
From Rules to Constraint Programs with the
Rules2CP Modelling Language

François Fages, Julien Martin

Projet Contraintes, INRIA Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France.

http://contraintes.inria.fr

Abstract. In this paper, we present a rule-based modelling language
for constraint programming, called Rules2CP. Unlike other modelling
languages, Rules2CP adopts a single knowledge representation paradigm
based on rules without recursion, and a restricted set of data structures
based on records and enumerated lists given with iterators. We show that
this is sufficient to model constraint satisfaction problems, together with
search strategies where search trees are expressed by logical formulae, and
heuristic choice criteria are defined by preference orderings on variables
and formulae. We describe the compilation of Rules2CP statements to
constraint programs over finite domains, by a term rewriting system and
partial evaluation. We prove the confluence of these transformations and
provide a complexity bound on the size of the generated programs. The
expressiveness of Rules2CP is illustrated first with simple examples, and
then with a complete library for packing problems, called PKML, which,
in addition to pure bin packing and bin design problems, can deal with
common sense rules about weights, stability, as well as specific packing
business rules. The performances of both the compiler and the generated
code are evaluated on Korf’s benchmarks of optimal rectangle packing
problems.

1 Introduction

From a programming language standpoint, one striking feature of constraint
programming is its declarativity for stating combinatorial problems, describing
only the “what” and not the “how”, and yet its efficiency for solving large size
problem instances in many practical cases. From an application expert stand-
point however, constraint programming is not as declarative as one would wish,
and constraint programming systems are in fact very difficult to use by non-
programmers outside the range of already treated examples. This well recognized
difficulty has been presented as a main challenge for the constraint programming
community, and has motivated the search for more declarative front-end prob-
lem modelling languages, such as for instance OPL [1,2], Zinc [3,4] and Essence
[5].

In industry, the business rules approach to knowledge representation has a
wide audience because of the declarativity and granularity of rules which can

be introduced, checked, and modified one by one, and independently of any
particular procedural interpretation by a rule engine [6]. This provides an at-
tractive knowledge representation scheme for quickly evolving requirements, and
for maintaining systems with up to date information. In this article, we show
that such a rule-based knowledge representation paradigm can be developed as
a front-end modelling language for constraint programming. We present a gen-
eral purpose rule-based modelling language for constraint programming, called
Rules2CP. Unlike multi-headed condition-action rules, also called production
rules, Rules2CP rules are restricted to logical rules, with one head and no im-
perative actions, and where bounded quantifiers are used to represent complex
conditions. Such rules comply to the principle of independence from a proce-
dural interpretation by a rule engine [6], which is concretely demonstrated in
Rules2CP by their compilation to constraint programs using a completely dif-
ferent representation.

Unlike the other modelling languages proposed for constraint programming,
Rules2CP adopts a restricted set of data structures based on records and enu-
merated lists, given with iterators. We show that this is sufficient to express con-
straint satisfaction problems, together with search strategies where the search
tree is expressed by logical formulae, and complex heuristic choice criteria are
defined as preference orderings on variables and formulae.

The next section presents the Rules2CP language and shows how search
strategies and heuristics can be specified in a declarative manner. Sec. 2 describes
the compilation of Rules2CP models into constraint programs over finite domains
with reified constraints, by term rewriting and partial evaluation. We prove the
confluence of these transformations which shows that the generated constraint
program does not depend on the order of application of the rewritings, and
provide a complexity bound on the size of the generated program.

Sec. 4 illustrates the expressive power of this approach with a particular
Rules2CP library, called the Packing Knowledge Modelling Library (PKML),
developed in the EU project Net-WMS1 for dealing with real-size non-pure bin
packing problems of the automotive industry. The performances of both the com-
piler and the generated code are evaluated in this section on Korf’s benchmarks
of optimal rectangle packing [7].

Finally, Sec. 5 compares Rules2CP with related work on OPL, Zinc and
Essence modelling languages, business rules, constraint logic programming and
term rewriting systems. We conclude on the simplicity and efficiency of Rules2CP
and on some of its current limitations.

2 The Rules2CP Language

2.1 Introductory Examples

Rules2CP is an untyped language for modelling constraint satisfaction problems
over finite domains using rules and declarations with records and enumerated
lists as data structures. Let us first look at some simple examples.
1 http://net-wms.ercim.org

Example 1. The classical N-queens problem, i.e. placing N queens on a chess-
board of size N ×N such that the queens are not on the same raw, column or
diagonal, can be modelled in Rules2CP with two declarations (q and board), for
creating a list of records representing the positions of the queens on the chess
board, one rule safe for defining when the queens do not attack each other (us-
ing the global constraint all different below), another rule solve for defining
the constraints and the search strategy, and one goal for solving a problem of a
given size:

q(I) = {row = _, column = I}.

board(N) = map(I, [1..N], q(I)).

safe(B) --> all_different(B) and

forall(Q, B, forall(R, B,

let(I, column(Q), let(J, column(R),

I<J implies row(Q)#J-I+row(R) and row(Q)#I-J+row(R))))).

solve(N) --> let(B, board(N), domain(B, 1, N) and safe(B) and

dynamic(variable_ordering([least(domain_size(row(^)))])

and labeling(B))).

? solve(4).

The search is specified in the solve rule by the labeling predicate for enu-
merating the variables contained in B with a dynamic variable ordering heuristics
by least domain size (first-fail heuristics).

