Skip to main content

Supercomputer Simulation of an Astrophysical Object Collapse by the Fluids-in-Cell Method

  • Conference paper
Book cover Parallel Computing Technologies (PaCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5698))

Included in the following conference series:

Abstract

Parallel implementation of the Fluids-in-Cell Method (FlIC) method is created for 3D cartesian simulation of an astrophysical object collapse. The main parameters of the parallel implementation are given of the FlIC method. The equations under solution are the gas dynamics equations and Poisson equation. Simulation of collapse with FlIC method is compared to SPH simulation. As a result, we can state that FlIC method provided fine enough grid gives better spatial resolution than SPH.

The contents presented in this paper was partially supported by the Research Grants from RFBR 08-01-00615 and Integration Project of SB RAS 103.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardeljan, N.V., Bisnovatyi-Kogan, G.S., Kosmachevskii, K.V., Moiseenko, S.G.: An implicit Lagrangian code for the treatment of nonstationary problems in rotating astrophysical bodies. Astron. Astrophys. Suppl. Ser. 115, 573–594 (1996)

    Google Scholar 

  2. Monaghan, J.J., Gingold, R.A.: Shock simulation by the particle method SPH. J. Comp. Phys. 52, 374–389 (1983)

    Article  MATH  Google Scholar 

  3. Collela, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comp. Phys. 54, 174–201 (1984)

    Article  MATH  Google Scholar 

  4. Attwood, R.E., Goodwin, S.P., Whitworth, A.P.: Adaptive Smoothing Length in SPH. Astron. Astrophys. 464, 447–450 (2007)

    Article  Google Scholar 

  5. Hubber, D.A., Goodwin, S.P., Whitworth, A.P.: Resolution requirements for simulating gravitational fragmentation using SPH. Astron. Astrophys. 450, 881–886 (2006)

    Article  MATH  Google Scholar 

  6. Paasonen, V.I., Shokin, Yu.I., Yanenko, N.N.: On the theory of difference schemes for gas dynamics. Lect. Not. Phys. 35, 293–303 (1975)

    Article  MATH  Google Scholar 

  7. Shokin, J.: On the First Differential Approximation Method in the Theory of Difference Schemes for Hiperbolic Systems of Equations. Amer. Math. Society (1973)

    Google Scholar 

  8. Kaigorodov, P.V., Kuznetsov, O.A.: Adaptation of Roe-Osher Scheme for the Computers with Massive-Parallel Architecture. KIAM Preprint 59 (2002)

    Google Scholar 

  9. Bisikalo, D.V., Boyarchuk, A.A., Kaygorodov, P.V., Kuznetsov, O.A., Matsuda, T.: The Structure of Cool Accretion Disc in Semidetached Binaries. Astron. Rep. 81, 494–502 (2004)

    Google Scholar 

  10. Vshivkov, V.A., Lazareva, G.G., Kulikov, I.M.: A modified fluids-in-cell method for problems of gravitational gas dynamics. Optoelectronics, Instrumentation and Data Processing 43, 530–537 (2007)

    Article  Google Scholar 

  11. Kireev, S., Kuksheva, E., Snytnikov, A., Snytnikov, N., Vshivkov, V.: Strategies for Development of a Parallel Program for Protoplanetary Disc Simulation. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 128–139. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Grigoryev, Y.N., Vshivkov, V.A., Fedoruk, M.P.: Numerical ”Particle-in-Cell” Methods. Theory and applications, Utrecht-Boston (2002)

    Google Scholar 

  13. Flow Vision Home Page, http://www.flowvision.ru

  14. FFTW Home Page, http://www.fftw.org

  15. Snytnikov, N., Vshivkov, V., Snytnikov, V.: Study of 3D Dynamics of Gravitating Systems Using Supercomputers: Methods and Applications. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 162–173. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Snytnikov, A., Vshivkov, V.: A multigrid parallel program for protoplanetary disc simulation. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 457–467. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Springel, V., Yoshida, N., White, S.: GADGET: A code for collisionless and gasdynamical cosmological simulations. New Astronom 6, 79–117 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulikov, I., Lazareva, G., Snytnikov, A., Vshivkov, V. (2009). Supercomputer Simulation of an Astrophysical Object Collapse by the Fluids-in-Cell Method. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2009. Lecture Notes in Computer Science, vol 5698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03275-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03275-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03274-5

  • Online ISBN: 978-3-642-03275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics