Πa and of (2) the spatial part of the precondition asserting that
the cell at E exists (F 7→ [ρ]) and the spatial part of the precondition affected
by the substitution x′/x (Σa). The frame is the antiframe’s complement (Ξf ).

3 Where, for clarity, we do the following modifications to [8]’s presentation: we include
the “rearrangement” step and we omit the continuation.



x′ fresh (Assign)
{Ξa}x := E{Ξa[x′/x]} x 6∈ Ξf

(Frame Ξf )
{Ξa ? Ξf}x := E{Ξa[x′/x] ? Ξf}

Πa ` F = E x′ fresh lkp(ρ, f) = G
Ξ = Πa[x′/x] ∧ x = G[x′/x] ¦ (Σa ? F 7→ [ρ])[x′/x]

(Lookup)
{Πa ¦ Σa ? F 7→ [ρ]}x := E→f{Ξ} x 6∈ Ξf

(Frame Ξf )
{(Πa ¦ Σa ? F 7→ [ρ]) ? Ξf}x := E→f{Ξ ? Ξf}

Πa ` F = E mutate(ρ, f, G) = ρ′
(Mutate)

{Πa ¦ F 7→ [ρ]}E→f := G{Πa ¦ F 7→ [ρ′]}
(Frame Ξf )

{Πa ¦ F 7→ [ρ] ? Ξf}E→f := G{Πa ¦ F 7→ [ρ′] ? Ξf}

x′ fresh (New)
{Ξa}x := new(){Ξa[x′/x] ? x 7→ []} x 6∈ Ξf

(Frame Ξf )
{Ξa ? Ξf}x := new(){Ξa[x′/x] ? x 7→ [] ? Ξf}

Πa ` F = E
(Dispose)

{Πa ¦ F 7→ [ρ]}dispose(E){Πa ¦ emp}
(Frame Ξf )

{Πa ¦ F 7→ [ρ] ? Ξf}dispose(E){Πa ¦ emp ? Ξf}

Fig. 1. Derived rules for atomic commands with explicit antiframes and frames

Theorem 1. The rules in Fig. 1 are sound.

Sketch of the proof. Observe that the restrictions imposed on explicit frames
(x 6∈ Ξf ) make explicit frames immune to substitutions x′/x (cases (Assign),
(Lookup), and (New)). Then, further observe that these rules derive from [8]’s
rules (which are sound). ut

We have not discussed the rule for method calls. That is intentional: existing
proof rules for method calls [34,7] already compute frames and antiframes at
procedure calls. Similarly, we use standard rules for loops and conditionals. There
is a caveat though: because smallfoot generates verification conditions [7], proofs
for while loops are “separated” from the enclosing method. This forbids to move
code from within a loop outside of the loop (and conversely).

4 Automatic Optimizations by Proof Rewriting

In this section, we show rewrite rules for proof trees (ranged over by the meta-
variable P). The proof trees we consider are built using [8]’s framework but we
use Fig. 1’s rules for atomic commands. This is crucial because all our rewrite
rules mention the (Frame) rule on their left hand side i.e., they cannot fire if
frames are not explicit.



(Mutate)
{Λx}x→f := E{ΛE

x } (Fr Λ ,
y,z)

{Λ , ,
x,y,z}x→f := E{ΛE, ,

x,y,z}

(Mutate)
{Λy}y→f := F{ΛF

y }
(Fr ΛE,

x,z)
{ΛE, ,

x,y,z}y→f := F{ΛE,F,
x,y,z }

(Mutate)
{Λz}z→f := G{ΛG

z }
(Fr ΛE,F

x,y )
{ΛE,F,

x,y,z }z→f := G{ΛE,F,G
x,y,z }

(Seq)
{ΛE, ,

x,y,z}y→f := F ; z→f := G{ΛE,F,G
x,y,z }

(Seq)
{Λ , ,

x,y,z}x→f := E; y→f := F ; z→f := G{ΛE,F,G
x,y,z }

Fig. 2. A proof tree obtained by applying Fig. 1’s rules

A proof tree is valid if each inference is an instance of the proof rules. A
rewrite rule P → P ′ takes an input proof tree P and yields an output proof tree
P ′.

Definition 1. A rewrite rule → is sound iff for all valid proof trees P such that
P → P ′, P ′ is valid.

The rewrite rules we present in the paper satisfy the following properties:
(1) the rewrite rules are sound and (2) the rewrite rules preserve specifications
i.e., given a proof tree whose root is {Ξ} {Θ}, any tree returned by the rewrite
system will have {Ξ} {Θ} as its root. This holds simply because all our rewrite
rules leave the pre/postcondition of the root of the input proof tree untouched.

We highlight that our rewrite rules do not offer stronger guarantees. On one
hand, this allows to heavily optimize programs; on the other hand this means
that optimizing underspecified programs might introduce unexpected behaviors.

4.1 Generated Proof Trees Have a Particular Shape

Most proof trees generated by Fig. 1’s rules do not match the left-hand side of the
rewrite rule Parallelize shown in the introduction. To exemplify this statement,
we define the following abbreviation:

ΛE0,...,Em
x0,...,xm

∆= x0 7→ [f : E0] ? · · · ? xm 7→ [f : Em]

Note that this abbreviation enjoys the following equivalence (where we lift ⇔ to
spatial formulas in the obvious way):

Λ
E0,...,Em,Em+1,...,Em+k
x0,...,xm,xm+1,...,xm+k ⇔ ΛE0,...,Em

x0,...,xm
? Λ

Em+1,...,Em+k
xm+1,...,xm+k

Now, to see why proof trees generated by Fig. 1’s rules do not match the
left-hand side of the rewrite rule Parallelize, consider the proof tree shown in
Fig. 2 (where pure formulas are omitted, (Fr) abbreviates (Frame), and denotes
existentially quantified values). The rewrite rule Parallelize cannot fire on Fig. 2’s
proof tree because this proof tree contains applications of (Frame) at each atomic
command. Generally, given a program A0; A1; . . . , the proof rules with explicit
frames generate a proof tree with the following shape:

. . . (Frame)
{. . . }A0{. . . }

. . . (Frame)
{. . . }A1{. . . } . . .

(Seq)
{. . . }A1; . . . {. . . }

(Seq)
{. . . }A0; A1; . . . {. . . }



Proof trees with the shape above are inappropriate for the rewrite rule
Parallelize. Intuitively, the problem lies in the successive applications of (Frame)
being redundant: the same formula is framed multiple times. For example, in the
proof tree shown in Fig. 2, the formula ΛE

x is framed twice: once in the center
(Frame) and once in the right (Frame).

More generally, the presence of redundant frames means that applications of
(Frame) are on short commands. However, as the left-hand side of the rewrite
rule for parallelization described in the introduction shows, to parallelize long
commands, applications of (Frame) have to be on long commands. Hence, re-
moving redundant frames is a mandatory step before parallelizing. The next
section shows how to remove redundancy by inferring applications of (Frame)
on long commands from application of (Frame) on short commands.

4.2 Removing Redundancy in Frames

The redundancy in applications of (Frame) originally comes from the symbolic
execution algorithm. Because symbolic execution mimics an operational update
of the state at each atomic command, it cannot reason about a succession of
commands: each atomic command is treated independently. To fix this issue, two
solutions are available. The first solution is to build a new program verifier that
infers frames for non-atomic commands. We think this solution is inadequate
because it requires to design a program verifier with proof rewriting in mind
(breaking separation of concerns). The second solution, chosen in this paper, is
to minimize the modifications of the program verifier and to do as much work
as possible on the proof rewriting side.