Example 2. A disjunctive scheduling problem, such as the classical bridge prob-
lem [1], consists in finding the earliest start dates for a set of tasks given with
their durations, under constraints of precedence and mutual exclusion between
tasks. Such problems can be modelled in Rules2CP with records for tasks, and
rules for precedence and disjunctive constraints, as follows:

t1 = {start=_, duration=2}. t2 = {start=_, duration=5}.

t3 = {start=_, duration=4}. t4 = {start=_, duration=3}.

t5 = {start=_, duration=1}.

prec(T1, T2) --> start(T1) + duration(T1) =< start(T2).

disj(T1, T2) --> prec(T1,T2) or prec(T2,T1).

precedences --> prec(t1,t2) and prec(t2,t5) and prec(t1,t3) and prec(t3,t5)

disjunctives --> disj(t2,t3) and disj(t2,t4) and disj(t3,t4).

? domain([t1,t2,t3,t4,t5], 0, 20) and precedences and

conjunct_ordering([greatest(duration(A)+duration(B) if ^ is disj(A,B))])

and minimize(disjunctives, start(t5)).

The goal posts the domain and precedence constraints, specifies a heuristic
criterion for ordering the disjunctive constraints by decreasing durations of tasks,
and defines the search strategy by a logical formula (disjunctives) composed
of a conjunction of disjunctive constraints, and a minimization criterion (the
starting date of task t6). It is worth noting that this model does not use vari-
able labeling. In a computed optimal solution, the non-critical tasks will have a
flexible starting date.

The ordering criterion is about the duration attributes of the tasks involved
in the disj rules, and does not actually depend on the variables. This strategy

corresponds to the ordering used implicitly in the classical bridge problem bench-
mark. By adding a criterion for selecting the disjunctive with highest difference
of durations in case of equality, as follows

conjunct_ordering([greatest(duration(A)+duration(B) if ^ is disj(A,B)),

greatest(abs(duration(A)-duration(B)) if ^ is disj(A,B))]).

the performances are slightly improved in the bridge problem.

2.2 Syntax

Let an ident be a word beginning with a lower case letter or any word between
quotes, a name be an identifier possibly prefixed by other identifiers for module
and package names, and a variable be a word beginning with either an upper
case letter or the underscore character. The syntax of Rules2CP statements is
given by the following grammar:
statement ::= import name. | head = expr. | head --> fol. | ? fol.
name ::= ident | name:ident
head ::= ident | ident(var,...,var)
fol ::= varbool | name | name(expr,...,expr) | expr relop expr

| fol logop fol | not fol | forall(var,expr,fol) | exists(var,expr,fol)
| foldl(var,expr,logop,expr,expr) | foldr(var,expr,logop,expr,expr)
| let(var,expr,fol) | search(fol) | dynamic(fol)

expr ::= varint | fol | string | [enum] | {ident = expr,...,ident= expr}
| name | name(expr,...,expr) | expr op expr |
| foldl(var,expr,op,expr,expr) | foldr(var,expr,op,expr,expr)
| map(var,expr,expr)

enum ::= enum , enum | expr | expr .. expr
varint ::= var | integer
varbool ::= var | 0 | 1
op ::= + | − | ∗ | / | min | max | log | exp
relop ::= < | =< | = | # | >= | >
logop ::= and | or | implies | equiv | xor

A statement is either a module import, a declaration, a rule or a goal. In
order to avoid name clashes in declaration and rule heads, the language includes
a simple module system that prefixes names with module and package names,
similarly to [8]. A head is formed with an ident with distinct variables as ar-
guments. Recursive definitions, as well as multiple definitions of a same head
symbol, are forbidden in declarations and rules, and each name must be defined
before its use. Apart from this, the order of the statements in a Rules2CP file is
not relevant.

The set V (E) of free variables in an expression E is the set of variables oc-
curring in E and not bound by a forall, exists, let, foldl, foldr or map
operator. In a rule, L-->R, we assume V (R) ⊆ V (L), whereas in a declaration,
H=E, the introduced variables, in V (E) \V (H), represent unknown variables of
the problem.

The only data structures are integers, strings, enumerated lists and records.
Lists are formed without a binary list constructor, by enumerating all their
elements, or intervals of values in the case of integers. For instance [1,3..6,8]
represents the list [1,3,4,5,6,8]. Such lists are used to represent the domains of
variables in (var in list) formula, and in the answers returned to Rules2CP goals.
The following expressions: length(list), nth(integer,list), pos(element,list) and
attribute(record) are predefined for accessing the components of lists and records.
Furthermore, records have a default integer attribute uid which provides them
with a unique identifier.

The predefined function variables(expr) returns the list of variables con-
tained in an expression. The predefined predicate X in list constrains the variable
X to take integer values in a list of integer values. domain(expr,min,max)) is
predefined to set the domain of all variables occurring in expr.

A fol formula can be considered as a 0/1 integer expression. This usual coer-
cion between booleans and integers, called reification, provides a great expressiv-
ity [9]. The (left and right) fold operators cannot be defined in first-order logic
and are Rule2CP builtins. These operators iterate the application of a binary
operator on a list of arguments. For instance, the product of the elements in a
list is defined by product(L)=foldr(X,L,*,1,X). Furthermore, a fol formula
can be evaluated dynamically instead of statically by prefixing the formula with
the predicate dynamic.

2.3 Search Predicates

Describing the search strategy in a modelling language is a challenging task as
search is usually considered as inherently procedural, and thus contradictory to
declarative modelling. This is however not our point of view in Rules2CP. Our
approach to this issue is to specify the decision variables and the branching for-
mulas of the problem in a declarative manner, and then heuristics as preference
orderings on variables and formulae.

In Rules2CP, the labeling of decision variables can be specified with the pre-
defined predicate labeling(expr) for enumerating the possible values of all the
variables contained in an expression, that is occurring as attributes of a record,
or recursively in a record referenced by attributes, in a list, or in a first-order
formula (see Example 1). The branching formulas are declared similarly with
the predicate search(fol) for specifying a search procedure by branching on all
disjunctions and existential quantifications occurring in a first-order formula (see
Example 2). Note that without the search predicate, the formula in argument
would be treated as a constraint by reification. A similar approach to specifying
search has been proposed for SAT in [10]. Here however, the only normalization
is the elimination of negations in the formula by descending them to the con-
straints. The structure of the formula is kept as an and-or search tree where the
disjunctions constitute the choice points.

The predefined optimisation predicates, minimize(fol,expr) for searching a
fol and minimizing an expression, and maximize(fol,expr), can be imbricated.
This makes it possible to express multicriteria optimisation problems, and the

search for Pareto optimal solutions according to the lexicographic ordering of
the criteria as read from left to right.

2.4 Heuristics as Ordering Criteria

Adding the capability to express heuristic knowledge is mandatory for efficiency.
This is done in Rules2CP with predefined predicates for specifying both static
and dynamic choice criteria on variables and values for labeling, and on con-
junctive and disjunctive formulae for search. Dynamic criteria for ordering vari-
ables and values in labeling are standard in constraint programming systems,
see for instance [11,12]. In Rules2CP, they are defined more generally using the
expressive power of the language for specifying various criteria depending on
static or dynamic expression values.

The variable ordering predicates take a list of criteria for ordering the
variables in subsequent labeling predicate. The variables are sorted according
to the first criterion when it applies, then the second, etc. The variables for
which no criterion applies are considered at the end for labeling in the syntactic
order. The criteria have the following forms: greatest(expr), least(expr),
any(expr) or is(expr). The expression expr in a criterion contains the symbol
^ for denoting, for a given variable, the left-hand side of the Rules2CP declaration
that introduced the variable. If the expression cannot be evaluated on a variable,
the criterion is ignored. An any form selects a variable for which the expression
applies, independently of its value. An is form selects a variable if it is equal to
the result of the expression. For instance, in a 3-dimensional bin packing problem,
the predicate variable_ordering([greatest(volume(^)), least(uid(^))])
specifies a lexicographic static ordering of the variables by decreasing volume of
the object in which they have been declared, and by increasing uid attribute of
the object (for grouping the variables belonging to a same object).

The value ordering predicate takes similarly a list of criteria of the forms:
up, up(expr), for enumerating values in ascending order for the variables match-
ing the expression, or down, step for binary choices, enum for multiple choices,
bisect for dichotomy choices. A criterion applies to a variable if it matches
the expression. For instance, in a bin packing problem with x, y, z coordinates,
the predicate value_ordering([up(z(^)), bisect(x(^)), bisect(y(^))])
specifies the enumeration in ascending order for the z coordinates, and by di-
chotomy for the x and y coordinates.The capabilities of dissociating the speci-
fications of the variable and value heuristics, and of using static criteria about
the objects in which the variables appear, are very powerful. It is worth noticing
that this expressive power for the heuristics creates difficulties however for their
compilation to the constraint programming systems that mix variable and value
choice strategies in a single option list, and for which one cannot express differ-
ent value choice heuristics for the different variables in a same labeling predicate
[12]. In these cases, the compiler generates a labeling program.

In search trees defined by logical formulae, the criteria for conjunct ordering
and disjunct ordering heuristics are defined similarly by pattern matching on
the rule heads that introduce conjunctive and disjunctive formulae under the

search predicate. This is illustrated in Example 2 with conditional expressions
of the form if ^ is φ; where ^ denotes the conjunct or disjunct candidate for
matching φ, and φ denotes either a rule head or directly a formula. The conjuncts
or disjuncts for which no criterion applies are considered last.

3 Compilation to Constraint Programs over Finite
Domains with Reified Constraints

Rules2CP models can be compiled to constraint satisfaction problems over finite
domains with reified constraints by interpreting Rules2CP statements using a
term rewriting system, i.e. with a rewriting process that rewrites subterms inside
terms according to general term rewriting rules. Let the size of an expression or
formula be the number of nodes in its tree representation, and let us denote by
→ the term rewriting rules of the compilation process. These rules are composed
of generic rewrite rules and code generation rules.

3.1 Generic Rewrite Rules

The following rewriting rules are associated to Rules2CP declarations and rules:

L→ R for every rule of the form L --> R (where V (R) ⊆ V (L))
Lσ → Rσθ for every declaration of the form L = R and every ground sub-
stitution σ of the variables in V (L), where θ is a renaming substitution that
gives unique names indexed by Lσ to the variables in V (R) \ V (L).

In a Rules2CP rule, all the free variables of the right-hand side have to appear in
the left-hand side. In a declaration, there can be free variables introduced in the
right hand side and their scope is global. Hence these variables are given unique
names (with substitution θ) which will be the same at each invocation of the
declaration. These names are indexed by the left-hand side of the declaration
statement which has to be ground in that case (substitution σ). For example, the
row variables in the records declared by q(N) in Example 1 are given a unique
name indexed by the instance of the head q(i). These conventions provide a
basic book-keeping mechanism for retrieving the Rules2CP variables introduced
in declarations from their variable names. This is necessary to implement the
heuristic criteria, as well as for debugging and user-interaction purposes [13].

The ground arithmetic expressions are rewritten with the rule

expr → v if expr is a ground expression and v is its value,

This rule provides a partial evaluation mechanism for simplifying the arithmetic
expressions as well as the boolean conditions. This is crucial to limiting the size
of the generated program and eliminating at compile time the potential overhead
due to the data structures used in Rules2CP.

