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Abstract. Given the intractability of exhaustively verifying software,
the use of runtime-verification, to verify single execution paths at run-
time, is becoming popular. Although the use of runtime verification is
increasing in industrial settings, various challenges still are to be faced
to enable it to spread further. We present dynamic communicating au-
tomata with timers and events to describe properties of systems, imple-
mented in Larva, an event-based runtime verification tool for monitoring
temporal and contextual properties of Java programs. The combination
of timers with dynamic automata enables the straightforward expression
of various properties, including replication of properties, as illustrated in
the use of Larva for the runtime monitoring of a real life case study —
an online transaction system for credit card. The features of Larva are
also benchmarked and compared to a number of other runtime verifica-
tion tools, to assess their respective strengths in property expressivity
and overheads induced through monitoring.

1 Introduction

As software systems grow bigger and more complex, and as they influence our
lives in more frequent and direct ways, the need for their validation similarly
grows. Over the past decades, program validation has become an increasingly
important and active research area striving towards certified code with the ul-
timate holy grail of providing a guarantee of the absence of errors from a given
system. Though testing and simulation have been the most widely-used tech-
niques in industry, formal methods have started playing a more important role
in program validation. Static analysis and model checking techniques have been
improved, but still require expertise to apply on large complex systems, and usu-
ally fail to scale up to real-life systems. To address the problem of intractability,
an alternative approach which has been developed is that of runtime verifica-
tion, in which the desired properties are only checked at runtime on the active
execution path. Properties are written in a formal logic and then transformed
into a runtime monitor which is instrumented with the system to be monitored.

⋆ The research work disclosed in this publication is partially funded by Malta Gov-
ernment Scholarship Scheme grant number ME 367/07/29.
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Subsequently, the runtime monitor observes the system while it is running, and
triggers an appropriate response if a system property is violated. The main issue
is a trade off between the expressivity of the logic and the overhead created on
the monitored system.

Although the overhead induced through the monitors is undoubtedly crucial
in certain application areas, indicating that the expressivity of the logic should
be constrained so as to ensure effective monitors, the logic should be able to
handle certain features to ensure its utility in a practical setting: (1) tempo-
ral aspects, including (i) consequentiality — e.g. ‘authentication happens before
data access’, and (ii) real-time — e.g. ‘a transaction takes no more than 30 sec-
onds to execute’; (2) Contextual aspects — the possibility of monitoring objects
either globally, grouped according to their container or individually, e.g. ‘every
account (in a given banking system) must belong to a registered user’, or ‘a bank
transfer (corresponding to a given user) may only be performed without any
charge if both accounts are registered (in European countries)’; (3) Exceptions
— monitoring the exceptional cases in the execution of a program. Although
the application domain clearly determines which type of properties one would
need to monitor, ideally all the above should be expressible in the logic used for
property specification.

In this paper we present dynamic communicating automata with timers and
events to handle the above-mentioned aspects when describing properties of
systems, and their implementation for runtime-verification in the tool Larva.
Larva has been used in a real-life case study, consisting of a Java program
which forms part of a software dealing with credit card transactions. Moreover,
we compare our tool with a number of state-of-the-art runtime verification tools3:
Java-MOP, Java-MaC, Hawk, ConSpec, and Lola.

The paper is organised as follows. In the next section we introduce dynamic
automata with timers and events (DATEs) as the underlying property specifica-
tion logic, and how monitors can be constructed directly from such structures,
as implemented in the tool Larva. In section 3, we then present the application
of Larva on a credit card transaction systems, and in section 4 we compare it
to other tools.

2 Event-Based Runtime Monitoring

As argued in the introductory section, the expressivity of the logic in which to
express properties is crucial. In this section we present a theory of communicating
automata with events and timers used to express properties, and the construction
of monitors from such properties — the basis of our tool Larva.

2.1 Dynamic Automata with Events and Timers

The underlying logic we will use to define the specification properties of the
system is based on communicating symbolic automata with timers, with event-

3 We would like to thank Irem Aktug, Johan Linde, Grigore Roşu, Feng Chen, Oleg
Sokolsky and César Sanchez for their assistance in benchmarking their tools.
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triggered transitions. Events can be visible system actions (such as method calls
or exception handling), timer events, channel synchronisation (through which
different automata may synchronise) or a combination thereof.

Definition 1. Given a set systemevent of events which are generated by the
underlying system and may be captured by the runtime monitor, a set of timer
variables timer, and a set of channels, a composite event made up of system
events, channel synchronisation, a timeout on a timer, a choice between two
composite events (written e1 +e2) or the complement of a composite event (writ-
ten e), is syntactically defined as follows:

event ::= systemevent | channel? | timer @ δ | event + event | event

We say that a basic event x (which can be a system event, a channel synchroni-
sation or a timeout event) will fire a composite event expression e (written x � e)
if either (i) x matches exactly event e; or (ii) e = e1 + e2 and either x � e1 or
x � e2; or (iii) x is a system event and e = e1, and x 6� e1.
The notion of firing of events can be extended to work on sets of events. Given a
set of basic events X, a composite event e will fire (written X � e) if either (i) e
is a basic event expression, and for some event x ∈ X, x � e; or (ii) e = e1 + e2

and either X � e1 or X � e2; or (iii) X contains at least one system event and
e = e1, and for all x ∈ X, x 6� e1.

The semantics of the complement of an event is constrained to fire when at
least one system event fires, so as to avoid triggering whenever a timer event or
channel communication happens, thus making such events to depend solely on
the underlying system, hence increasing compositionality. This constraint can
be relaxed without effecting the results in this paper.

Since we require real-time properties, we will introduce timers (ranging over
non-negative real numbers), whose running may be paused or reset. The config-
uration of a finite set of timers determines the value and state of these timers.

Definition 2. The configuration of timers (written CT ) is a function from
timers to (i) the value time recorded on the timer; and (ii) the state of the
timer (running or paused). Timer resets, pauses and resumes are functions from
a timer’s configuration to another changing only the value of one timer to zero
(in the case of a reset), or the state of one timer (in the case of pause or re-
sume). A timer action (written TA) is the (functional) composition of a finite
number of resets, pauses and resumes.

Based on events and timers, we define symbolic timed-automata — similar
to integration automata [1], but more expressive than Alur and Dill’s Timed
Automata [3] (since we enable reset, pause and resume actions on timers). Unlike
integration automata, the automata we introduce have access to read and modify
the underlying system state. In practice this can be used to access and modify
variables making the transitions more symbolic and enumerative in nature.

Properties of a given system will be expressed as communicating timed-
automata. These automata will have access to read and modify the state of
the underlying system.
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Definition 3. A symbolic timed-automaton running over a system with state
of type Θ is a quadruple 〈Q, q0, →, B〉 with set of states Q, initial state q0 ∈ Q,
transition relation →, and bad states B ⊆ Q. Transitions will be labelled by (i)
an event expression which triggers them; (ii) a condition on the system state
and timer configuration which will enable the transition to be taken; (iii) a timer
action to perform when taking the transition; (iv) a set of channels upon which
to signal an event; and (v) code which may change the state of the underlying
system:

Q × event × (Θ × CT → Bool) × TA× 2channel × (Θ → Θ) × Q

We will assume that a total ordering < exists on the transitions to ensure de-
terminism.

The behaviour of an automaton M upon receiving a set of events consists of
(i) choosing the highest priority transition which fires with the set of events and
whose condition is satisfied; (ii) performing the transition (possibly triggering
a new set of events); and (iii) repeating until no further events are generated,
upon which the automaton waits for a system or timeout event.

Definition 4. For a symbolic timed-automaton M = 〈Q, q0, →, B〉, we say
that a set of system scheduled events X, system state θ ∈ Θ, timer configura-
tion T and state q (in which M currently resides), performs a step to X ′, θ′

and q′, with timer update t′ (written (X, θ, q) ⇒T

t′
(X ′, θ′, q′)) if q /∈ B and

(q1, e, c, t, O, f, q2) be the largest (in terms of <) transition in → such
that: (i) q = q1; (ii) X � e; (iii) c(θ, T ), and the following hold: (i) t′ = t;
(ii) q′ = q2; (iii) θ′ = f(θ); (iv) X ′ = O. If no such transition exists, we write
(X, θ, q) ⇒T

id
(∅, θ, q).

The notion of automata performing a step can be extended over to a vector of
automata communicating via broadcast channels. Given a vector of n automata
M̄ = 〈M1, M2, . . . Mn〉, in states q̄ = 〈q1, q2, . . . qn〉 and with shared timers in
state T , we write that (X, θ0, q̄) ⇒T

t′
(X ′, θn, q̄′) if (i) for each 1 < i ≤ n,

(X, θi−1, qi) ⇒ti
(X ′

i
, θi, q

′

i
); (ii) t′ = tn−1◦tn−2◦ . . . ◦t1; (iii) X ′ = X ′

1 ∪ X ′

2 ∪
. . . ∪ X ′

n.

Note that the order of execution is set by the order of the automata, once
again to avoid non-determinism. Clearly, as in any programming with side-
effects, the management of actions on the transitions must be carefully handled.
Also note that the timer actions are accumulated so as to evaluate all conditions
with the same initial timestamps.

The notions of symbolic timed-automata can be lifted to work on dynamic
networks of symbolic timed-automata, in which we enable the creation of new
automata during execution in a structured manner — referred to as Dynamic
Automata with Events and Timers (DATE) in the rest of the paper.

Definition 5. A DATE M is a pair (M̄0, ν) consisting of (i) an initial set of
automata M̄0; and (ii) a set of automaton constructors ν of the form:

event × (Θ × CT → Bool) × (Θ × CT → Automaton)
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Each triple (e, c, a) ∈ ν triggers upon the detection of event e, with the state and
timer configurations satisfying condition c, and creating an automaton using
function a. The triggered automata in time configuration T , with actions X, in
system state θ (written tr(T, X, θ)) is defined to be:

tr(T, X, θ)
def

= {a(θ, T ) | (e, c, a) ∈ ν, X � x, c(θ, T )}.

Finally, the events created by the transition can themselves trigger new transi-
tions.

Definition 6. The configuration of a DATE consists of (i) the state of the
timers; (ii) the state of the underlying system; and (iii) the state of the currently
running automata — a vector of a state for each automaton in the network.
A DATE is said to perform a full-step from configuration (T, θ, q̄) to configura-
tion (T ′, θ′, q̄′), upon receiving a set of system actions X, (written (T, θ, q̄) |⇒X

(T, θ′, q̄′)) if for some number n:

(X0, θ0, q̄0) ⇒T
t1

(X1, θ1, q̄1) ⇒T
t2

. . . (Xn, θn, q̄n) ⇒T
tn+1

(∅, θn+1, qn+1),

where: (i) q̄0 = q, θ = θ0 and θ′ = θn+1; (ii) the final state of the timer is
updated according to the timer’s accumulated actions: T ′ = (tn+1◦tn◦ . . . t1)(T );
and (iii) the automata are updated as required by DATE triggers q′ = qn+1 ⊕⋃

i
tr(T, Xi, θi).

Such a step is called an accepting full-step, if no bad states appear in the inter-
mediate state vectors.

Clearly, not all situations can perform a full-step — even a single automaton may
create events on channels which trigger another transition indefinitely. To resolve
the problem of livelock, we must ensure that there is no mutual dependancy over
the set of automata.

Definition 7. The output channels of an automaton M , written out(M), is
the union of all output channels on the transitions in M . Similarly, the input
channels of M , written in(M), are the channels appearing on the event label of
transitions in M . The dependency relation between channels for an automaton
M , written dep(M) is defined to be in(M) × out(M).
A DATE structure M̄ is said to be loop-free if, for any channel c, (c, c) /∈
(
⋃

i
dep(Mi))

∗.

The following result states that only loop-free automata can perform a full-
step.

Proposition 1. Given a loop-free collection of automata M̄ in states q̄, set of
system events X and system state θ, there exist states q̄′, system state θ′ and
timers T such that (T, θ, q̄) |⇒X (T ′, θ′, q̄′).

Example 1. Consider a system where one needs to monitor the number of succes-
sive bad logins and the activity of a logged in user. By having access to badlogin,
goodlogin and interact events, one can keep a successive bad-login counter and
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interact\\t.reset();

goodlogin

\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin

\c>=2

logged in

inactive

logout\\c=0;

interact\\t.reset();

goodlogin

\\t.reset();

logged out

badlogin\\c++;
badlogin\c>=2

\c=0;blockUser();

logged in

logout\\c=0;

t@30*60\\logout();c=0;

Fig. 1. (a) An automaton monitoring the bad logins occurring in a system; (b) The
same automaton with recovery actions.

a clock to measure the time a user is inactive. Fig. 1(a) shows the property that
allows for no more than two successive bad logins and 30 minutes of inactivity
when logged in, expressed as a DATE. Upon the third bad login or 30 minutes of
inactivity, the system reverts to a bad state. In the figure, transitions are labelled
with events, conditions and actions, separated by a backslash. It is assumed that
the bad login counter is initialised to zero.

Fig. 1(b) shows how actions can be used to remedy the situation when possi-
ble, instead of going to a bad state. For example, after too many bad logins, one
can block the user from logging in for a period of time, and upon 30 minutes of
inactivity when logged in, the user may be forced to logout.

2.2 Constructing Monitors from DATEs

These automata can be used to express properties, and can then be directly and
automatically implemented as runtime-monitors for an underlying system. This
transformation has been implemented in the system Larva which embodies the
implementation of these properties in an automatic manner.

System Events: As the underlying system events Larva uses method calls,
invocation of exception handlers, exception throws and object initialisations.

Actions: Actions which are performed on the system state upon each transition
are essentially programs which can access code and data from the original
program. Note that the model we have used performs the action without
triggering any other transition directly. In Larva this is emulated by ensur-
ing that system events (eg. method calls) are masked from the automaton
triggers when called as actions. Furthermore, as shown in the example from
the previous section, unless mitigating a problem which arose, it is usually
sufficient to constrain actions to access only data local to the automaton. For
this purpose, Larva provides the means to have code local to an automaton.

Dynamic triggers: Dynamic triggers are used in Larva to enable multiple
instances of a property. The property shown in Fig. 1 must be replicated
for each user attempting to login to the system, in order to make it useful.
For this purpose, Larva enables properties to be replicated for multiple
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instances of an object — written foreach object { property }. Upon
capturing events in the property, the system checks whether it is a new object
(using object equality, or a user provided mechanism) and if so creates a new
automaton.

Context information: Various properties use nesting of the replicating mech-
anism — each bank client may have a number of accounts, upon which a
number of transactions may take place. Properties about transactions must
thus be created for each and every transaction created, but each must have
access to its context — the account and client it belongs to. Giving repli-
cated properties access to these inherited values, enables concise and clear
properties to be expressed.

Invariants: Furthermore, various objects in the system are expected to satisfy
invariants — once set, the ID of a transaction may not change throughout its
lifetime. To enable this, Larva also enables such properties to be expressed,
and which are checked upon the arrival of each event. Internally, this is done
by creating an implicit transition from each state which sends the automaton
to a bad state should the condition not be satisfied.

Real-time: Larva provides a clock/stopwatch construct that can trigger events
after particular time intervals, implemented as Java threads using wait op-
erations. The main drawback of this approach is that it may not be totally
accurate due to the Java thread-scheduling mechanism.

Larva uses aspect-oriented programming techniques [9] to capture events.
Upon running the monitored system, the underlying automata are created and
initialised. Through the use of aspect-oriented programming techniques, when-
ever an event is captured, control is passed back to the DATE , which performs
a full-step, performing any timer actions and new timer events scheduled as nec-
essary before returning control to the system to proceed. If the system reaches
a bad state in any of the properties, appropriate action is taken to terminate or
remedy the situation as specified by the user.

Example 2. To illustrate the use of Larva, consider the monitoring of a sim-
plified banking system, in which one might want to ensure that there should
never be more than five users in the bank and that a deletion does not occur
when there are no users. By identifying the system events, corresponding to the
method calls in the target system, an automaton is constructed, to specify the
properties desired. In Fig. 2 we show the automaton used for monitoring the
adding and deleting of users, together with the equivalent Larva code4.

Furthermore, one may have properties which must hold for every user in a
bank, or possibly properties which should hold for each account owned by each
user. Larva enables the specification of such properties using the foreach con-
struct — instances of the properties (automata) appearing within the construct
are created for each instance of the class. Furthermore, since when nesting the
construct, the properties inside inner replicators have access to the contextual

4 The Larva system, including further documentation and examples, is available from
http://www.cs.um.edu.mt/~svrg/Tools/LARVA.
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allUsers

deleteUser

\userCnt==1

\userCnt--;

deleteUser

ok

too many

addUser\\userCnt++;

deleteUser\\userCnt--;

allUsers

addUser

\userCnt>5

start

bad delete

addUser

\\userCnt++;

\\userCnt=0;

GLOBAL {

VARIABLES {

int userCnt = 0;

}

EVENTS {

addUser() = {*.addUser()}

delUser() = {*.deleteUser()}

allUsers() = {User u.*()}

}

PROPERTY users {

STATES {

BAD { toomany baddel }

NORMAL { ok }

STARTING { start }

}

TRANSITIONS {

start -> ok [addUser()\\userCnt++;]

start -> baddel [delUser()\\]

...

ok -> ok [delUser()\\userCnt--;]

ok -> ok [allUsers()]

}

}

}

Fig. 2. The automaton and Larva code of Example 2.

information (the instance of the outer iterator) under which they appear. In this
case, not only the account, but also the user to whom the account belongs will
be known without explicitly invoking Java code each time. Invariants of the in-
stances of the class may also be specified directly, for example, to ensure that the
account number never changes. The following code illustrates these concepts.

FOREACH (User u) {

...

FOREACH (Account a) {

INVARIANTS

{ String accID = a.getID(); }

PROPERTY

{ ... }

}

}

3 Case Study

During its development, Larva was used on an real-life system handling credit
card transactions. The complexity of this system lies not only in the size of the
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underlying code, which although not exceptionally large, has over 26,000 lines of
code, but also in the strong security implications and communication required
among various components (including third party systems, such as banks). The
system is designed to hold sensitive information of thousands of people — a
single leak of sensitive information could undermine the confidence of the users
in the system, leading to drastic financial losses. Furthermore, the system has
real-time issues and is required to be able to handle over 1000 transactions per
minute.

The system is composed of two parts, one handling the transactions and
their database and the other handles the communication to the respective bank
or entity which is involved in the transaction. These will be referred to as the
transaction handling system and the processor communication system respec-
tively. The whole system will be referred to as the transaction system.

A number of different classes of properties, as described below, were verified
at runtime using Larva on the system.

Logging of credit card numbers: During the development of the original
transaction system, credit card numbers were logged for testing purposes.
This is however, not in line with standard practice of secure handling of
credit card numbers. These logging instances were manually removed from
the code. However, to ensure that no instances escaped the developers’ at-
tention, a simple verification check to ensure that no data resembling a credit
card number is ever logged.

Transaction execution: Transactions are processed by going through a num-
ber of stages, including authorisation, communication with the user inter-
face, insertion of the transaction in the database and communication with
the commercial entity involved in the transaction, the stages taken depend
on which classification the transaction falls under. Designing properties to
ensure that during its lifetime, all transactions go through the proper stages
was straightforward, especially since the automata-based property language
used in Larva corresponds closely to the concept of stages, or modes in
which a transaction resides.

Authorisation transactions: Authorisation transactions have to be checked
to ensure that all the stages are processed in the correct order, keeping
certain values unchanged — for instance, one must make sure that the ID
of the transaction is never accidentally changed. Furthermore, other checks
such as ensuring that transaction amounts are not changed after being set
were also necessary.