{Ξa}C{Ξp}
(Frame Ξf )

{Ξa ? Ξf}C{Ξp ? Ξf}

{Θa}C′{Θp}
(Frame Θf )

{Θa ? Θf}C′{Θp ? Θf} {Θp ? Θf}C′′{Ξ ′}
(Seq)

{Θa ? Θf}C′; C′′{Ξ ′}
(Seq)

{Ξa ? Ξf}C; C′; C′′{Ξ ′}

↓ FactorizeFrames

{Ξa}C{Ξp}
(Frame Ξf0){Ξa ? Ξf0}C{Ξp ? Ξf0}

{Θa}C′{Θp}
(Frame Θf0){Θa ? Θf0}C′{Θp ? Θf0} (Seq)

{Ξa ? Ξf0}C; C′{Θp ? Θf0} (Frame Ξc){Ξa ? Ξf}C; C′{Θp ? Θf} {Θp ? Θf}C′′{Ξ ′}
(Seq)

{Ξa ? Ξf}C; C′; C′′{Ξ ′}
Guard: Ξf ⇔ Ξf0 ? Ξc and Θf ⇔ Θf0 ? Ξc

Fig. 3. Rewrite rule to factorize applications of (Frame)



Fig. 3 shows the rewrite rule FactorizeFrames that removes redundancy in
applications of (Frame). FactorizeFrames fires if C and C ′ are two consecutive
commands that both frame a part of the state (Ξf and Θf respectively) such
that the two parts of the state share a common part (Ξc as imposed by the
guard). In FactorizeFrames’s right-hand side, the common part of the state is
framed once, below the application of (Seq).

Both the left-hand side of FactorizeFrames (abbreviated by lhs below) and
the right-hand side of FactorizeFrames (abbreviated by rhs below) include the
proof tree of the triplet {Θp ? Θf}C ′′{Ξ ′}. We need to include such a proof tree
to match two possible cases: C ′′ can be a dummy “continuation” (represented
by the empty command) or a “normal” continuation. In the implementation, all
rewrite rules use this “possible continuation” trick.

Fig. 4 exemplifies an application of FactorizeFrames to Fig. 2’s proof tree:
the redundancy of ΛE

x in the center and the right (Frame)s is factorized in a
single (Frame).

(Mutate)
{Λx}x→f := E{ΛE

x }
(Fr Λ ,

y,z)
{Λ , ,

x,y,z}x→f := E{ΛE, ,
x,y,z}

(Mutate)
{Λy}y→f := F{ΛF

y }
(Fr Λz)

{Λ ,
y,z}y→f := F{ΛF,

y,z}

(Mutate)
{Λz}z→f := G{ΛG

z }
(Fr ΛF

y )
{ΛF,

y,z}z→f := G{ΛF,G
y,z }

(Seq)
{Λ ,

y,z}y→f := F ; z→f := G{ΛF,G
y,z }

(Fr ΛE
x )

{ΛE, ,
x,y,z}y→f := F ; z→f := G{ΛE,F,G

x,y,z }
(Seq)

{Λ , ,
x,y,z}x→f := E; y→f := F ; z→f := G{ΛE,F,G

x,y,z }

Fig. 4. Fig. 2’s proof tree after applying FactorizeFrames once

Theorem 2. The rewrite rule FactorizeFrames is sound.

Proof. Suppose the left-hand side of FactorizeFrames is valid. The goal is to
show that the right-hand side of FactorizeFrames rhs is valid.

For the application of (Frame Ξc) to be valid, we must show the two following
equivalences: Ξa ? Ξf ⇔ Ξa ? Ξf0 ? Ξc and Θp ? Θf ⇔ Θp ? Θf0 ? Ξc. But these
two equivalences follow directly from FactorizeFrames’s guard.

For the application of (Frame Θf0) to be valid, we must show the following
equivalence:

Ξp ? Ξf0 ⇔ Θa ? Θf0 (goal)

From FactorizeFrames’s first guard, we obtain:

Ξp ? Ξf ⇔ Ξp ? Ξf0 ? Ξc (1)

From the validity of the application of (Seq) in FactorizeFrames’s lhs, we obtain:
Ξp ? Ξf ⇔ Θa ? Θf . Then, from FactorizeFrames’s second guard, we obtain:

Ξp ? Ξf ⇔ Θa ? Θf0 ? Ξc (2)



By simplifying Ξc on the right hand sides of (1) and (2), we obtain the desired
goal. Now FactorizeFrames’s validity is deduced as follows: (1) each inference in
FactorizeFrames’s rhs is a valid instance of the proof rules and (2) the leaves of
FactorizeFrames’s rhs are identical to the leaves of FactorizeFrames’s lhs (which
are valid by hypothesis). ut