The accessors to data structures are rewritten with the following rule schemas
that impose that the lists in arguments are expanded first:

[i .. j] → [i, i+ 1,...,j] if i and j are integers and i ≤ j
length([e1,...,eN]) → N

nth(i,[e1,...,eN]) → ei

pos(e,[e1,...,eN]) → i where ei is the first occurrence of e in the list after
rewriting,
attribute(R) → V if R is a record with value V for attribute.

The quantifiers, foldr, foldl, map and let operators are binding operators
which use a dummy variable to denote place holders in an expression. They are
rewritten under the condition that their first argument is a variable and their
second argument is an expanded list:

foldr(X,[e1,· · ·,eN],op,e,φ) → φ[X/e1] op (... op φ[X/eN]) (e if N = 0)

forall(X,[e1,· · ·,eN],φ) → φ[X/e1] and ... and φ[X/eN] (1 if N = 0)

exists(X,[e1,· · ·,eN],φ) → φ[X/e1] or ... or φ[X/eN] (0 if N = 0)

map(X,[e1,· · ·,eN],φ) → [φ[X/e1], ..., φ[X/eN]]

let(X,e,φ) → φ[X/e]

where φ[X/e] denotes the formula φ where each free occurrence of variable X in
φ is replaced by expression e (after the usual renaming of the variables in φ in
order to avoid name clashes with the free variables in e).

Negations are eliminated by descending them to the variables and comparison
operators, with the obvious duality rules for the logical connectives, such as for
instance, replacing the negation of and (resp. equiv) into or (resp. xor) etc. It is
worth noting that these transformations do not increase the size of the formula.

3.2 Code Generation Rules

After the application of the previous generic rewrite rules, the actual transfor-
mation of a Rules2CP model to a constraint program of some target language,
is specified with code generation rules. Such rules are needed for the terms that
are not defined by Rules2CP statements, e.g. builtin constraints, as well as for
the arithmetic and logical expressions that are not expanded with the generic
rewrite rules described in the previous section. The free variables in declarations
are translated into finite domain variables of the target language, with the basic
book-keeping mechanism provided by the naming conventions.

The examples of code generation rules given in this section concern the com-
pilation of Rules2CP to SICStus-Prolog [12]. Basic constraints are thus rewritten
with term rewriting rules such as the following ones, where backquotes in strings
indicate subexpressions to rewrite:

A > B → "‘A #> ‘B"

A and B → "‘A #/\ ‘B"

lexicographic(L)→ "lex_chain(‘L)"
domain(E,M,N)→ "domain(L,M,N)" if M and N are integers and where L is
the list of variables remaining in E after rewriting
minimize(F,C) → "minimize((search(‘F),labeling([up],‘L)),‘C)" where
L is the list of variables occurring in the cost expression C.

Obviously, such code generation rules generate programs of linear size. In ad-
dition to this static expansion of Rules2CP goals in a constraint program goal,
clauses are also generated for rules and declarations in order to interpret the
expressions under dynamic with the Rules2CP interpreter, which is not be de-
scribed for lack of space.

Example 3. The compilation of the N-queens problem in Example 1 generates
the following SICStus Prolog program :

:- use_module(library(clpfd)).

:- use_module(r2cp).

...

solve([Q_1,Q_2,Q_3,Q_4]) :-

rcp_var(from(q(1),0,1), Q_1), rcp_var(from(q(2),0,1), Q_2),...

domain([Q_1,Q_2,Q_3,Q_4], 1, 4),

all_different([Q_1,Q_2,Q_3,Q_4]),

Q_1#\=1+Q_2, Q_1#\= -1+Q_2, Q_1#\=2+Q_3, Q_1#\= -2+Q_3, Q_1#\=3+Q_4,

Q_1#\= -3+Q_4, Q_2#\=1+Q_3, Q_2#\= -1+Q_3, Q_2#\=2+Q_4,

Q_2#\= -2+Q_4, Q_3#\=1+Q_4, Q_3#\= -1+Q_4,

rcp_variable_ordering([least(var_order_criterion(1,[]))]),

rcp_labeling([Q_1,Q_2,Q_3,Q_4]).

Note that the inequality constraints are properly posted on ordered pairs of
queens, and that the other pairs of queens generated by the universal quantifiers
have been eliminated at compile time by partial evaluation. As the search heuris-
tics is dynamic, the Rules2CP interpreter is included in the generated program
to interpret the dynamic variable ordering heuristics using the labeling predicate
of the Rules2CP interpreter. In this case, the program is equivalent to SICStus
Prolog labeling with the first-fail option but the method is general.

Example 4. The disjunctive scheduling problem in Example 2 is compiled in a
constraint program which does not use the Rules2CP interpreter:

solve([T1,T2,T4,T3,T5]) :-

domain([T1,T2,T3,T4,T5], 0, 20),

T1+2#=<T2, T2+5#=<T5, T1+2#=<T3, T3+4#=<T5, T1+2#=<T3, T3+4#=<T5,

minimize((((T2+5#=<T3;T3+4#=<T2),(T2+5#=<T4;T4+3#=<T2),

(T3+4#=<T4;T4+3#=<T3)),labeling([up],[T5])), T5).

In the minimize predicate, the disjunctive formulae in the and-or search tree
have been reordered according to the heuristics by decreasing sums of the task
durations. The labeling of the variables contained in the cost function is added
by the compiler.

3.3 Confluence, Termination and Complexity

By having forbidden multiple definitions, and restricted the heads to contain
only distinct variables as arguments, one can show :

Proposition 1. For any Rules2CP model, the compilation term rewriting sys-
tem → is confluent.

This means that the rewriting rules can be applied in any order, and generate the
same constraint program on a given input model. The proof in [14] shows that
the term rewriting system → is orthogonal, i.e. left-linear and non-overlapping,
which entails confluence [15] without termination assumption. By forbidding
recursion however, termination clearly holds:

Definition 1. Given a Rule2CP model M , let the definition rank ρ(s) of a
symbol s be defined inductively by:

ρ(s) = 0 if s is not the head symbol of a declaration or rule in M ,
ρ(s) = n + 1 if s is the head symbol of a declaration or rule in M , and n
is the greatest definition rank of the symbols in the right hand side of its
declaration or rule.

The definition rank of M is the maximum definition rank of the symbols in M .

Proposition 2. For any Rules2CP model, the term rewriting system→ is Noethe-
rian.

Furthermore, a complexity bound on the size of the generated program can be
obtained.

Definition 2. Given a Rule2CP model M , let the fold rank α(s) of a symbol s
be defined inductively by:

α(s) = 0 if s is not the head symbol of a declaration or rule in M ,
α(s) =max{n + α(s′) | L = R ∈ M , s is the head symbol of L and R con-
tains a nesting of n fold operators or quantifiers on an expression containing
symbol s′}.

The fold rank of M is the maximum fold rank of the symbols in M .

Proposition 3. For any Rules2CP model M , the size of the generated program
is in O(la ∗ br), where l is the maximum length of the lists in M (or at least 1),
a is the fold rank of M , b is the maximum size of the declaration and rule bodies
in M , and r is the definition rank of M .

Proof. The proof is by induction on a. In the base case, a = 0, there is no
fold operator in M , and the size of the generated program is linearly bounded
by r duplications of rule bodies, i.e. is in O(br). In the induction case, a > 0,
let us first consider the size of the program generated without rewriting the
outermost occurrences of fold and quantifier operators. By induction, this size is
in O(la−1 ∗ br). Now, this generated program can be duplicated at most l times
by the outermost fold operators, hence the total size is in O(la ∗ br) under this
strategy. Since by confluence Prop. 1, the generated program is independent of
the strategy, the size of the generated program is thus in O(la ∗ br) under any
strategy.

In the N-queens problem of Example 1, since the fold rank is 2, the proposi-
tion thus tells us that the size of the generated program for a board of size l is
indeed in O(l2).

4 The Packing Knowledge Modelling Library PKML

In this section, we illustrate the expressive power of Rules2CP with the definition
of a Packing Knowledge Modelling Library (PKML) developed in the Net-WMS
project for dealing with real size non-pure bin packing problems in logistics
and automotive industry. A large subset of PKML rules restricted to linear
constraints has been shown in [16] to be compilable with indexical constraints in
the geometrical kernel of the global constraint geost [17] for higher-dimensional
placement problems. Here we define PKML as a library of Rules2CP declarations
and rules.

4.1 Shapes and Objects

PKML refers to shapes in ZK . A point in this space is represented by the list of
its K integer coordinates [i1,...,iK]. These coordinates may be variables or
fixed integer values.

In PKML, a shape is a rigid assembly of boxes. A box is an orthotope in ZK ,
and is represented in PKML by a record containing one size attribute giving the
list of the lengths of the box in each dimension. A shape is represented by a
record containing one attribute boxes for the list of boxes composing the shape,
and one attribute positions for the list of their positions in the assembly (i.e. a
list of lists of coordinates). For instance:

point1 = [x1,...,xK].
box1 = {size = [l1,...,lk]}.
shape1 = { boxes=[b1,...,bM], positions=[p1,...,pM]}
object1 = {shapes=[s1,...,sN], shape=_, origin=[x1,...,xK]}

A PKML object, such as a bin or an item, is a record containing one attribute
shapes for the list of its alternative shapes, one origin point, and some optional
attributes such as weight, virtual reality representations or others. The alterna-
tive shapes of an object may be the discrete rotations of a basic shape, or different
object shapes in a configuration problem. We do not distinguish between items
and bins features, since bins at one level can become items at another level, like
for instance in a multilevel bin packing problem for packing items into cartons,
cartons in pallets, and pallets into trucks.

The following declarations define respectively the volume of a box, a shape
composed of a single box, the size of a shape (i.e. assembly of boxes) in a given
dimension, and the volume of a shape in given dimensions (assuming no overlap
in the assembly):

volume_box(B) = product(size(B)).

box(L) = { boxes = [{size = L}], positions = [map(_,L,0)] }.

size(S, D) = foldr(I, [1..length(boxes(S))], max, 0,

nth(D,nth(I,positions(S))) +

nth(D,size(nth(I,boxes(S))))).

volume_assembly(S, Dims) = foldr(B, boxes(S), +, 0, volume_box(B)).

It is worth noting that if the sizes of the boxes composing the shapes are known,
the size and volume expressions evaluate into fixed integer values, whereas if
the sizes are unknown, the expressions evaluate to terms containing variables.
These terms are used in PKML to define with reified constraints the end in one
dimension and the volume of an object with alternative shapes, as follows:

origin(O, D) = nth(D, origin(O)).

end(O, D) = origin(O, D) + foldr(S, shapes(O), +, 0,

(shape(O)=pos(S,shapes(O)))*size(S, D)).

volume(O, Dims) = foldr(S, shapes(O), +, 0,

(shape(O)=pos(S,shapes(O)))*volume_assembly(S,Dims)).