Backlog: A particular feature of the system under scrutiny was a process called
backlogging — if communication with a bank or a commercial entity fails,
the request is retried a number of times after a given delay. The transaction
handling system with backlogs can become rather complex, and properties
were identified to ensure that the backlog process is performed for the ex-
pected number of times or until the transaction is approved.

Given the nature of the system, with different components and transactions
communicating and synchronising their behaviour, it was difficult to measure the
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overhead of the monitoring system for the case study. The case study, however,
was essential to identify features necessary for the use of runtime verification
on real-life case studies. The need for context-information and invariants arose
directly from this experience.

4 Comparison of Larva with Other Related Tools

In this section we compare Larva with various other runtime-verification tools
on a number of criteria, including both in terms of expressivity and overheads
induced.

4.1 Related Tools

ConSpec [2] is inspired by PSLang, but restricted to mobile devices with limited
resources. A contract is defined for each application and upon installation on
a device, the contract is checked against the user’s policies. If the application’s
contract does not comply with the user’s policies, the application cannot be
installed on the device. In other cases, where the application’s contract cannot
be definitively checked before installation, a runtime monitor is inlined to the
application.

Java-MOP [5] is a monitoring-oriented development environment combining
the specification and the implementation of a system. It goes further than run-
time verification in that it not only specifies properties to detect violations and
raise exceptions, but the violation handling mechanism is itself part of the design
of the system’s functionality. Hence, the monitoring is not simply an extra check
on top of the system but an integral part of the system’s design. An appealing
feature of Java-MOP is that it can be extended with different logics including
FTLTL, PTLTL, ERE and Jass.

The Monitoring and Checking (MaC) architecture [11] intends to bridge the
gap between specification and implementation. It has two different specification
languages: the Primitive Event Definition Language (PEDL) and Meta Event
Definition Language (MEDL) allowing for a clear separation between the defini-
tion of the primitive events of a system and the system properties. An implemen-
tation of the Monitoring and Checking architecture for Java is Java-MaC [10],
which enables automatic instrumentation to have access to the system events.
Instrumented programs send an event stream to the event recogniser and to iden-
tify higher-level activities, which are in turn processed by the runtime checker
to raise an alarm if any of the specified properties are violated.

Hawk [6] is programming-oriented extension of the rule-based Eagle logic.
Eagle [4, 8] is a runtime verification tool comprising a rule-based language and
an interpreter for it, supporting future and past time logics, interval logics,
extended regular expressions, state machines, real-time and data constraints and
statistics. It is implemented as a Java library allowing rule parameterisation.
Transitions carry a condition (on the input of the state machine but also on the
variables which constitute the underlying system) and an action on the variables
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of the state. Furthermore, the rules expressed in Eagle, can be either maximal
or minimal fixpoint semantics, allowing for more flexibility in expressing weak
and strong versions of the same operators.

Lola [7] is a synchronous language which allows the user to specify the prop-
erties of a program in past and future LTL. The advantage of Lola is that as a
synchronous language it guarantees bounded memory to perform online moni-
toring, but differs from most other synchronous languages in that it is able to
refer to future values in a stream. Lola allows the user to collect statistics at
runtime and to express numerical queries.

4.2 The Benchmark

A Java program representing a bank processing a number of transactions for a
number of users has been developed to experiment with the use of the different
systems. The bank system has a database which is used to simulate communi-
cation and time delays in the system. When a transaction is executed there are
three possible results: success, failure and exception. Upon a failure, the trans-
action is successively retried for another four times. No retries are performed
in case of an exception. Note that the intention of the benchmark case study is
primarily to compare property specification and monitoring.

We have identified a number of classes of properties, and concrete examples
for the bank processing system, to compare and contrast the use of the different
tools.

Scope: The type of scope which can be specified. Types of scope include object
(obj.), session (sess.) — one run of the application, multisession — current
and previous runs, global — all running applications of a system. This is
used to specify on which level the property is verified. For example if the
scope is ‘object’ then the property will be verified for each individual object.

Exceptions: Exception handling and throwing in an application usually repre-
sent important events in a system. This aspect represents whether or not the
user can express properties which include exception throwing and handling.

Real-time: Real-time refers to whether or not the monitored properties can
include real-time. This means that the verification system is able to trigger
checks at particular time intervals and compare clock values upon particular
system events.

Invariants: We use the term invariants to refer to inbuilt mechanisms in the
verification system to monitor the changing of values of variables. The pur-
pose is to be able to verify that certain variables only change when they are
supposed to do so.

Feedback: It refers to the capability of the monitoring system to return feed-
back to the target system. This usually takes the form of a mitigation action
in case a violation is found. In other cases this may be limited to stopping
the program’s execution (denoted by Stop. in Table 1).

Conditions This refers to the ability to filter events by applying a condition
on the parameters and/or monitoring variables.
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Table 1. Expressivity features of various tools.

Tool Larva ConSpec Java-MOP Java-MaC Hawk Lola

Scope Sess./Obj. X
a Sess./Obj. Sess. Sess. Sess.

Exceptions X X × × × ×

Temporal Logics × × X × X X

Real-Time X × × X
b

X
c ×

Mobile Application Policies × X × × × ×

Invariants X × X X × ×

Feedback X Stop. X X × ×

Conditions X X X
d

X × ×

Numerical Queries × × × × × X

a in specification it supports all the mentioned scopes but currently only session is
supported

b restricted (cannot trigger clock events)
c can be extended to support real-time
d restricted to implementing conditions in violation/validation handling method

Temporal logics: It represents the fact that the tool supports specification
written in temporal logics such as LTL.

Mobile application policies: We refer to the ability of defining a security
policy which can be partially verified before runtime if the application also
specifies its policy. Verifying applications for mobile devices require the mon-
itoring system to be as lightweight as possible.

Numerical queries: This refers to explicit support to expressing numerical
queries about statistics of the program being verified.

Table 1 shows which tool have explicit support for the aspect being consid-
ered. Note that the meaning of the scope object is sometimes referred to as class.
In the case of Larva, the same object need not necessarily be the same instance,
but be equated through the (optional) use of a user-provided equality method.
One advantage of this approach is that when monitoring objects which are se-
rialised and de-serialised, the object before serialisation will still be considered
the same as the object afterwards (even though they are not the same instance).

Although with its own limitations, Larva can express a number of interesting
classes of properties, not all of them expressible directly in the other tools. Two
limitations of Larva are that it cannot support different temporal logics (Hawk,
Java-MOP and Lola do have this capability), and it is not suitable for security
of mobile devices (in which ConSpec excels).

4.3 Performance of Larva

Five tests have been built for the evaluation of the performance of Larva in
terms of overheads. Test 0 executes a number of transactions but does not violate
any of the given properties. Subsequently, Test 1 violates the invariant property
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Table 2. Larva overheads when with the benchmark example

Test Reference Number 0 1 2 3 4

System without Monitoring

time(ms) 4 4 6303 3 9

memory(Kb) 23 23 23 70 161

System with Monitoring

time(ms) 123 120 6395 161 176

memory(Kb) 453 209 160 467 434

System with Monitoring without Clocks

time(ms) 55 60 n/a n/a 36

memory(Kb) 432 477 n/a n/a 378

Table 3. Statistics obtained when trying
Test 0 on variations of the benchmark.

Test Variation Normal Time
Cons.

Big
Obj.

Many
Obj.

System without Monitoring

time(ms) 4 4722 4874 53849

memory(Kb) 23 23 260 2384

System with Monitoring

time(ms) 123 5321 5458 65153

memory(Kb) 453 418 458 3509

Table 4. The benchmark applied to
various tools. (∗ — no logging, no
clocks)

Test Ref. No. 0 1 4 0 1 4

Larva
∗ ConSpec

time(ms) 27 23 30 7 n/a n/a

memory(Kb) 91 136 208 54 n/a n/a

Java-MOP Java-MaC

time(ms) 23 23 52 7 n/a n/a

memory(Kb) 174 173 312 26 n/a n/a

by trying to change the transaction amount. Test 2 violates the property that a
retry should occur within two seconds. Test 3 violates the property the a user
cannot have more than five transactions. Finally, Test 4 violates the property
that upon an exception the transaction is not retried.

Table 2 shows statistics for the benchmark when the five tests were run under
three different configurations: (i) without monitors; (ii) with monitors for all the
properties; (iii) removing the monitors which include clocks with the purpose of
investigating the impact of clocks on the monitoring system.

Although the resources required for the program to run without monitors as
compared to when it was run with monitors seems huge, the overhead is linear
in the size of the automaton used to describe the properties. In fact, increasing
the size of the system with regards to the required memory and processing time
preserves the complexity as shown in Table 3, in which Test 0 is used.

The first experiment was to increase the processing time which the system
without monitors require to complete the execution. One should notice how the
increase from 4722 to 5321 milliseconds is relatively much smaller than that
from 4 to 123 milliseconds. In the second experiment the memory required by
each object was increased. In this case the total memory used was 458 kilobytes
which is very close to the memory initially used for the initial experiment (453
kilobytes).
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In order to investigate the real relationship between the size of the moni-
toring system and the monitored system, the number of monitored objects was
increased by a factor of 10. The results obtained substantiate the intuition that
the size of the monitor is linear with respect to the number of monitored objects.

It is difficult to have a true and fair comparison of the tools, since they do
not all have the same expressive power and not all monitors were implementable
on all tools. For instance, none of the other tools handle real-time properties.
Another issue is that Larva issues a report regarding the status of the monitor-
ing system which is not done by other tools. Removing code and properties to
enable common ground comparison between the tools, the results obtained are
shown in Table 4. Note that Hawk and Lola are not in Table 4 since we did not
have access to the tools. The results concerning their expressiveness were based
on descriptions of the tools from papers and personal communication.

The most similar tool to Larva is undoubtedly Java-MOP since it can im-
plement the same properties in a very similar fashion and both Larva and
Java-MOP use AspectJ as the underlying framework. Compared together, the
statistics show that there is little difference. ConSpec is restricted to security
properties on mobile devices so the extent of the comparison is limited. To give
an idea of resources used by ConSpec, we implemented the property which limits
the number of users rather than the number of transactions per user. This ex-
plains why the time and memory required were much less than Larva and Java-
MOP. Finally, with Java-MaC, it is again difficult to compare the results since
none of the properties could be implemented directly. Furthermore, Java-MaC
uses a different technology — transmiting the event stream to other applica-
tions running simultaneously. These factors explain the difference in the amount
of resources used.

5 Conclusions

Runtime verification has been widely used in various different contexts and for
widely different systems. Automatically instrumenting code managing verifica-
tion from properties gives various advantages. However, the need for a sufficiently
expressive logic to be able to specify the system properties succinctly and clearly
is essential for confidence in the overall monitoring process. In this paper, we have
introduced dynamic communicating automata with timers and events (DATE)
to describe properties of systems which need to be checked for different instances
of a class. We have also presented Larva, a runtime verification implementa-
tion of this logic. The combination of timers with dynamic automata enables
the straightforward expression of various properties, as illustrated in the use of
Larva for the runtime monitoring of a real-time transaction system.

Larva performs well in comparison to state-of-the-art runtime verification
tools, and in terms of expressivity it comprises a set of features not presented as
a whole in other tools.

So far the main limitation of Larva is that it does not support the specifi-
cation using different temporal logics. This is however not a drawback since the
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underlying automata theory of Larva are highly expressive, and we are currently
implementing a translation from LTL and Duration Calculus to DATEs.

Further Work. We consider that Larva to be mature enough to be used in
the development phase to monitor programs were performance is not crucial,
even if the overheads induced have been shown to be reasonable. Real-time
properties are fragile under slowing down (by introducing monitors) or speeding
up (by removing them), which makes runtime verification even more challenging.
We are currently building a theoretical framework for the analysis of real-time
properties to ensure they are invariant up to slowing down (or speeding up) the
system. Larva is being extended with this analysis to enable more confidence
in the instrumentation and deinstrumentation of real-time properties.
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