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Abstract. Graphical utility models represent powerful formalisms for modeling
complex agent decisions involving multiple issues [2]. In the context of negoti-
ation, it has been shown [10] that using utility graphs enables reaching Pareto-
efficient agreements with a limited number of negotiation steps, even for high-
dimensional negotiations involving complex complementarity/ substitutability de-
pendencies between multiple issues. This paper considerably extends the results
of [10], by proposing a method for constructing the utility graphs of buyers auto-
matically, based on previous negotiation data. Our method is based on techniques
inspired from item-based collaborative filtering, used in online recommendation
algorithms. Experimental results show that our approach isable to retrieve the
structure of utility graphs online, with a high degree of accuracy, even for highly
non-linear settings and even if a relatively small amount ofdata about concluded
negotiations is available.

1 Introduction

Negotiation represents a key form of interaction between providers and consumers in
electronic markets. One of the main benefits of negotiation in e-commerce is that it
enables greater customization to individual customer preferences, and it supports buyer
decisions in settings which require agreements over complex contracts. Automating the
negotiation process, through the use of intelligent agentswhich negotiate on behalf of
their owners, enables electronic merchants to go beyond price competition by providing
flexible contracts, tailored to the needs of individual buyers.

Multi-issue (or multi-item) negotiation models are particularly useful for this task,
since with multi-issue negotiations mutually beneficial (”win-win”) contracts can be
found [4, 13, 5, 8, 7]. However, most existing approaches to automated negotiations only
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M.; Matsuo, T. (Eds.), Studies in Computational Intelligence Series, vol. 89., Springer-Verlag,
2008. Interested readers may consult either version.
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deal with linearly additive utility functions , and do not consider high-dimensional ne-
gotiations and in particular, the problem of interdependencies between evaluations for
different issues or items. This is a significant problem, since identifying and exploit-
ing substitutability/complementarity effects between different items can be crucial in
reaching mutually profitable deals.

In our previous work (to appear as full paper at the AAMAS 2005conference -
[10]), we have introduced the concept of utility graphs. Intuitively defined, a utility
graph (UG) is a structural model of a buyer, representing a buyer’s perception of de-
pendencies between two items (i.e. whether the buyer perceives two items to be as
complementary or substitutable). An estimation of the buyer’s utility graph can be used
by the seller to efficiently compute the buyer’s utility for a“bundle” of items, and pro-
pose a bundle and price based on this utility. The main resultpresented in [10] is that
Pareto-efficient agreements can be reached, even for high dimensional negotiations with
a limited number of negotiation steps, but provided that theseller starts the negotiation
with a reasonable approximation of thestructureof the true utility graph of the type of
buyer he is negotiating with (i.e. he has a reasonable idea which issues or items may be
complimentary or substitutable in the evaluation of buyersin his domain).

The seller agent can then use this graph to negotiate with a specific buyer. During
this negotiation, the seller will adapt the weights and potentials in the graph, based on
the buyer’s past bids. However, this assumes the seller knows a super-graph of the utility
graphs of the class of buyers he is negotiating with (i.e. a graph which subsumes the
types of dependencies likely to be encountered in a given domain - c.f. Sec. 2.2).

An important issue left open in [10] is how does the seller acquire this initial graph
information. One method would be to elicit it from human experts (i.e. an e-commerce
merchant is likely to know which items are usually sold together or complimentary in
value for the average buyer and which items are not). For example, if the electronic
merchant is selling pay-per-item music tunes, the tunes from the same composer or
performer can be potentially related.

In this paper, we show this can also be retrieved automatically, by using information
from completed negotiations data. The implicit assumptionwe use here is that buyer
preferences are in some way clustered, i.e. by looking at buyers that have shown interest
for the same combinations of items in the past, we can make a prediction about future
buying patterns of the current customer. Note that this assumption is not uncommon:
it is a building block of most recommendation mechanisms deployed in Internet today
[12]. In order to generate this initial structure of our utility graph, in this paper we
propose a technique inspired by collaborative filtering.

1.1 Collaborative filtering

Collaborative filtering [12] is the main underlying technique used to enable personal-
ization and buyer decision aid in today’s e-commerce, and has proven very successful
both in research and practice.

The main idea of collaborative filtering is to output recommendations to buyers,
based on the buying patterns detected from buyers in previous buy instances. There are
two approaches to this problem. The first of these is use of thepreference database to
discover, for each buyer, a neighborhood of other buyers who, historically, had similar
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preferences to the current one. This method has the disadvantage that it requires storing
a lot of personalized information and is not scalable (see [12]). The second method,
of more relevant to our approach, isitem-based collaborative filtering. Item based
techniques first analyze the user-item matrix (i.e. a matrixwhich relates the users to the
items they have expressed interest in buying), in order to identify relationships between
different items, and then use these to compute recommendations to the users [12].

In our case, of course, the recommendation step is completely replaced by negotia-
tion. What negotiation can add to such techniques is that enables a much higher degree
of customization, also taking into account the preferencesof a specific customer. For
example, a customer expressing an interest to buy a book on Amazon is sometimes of-
fered a ”special deal” discount on a set (bundle) of books, including the one he initially
asked for. The potential problem with such a recommendationmechanism is that it’s
static: the customer can only take it, leave it or stick to hisinitial buy, it cannot change
slightly the content of the suggested bundle or try to negotiate a better discount. By
using negotiation a greater degree of flexibility is possible, because the customer can
critique the merchant’s sub-optimal offers through her owncounter-offers, so the space
of mutually profitable deals can be better explored.

1.2 Paper structure and relationship to previous work

The paper is organized as follows. In Section 2 we briefly present the general setting of
our negotiation problem, define the utility graph formalismand the way it can be used in
negotiations. Section 3 describes the main result of this paper, namely how the structure
of utility graphs can be elicited from existing negotiationdata. Section 4 presents the
experimental results from our model, while Section 5 concludes with a discussion.

An issue which is important to define is the relationship of this paper with our
previous work [10]. The two papers are related, since they present solutions to com-
plementary problems. For lack of space, we cannot present the model from [10] in this
paper, except at a very general level, since we prefer to concentrate on describing the
new results. However, the interested reader is asked to consult [10] for further details.

2 The multi-issue negotiation setting

In this section we give some background information of the set-up of our model. First
we give a formal definition of the concept of utility graphs. Next we describe (very
briefly) how this formalism can be used in negotiation (a issue fully discussed in [10]).
Finally we discuss how the learning of the structure from past data is integrated with
the negotiation part.

2.1 Utility Graphs: Definition and Example

We consider the problem of a buyer who negotiates with a seller over a bundle ofn
items, denoted byB = {I1, . . . , In}. Each itemIi takes on either the value0 or 1: 1 (0)
means that the item is (not) purchased. The utility functionu : Dom(B) 7→ R specifies
the monetary value a buyer assigns to the2n possible bundles (Dom(B) = {0, 1}n).
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In traditional multi-attribute utility theory,u would be decomposable as the sum
of utilities over the individual issues (items) [9]. However, in this paper we follow the
previous work of [2] by relaxing this assumption; they consider the case whereu is
decomposable insub-clustersof individual items such thatu is equal to the sum of the
sub-utilitiesof different clusters.

Definition 1. LetC be a set of (not necessarily disjoint) clusters of itemsC1, . . . , Cr

(with Ci ⊆ B). We say that a utility function is factored according toC if there exists
functionsui : Dom(Ci) 7→ R (i = 1, . . . , r andDom(Ci) = {0, 1}|Ci|) such that
u(b) =

∑

i ui(ci) whereb is the assignment to the variables inB andci is the corre-
sponding assignment to variables inCi.We call the functionsui sub-utility functions.

We use the following factorization, which is a relatively natural choice within the
context of negotiation. Single-item clusters (|Ci| = 1) represent the individual value of
purchasing an item, regardless of whether other items are present in the same bundle.
Clusters with more than one element (|Ci| > 1) represent thesynergy effectof buying
two or more items; these synergy effects are positive for complementary items and neg-
ative for substitutable ones. In this paper, we restrict ourattention to clusters of size 1
and 2 (|Ci| ∈ {1, 2}, ∀i). This means we only consider binary item-item complemen-
tarity/substitutability relationships, though the case of retrieving larger clusters could
form the object of future research. The factorization defined above can be represented
as an undirected graphG = (V,E), where the vertexesV represent the set of itemsI
under negotiation. An arc between two vertexes (items)i, j ∈ V is present in this graph
if and only if there is some clusterCk that contains bothIi andIj . We will henceforth
call such a graphG a utility graph.

Example 1.LetB = {I1, I2, I3, I4} andC = {{I1}, {I2}, {I1, I2}, {I2, I3}, {I2, I4}}
such thatui is the sub-utility function associated with clusteri (i = 1, . . . , 5). Then the
utility of purchasing, for instance, itemsI1, I2, andI3 (i.e., b = (1, 1, 1, 0)) can be
computed as follows:u((1, 1, 1, 0)) = u1(1) + u2(1) + u3((1, 1)) + u4((1, 1)), where
we use the fact thatu5(1, 0) = u5(0, 1) = 0 (synergy effect only occur when two or
more items are purchased). The utility graph of this factorization is depicted in Fig. 1.

I3

I4

I2I1

+

+

-

Fig. 1.The utility graph that corresponds to the factorization according toC in Example 1. The+
and− signs on the edges indicate whether the synergy represents acomplementarity, respectively
substitutability effect.
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2.2 Minimal super-graph for a class of buyers

The definition of utility graphs given in Section 2.1 corresponds to the modeling the
utility function of an individual buyer. In this paper, we call the utility graph of an
individual buyer theunderlyingor true graph (to distinguish it from theretrievedor
learnedgraph, reconstructed through our method). The underlying graph of any buyer
remains hidden from the seller throughout the negotiation.