4.2 Placement Relations

PKML uses Allen’s interval relations [18] in one dimension, and the topological
relations of the Region Connection Calculus [19] in higher-dimensions, to express
placement constraints. These relations are predefined in libraries [14]. They are
used in PKML to define packing rules for pure bin packing and pure bin design
problems, symmetry breaking strategies, as well as specific packing business
rules for non pure problems taking into account other common sense rules and
industrial requirements and expertise.

The part of the PKML library dealing with pure bin packing problems is
defined as follows:

non_overlapping(Items, Dims) -->

forall(O1, Items, forall(O2, Items,

uid(O1) < uid(O2) implies not overlap(O1, O2, Dims))).

containmentAE(Items, Bins, Dims) -->

forall(I, Items, exists(B, Bins, contains_touch_rcc(B,I,Dims))).

bin_packing(Items, Bins, Dims) -->

containmentAE(Items, Bins, Dims) and non_overlapping(Items, Dims) and

labeling(Items).

The rules define respectively the non-overlapping of a list of items in a list of
dimensions, the containment of all items in bins, and pure bin packing problems.
Pure bin design problems are defined similarly with a declaration for the volume
of a bin, and a containment rule in some bin of all items:

containmentEA(Items, Bins, Dims) -->

exists(B, Bins, forall(I, Items, contains_touch_rcc(B,I,Dims))).

bin_design(Bin, Items, Dims) -->

containmentEA(Items, [Bin], Dims) and

minimize(labeling(Items), volume(Bin)).

Example 5. On the following simple shape pure bin packing problem

import(lib:pkml:pkml).

s1 = box([5,4,4]). s2 = box([4,4,2]). s3 = box([5,4,2]).

o1=object(s1,[0,0,0]). o2=object(s2,[_,_,_]). o3=object(s3,[_,_,_]).

dimensions = [1,2,3]. bins = [o1]. items = [o2, o3].

? variable_ordering([greatest(volume(^, dimensions)), is(z(^))]) and

bin_packing(items, bins, dimensions).

the compiler generates the following SICStus-Prolog goal where the coordinate
variables are statically ordered for labeling:

solve([O2,O2_2,O2_3,O3,O3_2,O3_3]) :-

0#=<O2, O2+4#=<5, 0#=<O2_2, O2_2+4#=<4, 0#=<O2_3, O2_3+2#=<4, 0#=<O3,

O3+5#=<5, 0#=<O3_2, O3_2+4#=<4, 0#=<O3_3, O3_3+2#=<4,

O2+4#=<O3#\/O3+5#=<O2#\/(O2_2+4#=<O3_2#\/O3_2+4#=<O2_2

#\/(O2_3+2#=<O3_3#\/O3_3+2#=<O2_3)),

labeling([], [O3_3,O3,O3_2,O2_3,O2,O2_2]).

4.3 Packing Rules

Packing business rules are defined in Rules2CP to take into account further
common sense or industrial requirements that are beyond the scope of pure bin
packing problems [20]. For instance, the following rules about weights:

gravity(Items) -->

forall(O1, Items, origin(O1, 3) = 0 or

exists(O2, Items, uid(O1) # uid(O2) and on_top(O1, O2))).

weight_stacking(Items) -->

forall(O1, Items, forall(O2, Items,

(uid(O1) # uid(O2) and on_top(O1, O2)) implies lighter(O1,O2))).

weight_balancing(Items, Bin, D, Ratio) -->

let(L, sum(map(Il, Items, weight(Il)*(end(Il,D) =< (end(Bin,D)/2)))),

let(R, sum(map(Ir, Items, weight(Ir)*(end(Ir,D) >= (end(Bin,D)/2)))),

100*max(L,R) =< (100+Ratio)*min(L,R))).

express particular weight constraints in an admissible packing.
The complete PKML library including common sense rules dealing with the

weight of objects and the surface contact of stacked items, is given in [14]. With
these rules, Proposition 3 entails:

Proposition 4. PKML models containing lists of at most l elements generate
constraint programs of size O(l4) in presence of both alternative shapes and as-
semblies of boxes, O(l3) in presence of only one of them, and O(l2) in presence
of single box shapes only.

Business patterns can also be used in PKML to express knowledge about
some predefined (partial) solutions to packing problems. Such patterns are used
in the industry, for instance for filling pallets, or trucks, with maximum stability
according to some predefined solutions. Stability conditions can be expressed
with non-guillotine or non-visibility constraints [20], however packing patterns
provide a pragmatic and complementary approach to these important require-
ments. In PKML, packing patterns can be defined as records containing a list
of item shapes given with the coordinates of their origin, and bounds on their
weight.

4.4 Performance Evaluation

We report here the performances of the Rules2CP compiler and of the generated
constraint program, on Korf’s benchmarks of optimal rectangle packing problems
[7]. These problems consists in finding the smallest rectangle containing n squares
of sizes Si = i for 1 ≤ i ≤ n. In [21] Simonis and O’Sullivan proposed a constraint
program implemented in SICStus Prolog which improved best known runtimes
up to a factor of 300.

Their search strategy decomposes the optimisation problem in two subprob-
lems. First, the different non symmetric bounding rectangle candidates are enu-
merated in ascending order of areas. Then, for each bounding rectangle candi-
date, the N squares packing satisfaction problem is solved with a search strategy
based on interval splitting, working together with the disjoint2 and cumula-
tive global constraints. The strategy places the N squares ordered by decreasing
sizes. It first splits the domain of x coordinates into intervals, before fixing these
coordinates by dichotomy. The process is then repeated for the y coordinates.