Because FactorizeFrames’s guard uses the syntactical equivalence ⇔, it might
miss some semantical equivalences. Using an entailment relation ` would be more
powerful. However, we leave open the problem of finding common frames with
a semantical equivalence for the following reason: finding a common frame (i.e.,
given Ξ and Θ; find Ξc, Ξr, and Θr such that Ξ ` Ξr ? Ξc and Θ ` Θr ? Ξc)
cannot be expressed efficiently in terms of known problems; such as a frame
problem [8] (given Ξ and Θ, find Ξf such that Ξ ` Ξf ? Θ), or a bi-abduction
problem [13] (given Ξ and Θ, find Ξa and Θf such that Ξ ? Ξa ` Θ ? Θf ).

4.3 Parallelization

In practice, factorizing frames is a mandatory step before applying the Parallelize
rewrite rule shown in the introduction. For example, applying Parallelize to the
proof tree shown in Fig. 4 yields a proof of the following Hoare triplet:

{Λ , ,
x,y,z}x→f := E ‖ (y→f := F ‖ z→f := G){ΛE,F,G

x,y,z }

For the Parallelize rewrite rule to be sound, we add the guard that C does
not modify variables in Ξ ′, C ′, and Θ′ (and conversely). Note that, for clarity of
presentation, the Parallelize rule shown in the introduction does not include the
“possible continuation” trick mentioned above. We refer the interested reader to
our companion report [25] for the complete rule.

4.4 Generic Optimizations

In this subsection, we present an optimization that changes the program’s execu-
tion order. This optimization has four concrete applications: (1) dispose memory
as soon as possible to avoid out of memory errors, (2) allocate memory as late
as possible to leave more allocatable memory, (3) release locks as soon as possi-
ble to increase parallelism, and (4) acquire locks as late as possible to increase
parallelism. Fig. 5 shows the rewrite rule for changing the program’s execution
order.

GenericOptimization fires if the program has the shape C; C ′; C ′′ such that
C ′ frames the postcondition of C (as imposed by the guard). Then, the program’s
order is changed so that C ′ executes before C. It should be noted that this rule
imposes that C frames the precondition of C ′ by the following reasoning: for
the first application of (Seq) to be valid in GenericOptimizations’s lhs, we have
Ξp ? Ξf ⇔ Θa ? Θf . From the guard, it follows that Ξp ? Ξf ⇔ Θa ? Ξp ? Ξr. By
simplifying Ξp on both sides, we obtain: Ξf ⇔ Θa ? Ξr. We can conclude that
C frames the precondition of C ′ (Θa).



{Ξa}C{Ξp}
(Fr Ξf )

{Ξa ? Ξf}C{Ξp ? Ξf}

{Θa}C′{Θp}
(Fr Θf )

{Θa ? Θf}C′{Θp ? Θf} {Θp ? Θf}C′′{Ξ′}
(Seq)

{Θa ? Θf}C′; C′′{Ξ′}
(Seq)

{Ξa ? Ξf}C; C′; C′′{Ξ′}

↓ GenericOptimization

{Θa}C′{Θp}
(Fr Ξr ? Ξa)

{Ξa ? Θa ? Ξr}C′{Ξa ? Θp ? Ξr}

{Ξa}C{Ξp}
(Fr Θp ? Ξr)

{Ξa ? Θp ? Ξr}C{Ξp ? Θp ? Ξr} {Ξp ? Θp ? Ξr}C′′{Ξ′}
(Seq)

{Ξa ? Θp ? Ξr}C; C′′{Ξ′}
(Seq)

{Ξa ? Ξf}C′; C; C′′{Ξ′}
Guard: Θf ⇔ Ξp ? Ξr

Fig. 5. Rewrite rule to change the program’s execution order

We now detail GenericOptimization’s four concrete applications. (1) If C ′ is
a dispose command, because C frames the precondition of C ′, it means that
C does not access the state disposed by C ′: better execute C ′ first to dispose
memory as soon as possible. (2) If C is a new command, because C ′ frames
the postcondition of C, it means that C ′ does not access the state allocated
by C: better execute C after C ′ to leave C ′ more allocatable memory. (3) If
C ′ is an unlock command, because C frames the precondition of C ′ (i.e. the
lock’s resource invariant), it means that C does not access the part of the heap
represented by the lock’s resource invariant: better execute C ′ to release the lock
first. (4) If C is a lock command, because C ′ frames the postcondition of C (i.e.
the lock’s resource invariant), it means that C ′ does not access the part of the
heap represented by the lock’s resource invariant: better execute C after C ′ to
acquire the lock as late as possible.

Theorem 3. The rewrite rule GenericOptimization is sound.

Proof. Apply the guard’s equivalence in the right places and observe that (1)
each inference in GenericOptimization’s rhs is a valid instance of the proof rules
and (2) the leaves of GenericOptimization’s rhs are identical to the leaves of
GenericOptimization’s lhs (which are valid by hypothesis). ut

5 Implementation

The techniques described in the previous sections have been implemented in a
tool called éterlou. Éterlou consists of two distinct modules:

A proof tree generator which is an extended version of smallfoot [7]. The proof
tree generator generates proof trees using Fig. 1’s rules. Our extension does not
interfere with the algorithms already present in smallfoot: it only computes an-
tiframes and frames at each atomic command (by using both smallfoot’s built-in
algorithms and dedicated algorithms).



Because the (Frame) rule is the central ingredient of our procedure, it is
crucial that the implementation of Fig 1’s rules computes the biggest frames
(formulas Ξf ) possible. As an example, our implementation of the rule for field
lookup (Fig 1’s second rule) computes the smallest antiframe Πa that suffices
to show F = E. By computing the smallest antiframes, our implementation also
computes the biggest frames.

A proof tree rewriter which implements the various rewrite rules shown in this
paper. The proof tree rewriter is written in tom [4], an extension of Java that adds
constructs for pattern matching. We make extensive use of tom’s mapping facility
to pattern match against user-defined Java objects. Another crucial feature is
the possibility to define rewriting strategies.

All the examples of this paper have been generated with éterlou. We have
tested éterlou against several example programs provided in smallfoot’s distribu-
tion and pointer programs of our own. Our experiments revealed that to obtain
the best optimizations possible, the rewrite rules must usually be applied in a
given order and/or with specific strategies. For example, FactorizeFrames must
be applied before Parallelize for the latter rewrite rule to fire. In addition, ap-
plying rewrite rules from top to bottom (i.e., rewriting at the root before trying
to rewrite in subtrees) generally yields programs where parallelized commands
are longer (compared to other strategies such as bottom to top).

6 Examples

Fig. 6 shows procedure rotate tree (borrowed from [33]) that takes a tree at
x and rotates it by recursively swapping its left and right subtrees. Applying
FactorizeFrames and Parallelize to rotate tree yields a program where the field
assignments and the recursive calls are executed in parallel. We achieve better
parallelism than [33] by parallelizing the field assignments and the recursive calls.

Fig. 7 shows procedure copy and dispose (where resource r is subscripted by
its invariant) that copies the content of field val of cell x to field val of cell c (r’s
resource invariant). Applying GenericOptimization optimizes copy and dispose
in two ways: the critical region is shortened and cell x is disposed earlier.

The proof trees corresponding to Fig. 6 and Fig. 7’s transformations as well
as éterlou’s implementation are available [1].

7 Benefits from Separation Logic’s Advances

In this section, we review advances of separation logic that have not been im-
plemented in smallfoot and we describe how our technique would benefit from
these advances. As we use features from other papers, we are sometimes sloppy
on definitions and appeal to the reader’s intuition to understand the notations.



requires tree(x);
ensures tree(x);
rotate tree(x; ){
local x1, x2;
if(x = nil){}
else{

x1 := x→ l;
x2 := x→r;
x→l := x2;

x→r := x1;

rotate tree(x1; );
rotate tree(x2; ); }}

→

requires tree(x);
ensures tree(x);
rotate tree(x; ){
local x1, x2;
if(x = nil){}
else{

x1 := x→ l;
x2 := x→r;
(x→l := x2; x→r := x1) ||
rotate tree(x1; ) ‖ rotate tree(x2; ); }}

