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Abstract. Graphical utility models represent powerful formalismswodeling
complex agent decisions involving multiple issues [2].He tontext of negoti-
ation, it has been shown [10] that using utility graphs eeslbeaching Pareto-
efficient agreements with a limited number of negotiaticeepst even for high-
dimensional negotiations involving complex complemeiyasubstitutability de-
pendencies between multiple issues. This paper consigiezgiends the results
of [10], by proposing a method for constructing the utilitaghs of buyers auto-
matically, based on previous negotiation data. Our methdased on techniques
inspired from item-based collaborative filtering, used iMiree recommendation
algorithms. Experimental results show that our approacibis to retrieve the
structure of utility graphs online, with a high degree of@ecy, even for highly
non-linear settings and even if a relatively small amourdaif about concluded
negotiations is available.

1 Introduction

Negotiation represents a key form of interaction betwe@viders and consumers in
electronic markets. One of the main benefits of negotiatine-commerce is that it
enables greater customization to individual customergpegites, and it supports buyer
decisions in settings which require agreements over cotmoletracts. Automating the
negotiation process, through the use of intelligent agehish negotiate on behalf of
their owners, enables electronic merchants to go beyond pampetition by providing
flexible contracts, tailored to the needs of individual kngye

Multi-issue (or multi-item) negotiation models are pantarly useful for this task,
since with multi-issue negotiations mutually beneficiakifi-win”) contracts can be
found [4, 13,5, 8, 7]. However, most existing approachesitoraated negotiations only

* This is a preliminary version of this work, as it resultednfra presentation at the PRIMA'05
workshop in September 2005. At the time of the publicatiothete post-proceedings (2009),
however, a more definitive version of this work has alreagyeaped as a book chapter in “Ra-
tional, Robust, and Secure Negotiations in Multi-Agentt8yss”, Ito, T.; Hattori, H.; Zhang,
M.; Matsuo, T. (Eds.), Studies in Computational IntelligerSeries, vol. 89., Springer-Verlag,
2008. Interested readers may consult either version.
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deal with linearly additive utility functions , and do notreider high-dimensional ne-
gotiations and in particular, the problem of interdepemiEnbetween evaluations for
different issues or items. This is a significant problemg¢siidentifying and exploit-
ing substitutability/complementarity effects betweefiedent items can be crucial in
reaching mutually profitable deals.

In our previous work (to appear as full paper at the AAMAS 2@0Bference -
[10]), we have introduced the concept of utility graphsulinely defined, a utility
graph (UG) is a structural model of a buyer, representingyeii perception of de-
pendencies between two items (i.e. whether the buyer pecéivo items to be as
complementary or substitutable). An estimation of the Ibsyéility graph can be used
by the seller to efficiently compute the buyer’s utility foftaundle” of items, and pro-
pose a bundle and price based on this utility. The main rgsaiented in [10] is that
Pareto-efficient agreements can be reached, even for mggndional negotiations with
a limited number of negotiation steps, but provided thatsiléer starts the negotiation
with a reasonable approximation of theuctureof the true utility graph of the type of
buyer he is negotiating with (i.e. he has a reasonable idézhvigsues or items may be
complimentary or substitutable in the evaluation of buyetsis domain).

The seller agent can then use this graph to negotiate witlefgpbuyer. During
this negotiation, the seller will adapt the weights and ptiéds in the graph, based on
the buyer’s past bids. However, this assumes the seller &amuper-graph of the utility
graphs of the class of buyers he is negotiating with (i.e.aplgwhich subsumes the
types of dependencies likely to be encountered in a giveragtosrt.f. Sec. 2.2).

An important issue left open in [10] is how does the sellerasgthis initial graph
information. One method would be to elicit it from human estpéi.e. an e-commerce
merchant is likely to know which items are usually sold tbgetor complimentary in
value for the average buyer and which items are not). For pianf the electronic
merchant is selling pay-per-item music tunes, the tunes filte same composer or
performer can be potentially related.

In this paper, we show this can also be retrieved automBtitgl using information
from completed negotiations data. The implicit assumpti@nuse here is that buyer
preferences are in some way clustered, i.e. by looking agiisuat have shown interest
for the same combinations of items in the past, we can makediqgtion about future
buying patterns of the current customer. Note that thisrapsion is not uncommon:
it is a building block of most recommendation mechanismdalagal in Internet today
[12]. In order to generate this initial structure of our itgilgraph, in this paper we
propose a technique inspired by collaborative filtering.

1.1 Collaborative filtering

Collaborative filtering [12] is the main underlying techn@used to enable personal-
ization and buyer decision aid in today’s e-commerce, asdonaven very successful
both in research and practice.

The main idea of collaborative filtering is to output reconmu@&tions to buyers,
based on the buying patterns detected from buyers in pretioy instances. There are
two approaches to this problem. The first of these is use opteference database to
discover, for each buyer, a neighborhood of other buyers Wistorically, had similar
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preferences to the current one. This method has the distdya@that it requires storing
a lot of personalized information and is not scalable (s&§)[TThe second method,
of more relevant to our approach,item-based collaborative filtering Item based
techniques first analyze the user-item matrix (i.e. a mathich relates the users to the
items they have expressed interest in buying), in orderentity relationships between
different items, and then use these to compute recommemdab the users [12].

In our case, of course, the recommendation step is compleelaced by negotia-
tion. What negotiation can add to such techniques is thdilesa much higher degree
of customization, also taking into account the preferemdes specific customer. For
example, a customer expressing an interest to buy a book @zémis sometimes of-
fered a "special deal” discount on a set (bundle) of boolduiting the one he initially
asked for. The potential problem with such a recommendatiechanism is that it's
static: the customer can only take it, leave it or stick toitiigal buy, it cannot change
slightly the content of the suggested bundle or try to negeta better discount. By
using negotiation a greater degree of flexibility is possilblecause the customer can
critique the merchant’s sub-optimal offers through her eeunter-offers, so the space
of mutually profitable deals can be better explored.

1.2 Paper structure and relationship to previous work

The paper is organized as follows. In Section 2 we brieflygmethe general setting of
our negotiation problem, define the utility graph formaliand the way it can be used in
negotiations. Section 3 describes the main result of tpepaamely how the structure
of utility graphs can be elicited from existing negotiatidata. Section 4 presents the
experimental results from our model, while Section 5 codekwith a discussion.

An issue which is important to define is the relationship a$ thaper with our
previous work [10]. The two papers are related, since theggnt solutions to com-
plementary problems. For lack of space, we cannot presemhddel from [10] in this
paper, except at a very general level, since we prefer toesdrate on describing the
new results. However, the interested reader is asked talt¢h8] for further details.

2 The multi-issue negotiation setting

In this section we give some background information of theugpeof our model. First
we give a formal definition of the concept of utility graphsexl we describe (very
briefly) how this formalism can be used in negotiation (aéskuly discussed in [10]).
Finally we discuss how the learning of the structure fromt jgiasa is integrated with
the negotiation part.

2.1 Utility Graphs: Definition and Example

We consider the problem of a buyer who negotiates with arseller a bundle of:
items, denoted by = {I1, ..., I,,}. Each item/; takes on either the valueor 1: 1 (0)
means that the item is (not) purchased. The utility functionDom(B) — R specifies
the monetary value a buyer assigns to2igossible bundlesifom(B) = {0,1}"™).
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In traditional multi-attribute utility theoryy, would be decomposable as the sum
of utilities over the individual issues (items) [9]. Howeyi this paper we follow the
previous work of [2] by relaxing this assumption; they calesithe case where is
decomposable igub-cluster®f individual items such that is equal to the sum of the
sub-utilitiesof different clusters.

Definition 1. Let C be a set of (not necessarily disjoint) clusters of iteifs. . . , C,.
(with C; C B). We say that a utility function is factored according@oif there exists
functionsu; : Dom(C;) — R (i = 1,...,r and Dom(C;) = {0,1}/¢!) such that
u(b) = >, ui(c;) whereb is the assignment to the variablesfhandc; is the corre-
sponding assignment to variables@h.We call the functions; sub-utility functions.

We use the following factorization, which is a relativelytmal choice within the
context of negotiation. Single-item clustef€'{] = 1) represent the individual value of
purchasing an item, regardless of whether other items a&swsept in the same bundle.
Clusters with more than one elemef{ > 1) represent theynergy effectf buying
two or more items; these synergy effects are positive formtementary items and neg-
ative for substitutable ones. In this paper, we restrictaitantion to clusters of size 1
and 2 (C;| € {1,2},Vi). This means we only consider binary item-item complemen-
tarity/substitutability relationships, though the ca$eairieving larger clusters could
form the object of future research. The factorization defiabove can be represented
as an undirected gragh = (V, E), where the vertexeE represent the set of itends
under negotiation. An arc between two vertexes (iteimg) V' is presentin this graph
if and only if there is some clust&r), that contains bott; and/;. We will henceforth
call such a graplé a utility graph.

Example 1.LetB = {Il, I, I3, I4} andC = {{Il}, {IQ}, {Il, IQ}, {IQ, 13}, {IQ, 14}}
such thatu; is the sub-utility function associated with clustidi = 1,...,5). Then the
utility of purchasing, for instance, item§, I, andI5 (i.e.,b = (1,1,1,0)) can be
computed as followsz((1,1,1,0)) = uy(1) + u2(1) + us((1,1)) + ua((1, 1)), where
we use the fact thats(1,0) = u5(0,1) = 0 (synergy effect only occur when two or
more items are purchased). The utility graph of this fag#dron is depicted in Fig. 1.

Fig. 1. The utility graph that corresponds to the factorizatioroading toC' in Example 1. Thet
and— signs on the edges indicate whether the synergy represeotsgementarity, respectively
substitutability effect.
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2.2 Minimal super-graph for a class of buyers

The definition of utility graphs given in Section 2.1 corresds to the modeling the
utility function of an individual buyer. In this paper, welkcthe utility graph of an
individual buyer theunderlyingor true graph (to distinguish it from theetrievedor
learnedgraph, reconstructed through our method). The underlyiaglyof any buyer
remains hidden from the seller throughout the negotiation.

We do assume, however, that the buyers which negotiate wiilrea electronic
merchant belong to a certain class or population of buydris means the utility buy-
ers assign to different bundles of items follow a certaindtire, specific to a buying
domain (an assumption also used indirectly in [13, 4, 12]lyé3s from the same popu-
lation are expected to have largely overlapping graphsighmot all buyers will have
all interdependencies specific to the class.

Definition 2. LetA = {44, ..A,,} be a set (class, population) aefbuyers. Each buyer

1 = 1..n has a utility functionu;, which can be factored according to a set of clusters
Ci = {Cin1,C;2..C1 i)} We define the super-set of clusters for the class of buyers
A= {Al, An} as:Cy =CLUCU..uUC,,.

In graph-theoretic terms (as shown in Section 2.1), thefsgistersC; according to
which the utility a buyer; is structured is represented by a utility grap) where each
binary cluster from{C; 1, ..C; ,(; } represents a dependency or an edge in the graph.
The super-set of buyer clusters, can also be represented by a gréph, which is the
minimal super-graph of graphsG;, i = 1..n. This graph is callegninimal because
it contains no other edges than those corresponding to andepey in the graph of
at least one buyer agent from this class. We illustrate tbiecept by a very simple
example, which also relies on Fig. 1.

Example 2.Suppose we have 2 buyer ageAtsand A, (obviously, this is a simplifica-
tion, since a class would normally contain many more buyapls). Suppose the utility
function of buyer4; can be factored according to the clust€is= {{I1 }, {I2}, {I2, I3},

{I, I, } }, while the utility of A, is factored according 6, = {{I1, I}, {I2, Is}, {Is}}.
Then the minimal utility super-graph for cladss givenby:Cy = {{1 }, {I>}, {I3}, {1, I2},
{I, Is},{I, I} }. This super-graph is minimal, because is we were to add therde
dency{I, I3} to C'4 we would also obtain a super-graph, though not the minimel on

It is important to note that the above definition for the titisuper-graph for a class
of buyer refers only to thetructure (i.e. clusters”;) and makes no assumption about
the sub-utilityvalues (i.e. functionsu;) in these clusters. To illustrate the difference,
suppose that at a structural level, there is a complemégnédféct between two items.
However, for some buyers in the population, the utility wakorresponding to this
dependency may be very high (i.e. it is important for the atgeget both items), while
for others it is much more moderate (or even close to zero).