N R2CP compilation Rules2CP Original

18 0.266 13 6

19 0.310 11 5

20 0.320 20 10

21 0.342 76 36

22 0.369 364 197

23 0.404 2076 1150

24 0.443 5230 1847

25 0.509 52909 17807

Table 1. Optimal Rectangle Packing programs runtimes in seconds.

Table 1 compares the computation time in seconds obtained in Rules2CP
with their original program in SICStus-Prolog . The SICStus-Prolog program
generated from the Rules2CP model with dynamic search explores exactly the
same search space and is slower by a factor less than 3, due to the interpretation
overhead for the dynamic predicates. In all these examples, the compilation times
are below one second.

5 Related Work

5.1 Comparison with OPL, Zinc and Essence

Rules2CP differs from OPL [1], Zinc [3,4] and Essence [5] modelling languages
in several aspects, among which: the naming of rules, the restriction to simple
data structures of records and enumerated lists, the absence of recursion, the

declarative specification of heuristics as preference orderings, and the absence of
program annotations.

This trade-off for ease of use was motivated by our search for a declara-
tive modelling language with no complicated programming constructs. We have
shown that the declarations and rules of Rules2CP allow the user to give names
to data and knowledge rules without complicated variable scope. A simple mod-
ule system is used in Rules2CP to avoid name clashes. The simplicity of these
design choices is reflected in the obtainment of a complexity bound on the size
of the constraint programs generated from Rules2CP models (Prop. 3). More-
over, the partial evaluation mechanism used in the rewriting process eliminates
at compile-time the overhead due to the simplicity of our data and control struc-
tures.

Interestingly, we have shown that complex search strategies can be expressed
declaratively in Rules2CP, by specifying decision variables and branching formu-
las, as well as both static and dynamic choice heuristics as preference orderings
on variables and values. These specifications use all the power of the language
to define heuristic criteria. This is currently not expressible in Zinc and Essence,
and can be achieved in OPL in aless declarative manner by programming. On
the other hand, we have not considered the compilation of Rules2CP to other
solvers such as local search, or mixed integer linear programs, as has been done
for OPL and Zinc systems.

5.2 Comparison with Constraint Logic Programming

As a modelling language, Rules2CP is a constraint logic programming language,
but not in the formal sense of the CLP scheme of Jaffar and Lassez [22]. Rules2CP
models can be compiled to CLP(FD) programs of potentially exponential size.
Note that the converse translation of Prolog programs into Rules2CP models
is not possible (apart from an arithmetic encoding) because of the absence of
recursion and of general list constructors in Rules2CP. Furthermore, free vari-
ables are not allowed in the right hand side of Rules2CP rules. Instead of the
local scope mechanism used for the free variables in CLP rules, a global scope
mechanism in used for the free variables in Rules2CP declarations. This global
scope mechanism has no counterpart in the CLP scheme which makes it often
necessary to pass the list of all variables as arguments to CLP predicates.

5.3 Comparison with Business Rules

Rules2CP is an attempt to use the business rules knowledge representation
paradigm for constraint programming. Business rules are very popular in the
industry because they provide a declarative mean for expressing expertise knowl-
edge. Business rules should describe independent pieces of knowledge, and should
be independent from a particular procedural interpretation by a rule engine [6].
Rules2CP realizes this aim in the context of combinatorial optimisation prob-
lems, by tranforming business rules into efficient programs using completely
different representations. Rules2CP rules are not general condition-action rules,

also called production rules in the expert system community, but logical rules
with only one head and no imperative actions. Bounded quantifiers are used to
represent complex conditions. Such conditions can also be expressed in many
production rules systems, but here they are used at compile-time to setup a
constraint satisfaction problem, instead of at run-time to match patterns in a
database of facts.

5.4 Comparison with Term Rewriting Systems Tools

The compilation of Rules2CP models to constraint programs is defined and im-
plemented by a term rewriting system. The properties of confluence and termi-
nation of this process have been shown using term rewriting theory. There are
several term rewriting system tools available that could be directly used for the
implementation of the Rules2CP compiler. For instance, in the context of target
constraint solvers in Java, such as e.g. Choco, and for Java programming envi-
ronments in which Rules2CP data structures may be defined by Java objects,
the term rewriting system TOM [23] provides a pattern matching compiler for
programming term transformations defined by rules. This would make of TOM
an ideal system for implementing a Rules2CP compiler to Java, through a direct
translation of → rules into TOM pattern matching expressions.

6 Conclusion

The Rules2CP language is a rule-based modelling language for constraint pro-
gramming. It has been designed to allow application experts express knowledge,
common sense and industrial requirements about combinatorial optimisation
problems with rules (using appropriate editors). Rules2CP rules are declarative
and can be easily introduced, checked and modified one by one, independently
from their particular interpretation by a rule engine.

Search trees can also be specified declaratively in Rules2CP with logical
formulae, and search heuristics can be defined as preference orderings on vari-
ables, values, conjunctive and disjunctive formulae, using pattern matching on
rule names. This is in contrast with other modelling languages for which search
strategies still need be programmed. We have shown that search strategies for
scheduling can be easily expressed in Rules2CP in this manner, as well as the
search strategies of Simonis and O’Sullivan [21] for solving Korf’s optimal rect-
angle packing problem [7], with a constant overhead factor in the generated
code.

The PKML library dedicated to bin packing and bin design problems used in
these experiments, can deal in addition with extra requirements about weights,
oversizes, equilibrium constraints, and specific packing business rules. Further-
more, a large subset of PKML has been shown in [16] to be efficiently compilable
with indexicals within the geometrical kernel of the global constraint geost.