Fig. 6. Parallelization of a recursive procedure

requires x 7→ [val : ];
ensures emp;
copy and dispose(x; ){
local v;
lock(rc 7→[val: ]);

v := x→val;
c→val := v;
dispose(x);

unlock(rc 7→[val: ]); }

→

requires x 7→ [val : ];
ensures emp;
copy and dispose(x; ){
local v;
v := x→val;
dispose(x);
lock(rc 7→[val: ]);

c→val := v;
unlock(rc 7→[val: ]); }

Fig. 7. Optimization of a critical region

7.1 Object-Orientation

[32] applied separation logic to object-oriented programs. In Parkinson’s work,
separation logic’s ? splits objects per field. With our notations, this means that
p 7→ [x : ] ? p 7→ [y : ] represents a point with two fields x and y (and omitted
fields are not existentially quantified). Splitting on a per-field basis provides
fine-grained parallelism which allows to build such a proof:

{p 7→ [x : ] ? p 7→ [y : ]}
p→x := E ‖ p→y := F
{p 7→ [x : E] ? p 7→ [y : F ]}

Integrating Parkinson’s semantics of ? in the proof tree generator would allow
Parallelize to fire more often. For example, in rotate tree, x→l := x2;x→r := x1

would be parallelized to x→l := x2 ‖ x→r := x1.
In addition, we highlight that lifting our technique to object-oriented pro-

grams is straightforward since our procedure’s key mechanism is the (Frame)
rule which is supported by object-oriented separation logic [32,23,22].



7.2 Permission Accounting

[10]4 gave an alternative reading of the points-to predicate 7→ by adding an extra
parameter (called a permission π) to it. Permissions are fractions in (0, 1]. Now,
the points-to predicate x

π7→ [ρ] has the following meaning: (1) it asserts that x
points to the record ρ and (2) if π = 1, it asserts write and read permission to
the record pointed to by x; if π < 1, it asserts readonly permission to the record
pointed to by x. The following property holds:

x
π7→ [ρ] ⇔ x

π
27→ [ρ] ? x

π
27→ [ρ]

Integrating permission accounting in the proof tree generator would allow
Parallelize to fire more often.

7.3 Fork/Join Parallelism

[23,20] lifted the (Parallel) rule to Java’s fork/join style of parallelism. Calling
fork(t) starts a new thread t that executes in parallel with the rest of the
program. Calling join(t) stops the calling thread until thread t finishes: when t
finishes the calling thread is resumed.

When a parent thread forks a new thread, a part of the parent’s state is
transferred to the new thread. This is formalized by the following rule:

Ξ is t’s precondition
(Fork)

{Ξ}fork(t){emp}

Dually, when a thread joins another thread, the former “takes back” a part of
the latter’s state. To formalize this behavior, [23]’s assertion language contains
a new predicate Join(t, π) which asserts that the thread in which it appears can
take back part π of thread t’s state (like in Bornat’s work, π is a permission).
In addition, the assertion language allows to multiply formulas by a permission,
written π ·Ξ. To give the reader an intuition of the meaning of multiplication, we
note that integrating multiplication in our framework would make the following
property true:

π · (Π ¦ x
17→ [ρ]) ⇔ Π ¦ x

π7→ [ρ]

With the Join predicate and formula multiplication, one can formalize join’s
behavior. The rule below expresses that a thread joining another thread t can
take back a part of t’s state:

Ξ is t’s postcondition
(Join)

{Join(t, π)}join(t){π ·Ξ}

4 In this paragraph, we consider only fractional permissions [12] but our remarks also
apply for the counting model and the combined model.



Integrating (Fork) and (Join) in our framework would add two concrete ap-
plications to the rewrite rule GenericOptimization. (1) If C ′ is a fork command,
GenericOptimization would rewrite proofs so that new threads are forked as soon
as possible (increasing parallelism). (2) If C is a join command, GenericOptimiz-
ation would rewrite proofs so that threads join other processes as late as possible
(increasing parallelism and reducing joining time).

7.4 Variable as Resources

[10] showed how to treat variables like resources (heap cells in our terminology).
This allows to get rid of the side condition in the (Parallel) rule resulting in a
more uniform proof system. The assertion language contains a new predicate
Ownπ(x) that asserts ownership π of variable x.

Roughly, writing a variable requires permission 1 while reading a variable
requires some permission π (in analogy with the permission-accounting model).
This rules out programs with races on shared variables:

{Own1(x) ? ?}
x = y ‖ x = z

Above, ? cannot be filled with a predicate asserting ownership of x (needed
for verifying the parallel statement’s rhs) because Own1(x) is already needed
to verify the parallel statement’s lhs (and Own1(x) cannot be ?-combined with
Ownπ(x) for any π).

The variable as resources technique would fit perfectly in our framework
because variables that are not accessed by commands would be made explicit:
Ownπ( ) predicates would appear in frames. In other words, program verifiers
implementing the variable as resources technique would compute explicit frames
and antiframes for atomic commands like Fig. 1’s rules do.

8 Related Work

Separation logic was discovered by Reynolds [34]. O’Hearn [30] extended sep-
aration logic to deal with disjoint and lock-based concurrency. Parkinson [32]
adapted separation logic to object-oriented programs. Program verifiers in sepa-
ration logic include smallfoot [7], a tool for C [26], and tools for object-oriented
programs [17,14].

The closest (and concurrent) related work is [33] which uses separation logic
to parallelize programs. Our work differs in four ways: (1) [33] attaches labels
to heaps and uses disjointness of labels to detect possible parallelism, while we
use the (Frame) rule to statically detect possible parallelism, leading to a techni-
cally simpler procedure; (2) we express optimizations by rewrite rules on proof
trees, allowing us to feature other optimizations than parallelization and to use
different optimization strategies; (3) [33] is applied after a shape analysis [16,6],
while our analysis is applied after verification with a program verifier; and (4)
contrary to [33], we have an implementation.



Practical approaches for parallelizing programs include parallelizing com-
pilers [9,3]. Parallelizing compilers focuses on loop parallelization and do not
consider arbitrary pieces of code. Parallelizing compilers can yield code that ex-
ecutes an order of magnitude faster than classical compilers. Loop parallelization
has been actively studied [27,2,36].

Formal approaches for optimizing programs include certified compilers [35,28]
and certifying compilers [5,29]. Certified compilers include optimizations that we
do not consider and provide fully machine-checked proofs. Certifying compilers
manipulate formulas representing proof obligations whereas we manipulate proof
trees representing derivation of Hoare triplets. For this reason, we can consider
high-level optimizations such as parallelization whereas we cannot consider the
low-level optimizations described in [5,29].

Techniques to dispose memory as soon as possible have been studied for
machine registers [18] where the goal is to use as few registers as possible. Works
on atomicity [15,11] include techniques to release locks as soon as possible.

9 Conclusion and Future Work

We show a new technique to optimize programs proven correct in separation
logic. Optimizations are done by rewriting proofs represented as derivation of
Hoare triplets. The core of the procedure uses separation logic’s (Frame) rule to
statically detect parts of the state which are useless for a command to execute.
Considered optimizations are parallelization, early disposal, late allocation, early
lock releasing, and late lock acquirement. Optimizations are expressed as rewrite
rules between proof trees and are performed automatically.

The procedure has been implemented in the éterlou tool. Éterlou consists of
a proof tree generator (a modified version of the smallfoot program verifier [7])
and a proof tree rewriter written in tom [4]. Small-scale experiments show that
the approach is practical.

Future work includes extension to permission-accounting separation logic and
object-oriented programs. The extension to permission-accounting is expected to
increase the efficiency of the Parallelize rewrite rule. The extension to object-
oriented programs will allow us to do larger scale experiments and to study
how abstraction [32] behaves w.r.t. to our technique. For this, we plan to use
recent implementations of program verifiers for object-oriented programs anno-
tated with separation logic [17,14]. On a practical side, future work includes
study of the different rewriting strategies and their impact on the efficiency of
optimizations.
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