2.3 Application to negotiation

The negotiation, in our model, follows an alternating adfprotocol. At each negotia-
tion step each party (buyer/seller) makes an offer whichains an instantiation with
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0/1 for all items in the negotiation set (denoting whethestare/are not included in the
proposed bundle), as well as a price for that bundle. Thesabecprocess of the seller
agent, at each negotiation step, is composed of 3 inteteckfzarts: (1) take into ac-
count the previous offer made by the other party, by upddtisgstimated utility graph
of the preferences of the other party, (2) compute the cosi{ep. item configuration)
of the next bundle to be proposed, and (3) compute the prite toroposed for this
bundle.

An important part of our model is that the burden of explorihg exponentially
large bundle space and recommending profitable solutiopadsed to the seller, who
must solve it by modeling the preferences of his buyer (§1&rieasonable model in e-
commerce domains, where electronic merchants typicadlyraare knowledgeable than
individual buyers [4, 13]). The model the seller maintaifikis buyer is represented by
a utility graph, and tailors this graph towards the prefeesrof a given buyer, based on
his/her previous offers.

The seller does not know, at any stage, the values in the ladtility graph of
the buyer, he only has an approximation learned after a nunfheegotiation steps.
However, the seller does have some prior information toghid opponent modeling.
He starts the negotiation by knowingaper-graph of possible inter-dependendes
tween the issues (items) which can be present for the classyefs he may encounter.
The utility graphs of buyers form subgraphs of this graphteNbat this assumption
says nothing about values of the sub-utility functions, le® negotiation is still with
double-sided incomplete information (i.e. neither pardg full information about the
preferences of the other).

In [10] we show how the presence of this graph helps to greatlyce the com-
plexity of the search space on the side of the seller. In [I®avgued that the structure
of the minimal super-graph of the class of buyers likely toebeountered during ne-
gotiations can be obtained either from human experts omaatioally, from a history
of past negotiations, but in [10] we proposed no concretehagism how can this be
achieved. It is this open problem that forms the subjectisfiaper.

2.4 Overview of our approach
There are two main stages of our approach(see also Figure 2):

1. Using information from previously concluded negotiado construct the struc-
ture of the utility super-graph. In this phase the inforratised (past negotiation
data) refers to a class of buyers and is not traceable toichdils.

2. The actual negotiation, in which the seller, startingrfra super-graph for a class
(population) of buyers, will negotiate with an individualyer, drawn at random
from the buyer population above. In this case, learning xcbased on the buyer’s
previous bids during the negotiation, so information is dmugpecific. However,
this learning at this stage is guided by the structure of tipesgraph extracted in
the first phase.

Phase 2 is described in our previous work [10]. The rest af plaiper will focus
on describing the first phase of our model, namely retriettggstructure of the utility
super-graph from previous data.
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A

Dataset of previous
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Store concluded
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Fig. 2. Top-level view of our agent architecture and simulation eiod

3 Constructing the Structure of Utility Graphs Using Concluded
Negotiation Data

Suppose the seller starts by having a dataset with infoomatbout previous concluded
negotiations. This dataset may contain complete negotiatthces for different buyers,
or we may choose, in order to minimize bias due to uneventitenggotiations, to
consider only one record per negotiation. This can be ettiefirst bid of the buyer
or the bundle representing the outcome of the negotiationdétails regarding how
this negotiation data is generated and buyer profiles fosithelated negotiations are
generated, please see the experimental set-up desciipt@ttion 4).

The considered dataset is not personalised, i.e. the datd vehcollected online
cannot be traced back to individual customers (this is aoresd#e assumption in e-
commerce, where storing a large amount of personalisedniation may harm cus-
tomer privacy). However, in constructing of the minimallititigraph which the cus-
tomers use, we implicitly assume that customers’ preferémactions are related - i.e.
their corresponding utility graphs, have a (partially) dapping structure.
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Our goal is to retrieve theinimal super-graph of utility interdependences which
can be present for the class or population of buyers fromhwthie negotiation data was
generated.

We assume that past data can be represented\as a matrix, whereN is the
number of previous negotiation instances considered (@.go 3000 in the tests re-
ported in this paper) andis the number of issues (e.g. 50 for our tests). All the data is
binary (i.e. with values of "1” in the case the buyer askedlfis item or "0” if he does
not). Item-based collaborative filtering [12] works by camipg "similarity measures”
between all pairs of items in the negotiation set. The stepd are:

1. Compute raw item-item statistics (i.e. from existing otégfion data)

2. Compute item-item similarity matrices (from the raw istits)

3. Compute qualitative utility graph, by selecting whichpdadencies to consider
from the similarity matrices.

In the following, we will examine each of these separately.

3.1 Computing the "raw” statistic matrices

Since what we need to compute is item-item similarity measuwve extract from this
data some much smaller (n*n tables) which are sufficient topde the required mea-
sures. We use the following notations throughout this paper

— N for the total number of previous negotiation outcomes atersd

— Foreachitem = 1..n N;(1) andN;(0) represent the number of times the item was
(respectively was not) asked by the buyer, from the total pféVious negotiations

— For each pair of issueisj = 1..n we denote byV; ;(0,0), N; ;(0,1), N; ;(1,0)
andN; ;(1,1) all possibilities of joint acquisition (or non acquisitipof items i
and j.

From the above definitions, the following property resuttsiediately:N; ;(0, 0)+
Nm‘(o, 1) + Ni’j(l, 0) + Ni’j(l, 1) = Nl(O) + Nl(l) = Nj(O) + Nj(l) = N, for all
itemsi, j = 1..n.

3.2 Computing the similarity matrices

The literature on item-based collaborative filtering deditvigo main criteria that could
be used to compute the similarity between pairs of items. &euds them in sepa-
rate sub-sections. Since their mathematical definitioaspfasented in [12]) are for
real-valued preference ratings, we needed to derive theppate form for the binary
values case. In the following we present just the resultongililas, and abstract away
from how they were deduced from the model presented in [12].

Cosine-based similarity For cosine based similarity, two separate matrices are com-
puted: one for likely complementarity between a pair of iseamd one for likely sub-
stitutability. Both of these have positive entries (betaww@®and 1), a higher number
denoting a stronger potential similarity.
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The formula to compute the entries in the complementarityimis:

] ;s N; ;(1,1
SiMeompi(1,7) = # 1)
Ni(1)  N;(1)
The formula for entries in the substitutability matrix is:
Nij(0,1) + Ny i (1,0
SiMsupst (Z, j) = "J( ) + /J( ) (2)

Nz(]-) * NJ(].)

Correlation-based similarity For correlation-based similarity, just one similarity ma-

trix is computed containing both positive and negative gal(to be more precise be-

tween -1 and 1). We first we define for each itém 1..n, the average buy rate:
N1

Avi = N (3)

The following two terms are defined:

'g/)l = Ni’j(0,0)*A’Ui*A’Uj —Ni,j(O,l)*Avi* (1—Avj)
_Ni,j(L 0) * (1 — AU7) * A’Uj + N1'7j(1, 1) * (1 — A’Uz) * (1 — A’Uj)

and the normalization factor:
N;(0) * Ny (1) N;(0) = N;(1)
Yo = N * N

The values in the correlation-based similarity matrix dentcomputed as:

Sim(i, j) = % @)

3.3 Building the super-graph of buyer utilities

After constructing the similarity matrices, the next stefiuse this information to build
the utility super-graph for the class of buyers likely to be@untered in future negotia-
tions. This amounts to deciding which of the item-item lielaghips from the similarity
matrixes should be included in this graph. For both sintijjameasures, higher values
(i.e. closer to 1) represent stronger potential complearépt For substitutability de-
tection, the cosine similarity uses a different matrix, @hthe correlation-based it is
enough to select values closer to -1.

Ideally, all the inter-dependencies corresponding to the i the graph represent-
ing the true underlying preferences of the buyer shouldifeseamong the highest (re-
spectively the lowest) values in the retrieved correlataiies. When an interdepen-
dency is returned that was not actually in the true graph, alietlais is spurious (or
erroneous) arc or interdependency. Due to noise in the ddsunavoidable that a
number of such spurious arcs are returned. For examplenifiit has a complimentary
value withI; and/, is substitutable withs, it may be that itemg; and/; often do not
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appear together, so the algorithm detects a substitutalelationship between them,
which is in fact spurious.

The question on the part of the seller is: how many dependsistiould be consid-
ered, given that the seller does not know the number of degreriels which should be
actually present in the minimal super-graph which it need®trieve? Setting a value
threshold for the strength of interdependencies to be densil has so far proved error-
prone, since it may include too many or too few dependentfi@ge choose too few
dependencies, there is a high probability that dependgacteally present in the utility
graph may be missed. If we choose too many, then surely a tang@er of spurious
(i.e. dependencies not in the real graph of any buyer) wilinokuded. Both of these
cases can negatively affect the Pareto-efficiency and raigot speed in the negoti-
ation stage (stage 2 of our set-up), though missing depeireteoan typically have a
larger negative effect.

One way to tackle this problem is to set a formal limit on theximaum complexity
(i.e. density) of the class of utility graphs which can bediad by our approach. More
precisely stated, we restrict our attention to graphs witeegenumber of edges (i.e.
dependencies) is a linear function of the number of vertéxastems in the negotiation
set). Formally, ifz is the number of items under negotiation, then we assumauitinéer
of dependencies in the utility graph of the buyer should noeed a factor ok, * n,
wherek,,... is a small positive number.

This restriction is reasonable considering our applicediomain, since we are mod-
eling preferences of human buyers in e-commerce scen&rios a human cognition
perspective, it is reasonable to assume that the numbeiilivf utter-dependencies
(i.e. complementarity and substitutability effects) beéw a set of items is linear in
the number of items and not exponential, for most realistidpcts (e.g. books, music
tunes etc.) sold on the internet. From a graph-theoretspeetive, this restriction also
makes sense, since our negotiation algorithm (reportetidf) pxplicitly relies on the
assumption that utility graphs used in the negotiation fatree-width of maximum 2
(which means that their maximum number of edges is restrici@ « n). We stress,
however, that we make no assumption on number of issues whitctbe handled in
our negotiation set, only on the maximum degree of interddpacies between these
issues (density of the utility graph). Further work will f{e&; using results from random
graph theory [1], on better identifying and defining cut-ddfues ofk,,,... for different
types of graph structures complexity.

For the experimental results presented in this paper, idibgithe minimal super-
graph we approximatg,,,, = 1.5, which means we restrict our attention to graphs
that have a number of edges relatively close to the numbeeréxes. We found that
this ratio provides a relatively good balance between iliclg too many spurious de-
pendencies and the chance of missing some of them.

4 Experimental results

The model above was tested for a setting involving 50 binafyed issues (items).
Two sets of tests were performed: one for the cosine-basdthsty criteria, one for
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the correlation-based similarity. There are two dimensicross which the two criteria
need to be tested:

— The strength of the interdependencies in the generated bey profiles. This is
measured as a ratio of the average strength of the intemdepey over the average
utilities of an individual item. To explain, each buyer plefs generated as follows:
First, for each item, an individual value is generated byniing from identical,
independent normal distributions (i.i.d.) of cent&r,qiviqual—items = 1 @nd vari-
ance 0.5. Next, the substitutability/complementariteetf§ for each binary issue
dependency (i.e. each cluster containing two items) arergéed by drawing from
anormal i.i.d-s with a centers,,,,—iinecarity @nd the same spread 0.5. The strength

of the interdependency is then taken t d"‘;zlit” . The smaller this ratio is,
the more difficult it will be to detect non-linearity (i.e. @plementarity and sub-
stitutability effects between items). In fact, if this @tekes the value 0, there are
no effects to detect (which explains the performance aipiist), at 0.1 the effects
are very weak, but they become stronger as it approachesa. and

— Number of previous negotiations from which information (i.e. negotiation trace)

is available

The performance measure used is computed as follows. Eadbf ian algorithm
(for a given history of negotiations, and a certain probighilistribution for generating
that history) returns an estimation of the utility graph loé tbuyer. Our performance
measure is the recall, i.e. the percentage of the deperedsfincim the underlying utility
graph of the buyer (from which buyer profiles are generatduflvare found in the
graph retrieved by the seller. Due to noise and/or insuffictiata, we cannot expect
this graph retrieval process to always have 100% accuraeyth@refore studied what
is the effect of an imprecise graph on the part of the sellethemegotiation process
itself (stage 2 of our approach). This is discussed in Seetid.

The setting presented above was tested for both cosinetbaskcorrelation based
similarity. Figure 3 gives the resulting graphs for the oesbased case, while Fig. 4
gives the results for the correlation-based one. Each gboivets plotted and resulting
dispersions was computed by averaging over 50 differets.tés all these tests, to
make them independent as possible, a new data set was gehé&mat each set of tests,
the structure of the graph was also generated at random,légtisg at random the
items (vertexes) connected by each edge representingty intier-dependency. For 50
issues, 75 random binary dependencies were generatedctotest set, 50 of which
were positive dependencies and 25 negative ones.

4.1 Results for cosine-based similarity vs. correlation bsed similarity: an
interpretation of results

The overall conclusion which can be drawn from our tests 8ge3 and Fig. 4) is
that one of the techniques we investigated, namely coioeldtased similarity is con-
siderably more successively than the simpler, cosineebsiseilarity technique. This
can be easily observed from Fig. 3 and Fig. 4: while corretabased similarity can
extract 96% (+/- 7%) of dependencies correctly given enalah (from around 1500
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completed negotiations) and strong enough dependenatstbove 1), cosine-based
similarity achieves a maximum of just above 40%. Thus, weckale that correlation-
based similarity is the most suitable one for the problemeafting the structure of
utility graphs, from the item-based collaborative filtgriechniques mentioned in ex-
isting literature we are aware of.

Strength of interdependencies, as ratio to average item utility

‘ ‘ 120 ‘ ‘ ‘
Percentage of correctly retrieved edges +——+— = Percentage of correctly retrieved edges +——+—

8

G 100

§

8

c

Q

ke

5

o 60

(7]

xe]

o

g

o 40f

2

>

5 201

<

5

O
Il Il 0 Il Il Il Il Il Il
0.5 1 2 0100 300 500 1000 1500 2000

Fig. 3. Results for the cosine-based similarity. Left-side graplegithe percentage of correctly
retrieved dependencies, with respect to the average egerntdlency strength, while right-side
graph gives the percentage of correctly retrieved depeaelemwith respect to the size of the
available dataset of past negotiation traces.

4.2 Effect of errors in the retrieved utility graph on the negotiation process

As we have shown in Sec. 2.3, in order for the second phaserapproach to reach
efficient outcomes, it is necessary that the seller stagtsdgotiation with the minimal
super-graph of utility interdependencies for the classwfelos he will encounter in
negotiations. However, as shown in Sec. 4.1, it is not alwmssible to retrieve the
structure of this graph with 100% accuracy, if inter-depamaies to be detected are not
strong enough or if insufficient data is available from poe negotiations. Therefore,
in further tests, we investigated the effect of an inacafaartially incorrect) graph on
the performance of the negotiation algorithm itself (stage of our model [10]). The
results from these tests are shown in Fig. 5.

Tests from Fig. 5 show that our negotiation algorithm exilai ‘graceful degra-
dation' property. This means that it is not necessary to H#@9 accuracy (in terms
of correctly retrieved edges), since a certain degree a@fr éemder 10%) would not
degrade the Pareto-efficiency of the outcomes very significathough it may lead

Number of previous negotiation outcomes considered

2500
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Strength of interdependencies, as ratio to average item utility

Fig. 4. Results for the correlation-based similarity. Left-sidagh gives the percentage of cor-
rectly retrieved dependencies, with respect to the avdragedependency strength, while right-
side graph gives the percentage of correctly retrievedrigrecies with respect to the size of the
available dataset of past negotiation traces.

to slightly longer negotiations, in terms of the number @fpst needed to reach these
outcomes.

5 Discussion

In this section we provide a review of related work, with Spkattention to the features
relevant for our approach. We conclude by summarizing thi& @ntributions of our
work and identifying directions for future research.

Several previous results model automated negotiation eslddr supporting the
buyer’s decision process in complex e-commerce domaing[533]. Most of the work
in multi-issue negotiations has focused on the independangtions case. Faratin,
Sierra & Jennings [8] introduce a method to search the ysltace over multiple at-
tributes, which uses fuzzy similarity criteria betweenihtite value labels as prior in-
formation. Coehoorn and Jennings [7] extends this modél wiimethod to learn the
preference weights that the opponent assigns to diffessnes in the negotiation set,
by using kernel density estimation. These papers have thengahe that they allow
flexibility in modeling and deal with incomplete prefererioéormation supplied by
the negotiation partner. They do not consider the quesfifumational interdependen-
cies between issues, however.

Other approaches to multi-issue negotiation problem aragienda based approach
(Fatima et. al. [11]) and the constraint-based negotiatioproach (Luo et. al. [14]).
Debenham [3] proposes a multi-issue bargaining strategtyrttodels the iterative in-

Number of previous negotiation outcomes considered

2500
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Fig. 5. Effect of errors (i.e. a number of incorrectly retrieved elegencies in the super-graph
used by the seller) on the negotiation process

formation gathering which takes place during the negatiati he agents in [3] do not
explicitly model the preferences of their opponent, butstorct a probability distribu-
tion over all possible outcomes. However, these approaateasot explicitly designed
to address the problem of complex and high dimensional reg@ots.

Two negotiation approaches that specifically address thielggm of complex inter-
dependencies between multiple issues — and are therefoserelated to our work
— are [5,6]. Klein et. al. [5] use a setting similar to the orensidered in this pa-
per, namely bilateral negotiations over a large number oldan-valued issues with
binary interdependencies. In this setting, they compagtrformance of two search
approaches: hill-climbing and simulated annealing andvsthat if both parties agree
to use simulated annealing, then Pareto-efficient outcaaede reached. In a similar
line of work, Lin [6] uses evolutionary search techniquesdach optimal solutions.
Both of these approaches have the advantage that they dablsda large numbers
of issues and Pareto-efficient outcomes can be reacheduwiging prior information
(such as the utility super-graph for a class of buyers in oodel). However, a draw-
back of these learning techniques is the large number oftiadipm steps needed to
reach an agreement (around 2000 for 50 issues [5]).

By comparison with this work, our approach uses an explicgtiet of the buyer
utility function - in the form of a utility graph. A differerecof our approach (presented
both in this paper and in [10]) from other existing negotiatapproaches is that we use
information from previous negotiations in order to aid buyedeling in future negoti-
ation instances. This does not mean that negotiation apeuific customers need to be
stored, only aggregate information about all customers. Mhin intuition behind our
model is that we explicitly utilize, during the negotiatidhe clustering effect between

Correct dependencies in the initial Seller graph (% of total)
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lity functions of a population of buyers, an effect whishused by most Internet

recommendation engines today. This allows us to handle gty dimensional and
complex negotiations efficiently (with a limited number @&gotiation steps).

The main contribution of this paper, in addition to the onghtighted in [10], is

that it shows that the whole process can be automatic: no hunpat is needed in

order to achieve efficient outcomes. We achieve this by usiaigniques derived from

collaborative filtering (widely used in current e-commepeactice) to learn the struc-
ture of utility graphs used for such negotiations. We thusasthat the link between

collaborative filtering and negotiation is a fruitful resgaarea, which, we argue, can
lead to significant practical applications of automatedotiegion systems.
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