The transformation of Rules2CP models into constraint programs has been
described here by a term rewriting system with partial evaluation. The con-
fluence of these transformations has been shown, together with a complexity

bound on the size of the generated program. The obtainment of such a com-
plexity result reflects the simplicity of our design choices for Rules2CP, such as
the absence of recursion and of general list constructor for instance. This com-
plexity bound shows however a potential exponential blow-up in the size of the
generated constraints. In such cases, the dynamical expansion strategy can be
used.

As for future work, several issues have not been discussed in this paper.
Rules2CP is currently untyped. One difficulty in typing Rules2CP models lies in
the coercions between expressions and formulae used in reification and involv-
ing a subtyping relation between booleans and integers [24]. More experiments
are also needed to evaluate the module system of Rules2CP and its capability
to develop libraries of models that can be reused in a hierarchy of models and
for special purpose applications. Finally, the specification of search strategies
in Rules2CP needs be explored more systematically, and could also be evalu-
ated with adaptive strategies in which the dynamic criteria depend on execution
profiling criteria.

Acknowledgements. This work is supported by the European FP7 Strep
project Net-WMS. We gratefully acknowledge Helmut Simonis for providing us
with his program, and all the partners of this project, as well as Thierry Martinez
and Sylvain Soliman, for numerous discussions on this topic.

References

1. Van Hentenryck, P.: The OPL Optimization programming Language. MIT Press
(1999)

2. Hentenryck, P.V., Perron, L., Puget, J.F.: Search and strategies in opl. ACM
Transactions on Compututational Logic 1 (2000) 285–320

3. Rafeh, R., de la Banda, M.G., Marriott, K., Wallace, M.: From Zinc to design
model. In: Proceedings of PADL’07, Springer-Verlag (2007) 215–229

4. de la Banda, M.G., Marriott, K., Rafeh, R., Wallace, M.: The modelling language
Zinc. In: Proceedings of the International Conference on Principles and Practice
of Constraint Programming CP’06), Springer-Verlag (2006) 700–705

5. Frisch, A.M., Harvey, W., Jefferson, C., Martinez-Hernandez, B., Miguel, I.:
Essence: A constraint language for specifying combinatorial problems. Constraints
13 (2008) 268–306

6. Group, B.R.: The business rules manifesto (2003) Business Rules Group
http://www.businessrulesgroup.org/brmanifesto.htm.

7. Korf, R.E.: Optimal rectangle packing: New results. In: ICAPS. (2004) 142–149

8. Haemmerlé, R., Fages, F.: Modules for Prolog revisited. In: Proceedings of Inter-
national Conference on Logic Programming ICLP 2006. Number 4079 in Lecture
Notes in Computer Science, Springer-Verlag (2006) 41–55

9. Van Hentenryck, P.: Constraint satisfaction in Logic Programming. MIT Press
(1989)

10. Huang, J., Darwiche, A.: The language of search. Journal of Artificial Intelligence
Research 29 (2007) 191–219

11. Apt, K., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge
University Press (2006)

12. Carlsson, M., et al.: SICStus Prolog User’s Manual. Swedish Institute of Computer
Science. Release 4 edn. (2007) ISBN 91-630-3648-7.

13. Fages, F., Soliman, S., Coolen, R.: CLPGUI: a generic graphical user interface
for constraint logic programming. Journal of Constraints, Special Issue on User-
Interaction in Constraint Satisfaction 9 (2004) 241–262

14. Fages, F., Martin, J.: From rules to constraint programs with the Rules2CP mod-
elling language. INRIA Research Report RR-6495, Institut National de Recherche
en Informatique (2008)

15. Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. Journal of
the ACM 20 (1973) 160–187

16. Carlsson, M., Beldiceanu, N., Martin, J.: A geometric constraint over k-dimensional
objects and shapes subject to business rules. In Stuckey, P.J., ed.: Proceedings of
CP’2008. Volume 5202 of Lecture Notes in Computer Science., Springer (2008)
220–234

17. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic
geometrical constraint kernel in space and time for handling polymorphic k-
dimensional objects. In Bessière, C., ed.: Proc. CP’2007. Volume 4741 of LNCS.,
Springer (2007) 180–194 Also available as SICS Technical Report T2007:08,
http://www.sics.se/libindex.html.

18. Allen, J.: Time and time again: The many ways to represent time. International
Journal of Intelligent System 6 (1991)

19. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In
Nebel, B., Rich, C., Swartout, W.R., eds.: Proc. of 2nd International Conference
on Knowledge Representation and reasoning KR’92, Morgan Kaufmann (1992)
165–176

20. Carpenter, H., Dowsland, W.: Practical consideration of the pallet loading problem.
Journal of the Operations Research Society 36 (1985) 489–497

21. Simonis, H., O’Sullivan, B.: Using global constraints for rectangle packing. In:
Proceedings of the first Workshop on Bin Packing and Placement Constraints
BPPC’08, associated to CPAIOR’08. (2008)

22. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th
ACM Symposium on Principles of Programming Languages, Munich, Germany,
ACM (1987) 111–119

23. Balland, E., Brauner, P., Kopetz, R., Moreau, P.E., Reilles, A.: Tom: Piggybacking
rewriting on java. In: Proceedings of th 18th International Conference on Rewriting
Techniques and Applications, RTA’07. Number 4533 in Lecture Notes in Computer
Science, Springer-Verlag (2007)

24. Fages, F., Coquery, E.: Typing constraint logic programs. Journal of Theory and
Practice of Logic Programming 1 (2001) 751–777

	From Rules to Constraint Programs with the Rules2CP Modelling Language
	François Fages, Julien Martin