We do assume, however, that the buyers which negotiate with agiven electronic
merchant belong to a certain class or population of buyers. This means the utility buy-
ers assign to different bundles of items follow a certain structure, specific to a buying
domain (an assumption also used indirectly in [13, 4, 12]). Buyers from the same popu-
lation are expected to have largely overlapping graphs, though not all buyers will have
all interdependencies specific to the class.

Definition 2. LetA = {A1, ..An} be a set (class, population) ofn buyers. Each buyer
i = 1..n has a utility functionui, which can be factored according to a set of clusters
Ci = {Ci,1, Ci,2..CI,r(i)}. We define the super-set of clusters for the class of buyers
A = {A1, ..An} as:CA = C1 ∪ C2 ∪ .. ∪ Cn.

In graph-theoretic terms (as shown in Section 2.1), the set of clustersCi according to
which the utility a buyerAi is structured is represented by a utility graphGi, where each
binary cluster from{Ci,1, ..CI,r(i)} represents a dependency or an edge in the graph.
The super-set of buyer clustersCA can also be represented by a graphGA, which is the
minimal super-graph of graphsGi, i = 1..n. This graph is calledminimal because
it contains no other edges than those corresponding to a dependency in the graph of
at least one buyer agent from this class. We illustrate this concept by a very simple
example, which also relies on Fig. 1.

Example 2.Suppose we have 2 buyer agentsA1 andA2 (obviously, this is a simplifica-
tion, since a class would normally contain many more buyer graphs). Suppose the utility
function of buyerA1 can be factored according to the clustersC1 = {{I1}, {I2}, {I2, I3},
{I2, I4}}, while the utility ofA2 is factored according toC2 = {{I1, I2}, {I2, I3}, {I3}}.
Then the minimal utility super-graph for classA is given by:C1 = {{I1}, {I2}, {I3}, {I1, I2},
{I2, I3}, {I2, I4}}. This super-graph is minimal, because is we were to add the depen-
dency{I1, I3} toCA we would also obtain a super-graph, though not the minimal one.

It is important to note that the above definition for the utility super-graph for a class
of buyer refers only to thestructure (i.e. clustersCi) and makes no assumption about
the sub-utilityvalues(i.e. functionsui) in these clusters. To illustrate the difference,
suppose that at a structural level, there is a complementarity effect between two items.
However, for some buyers in the population, the utility value corresponding to this
dependency may be very high (i.e. it is important for the agent to get both items), while
for others it is much more moderate (or even close to zero).

2.3 Application to negotiation

The negotiation, in our model, follows an alternating offers protocol. At each negotia-
tion step each party (buyer/seller) makes an offer which contains an instantiation with
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0/1 for all items in the negotiation set (denoting whether they are/are not included in the
proposed bundle), as well as a price for that bundle. The decision process of the seller
agent, at each negotiation step, is composed of 3 inter-related parts: (1) take into ac-
count the previous offer made by the other party, by updatinghis estimated utility graph
of the preferences of the other party, (2) compute the contents (i.e. item configuration)
of the next bundle to be proposed, and (3) compute the price tobe proposed for this
bundle.

An important part of our model is that the burden of exploringthe exponentially
large bundle space and recommending profitable solutions ispassed to the seller, who
must solve it by modeling the preferences of his buyer (this is a reasonable model in e-
commerce domains, where electronic merchants typically are more knowledgeable than
individual buyers [4, 13]). The model the seller maintains of his buyer is represented by
a utility graph, and tailors this graph towards the preferences of a given buyer, based on
his/her previous offers.

The seller does not know, at any stage, the values in the actual utility graph of
the buyer, he only has an approximation learned after a number of negotiation steps.
However, the seller does have some prior information to guide his opponent modeling.
He starts the negotiation by knowing asuper-graph of possible inter-dependenciesbe-
tween the issues (items) which can be present for the class ofbuyers he may encounter.
The utility graphs of buyers form subgraphs of this graph. Note that this assumption
says nothing about values of the sub-utility functions, so the negotiation is still with
double-sided incomplete information (i.e. neither party has full information about the
preferences of the other).

In [10] we show how the presence of this graph helps to greatlyreduce the com-
plexity of the search space on the side of the seller. In [10] we argued that the structure
of the minimal super-graph of the class of buyers likely to beencountered during ne-
gotiations can be obtained either from human experts or automatically, from a history
of past negotiations, but in [10] we proposed no concrete mechanism how can this be
achieved. It is this open problem that forms the subject of this paper.

2.4 Overview of our approach

There are two main stages of our approach(see also Figure 2):

1. Using information from previously concluded negotiations to construct the struc-
ture of the utility super-graph. In this phase the information used (past negotiation
data) refers to a class of buyers and is not traceable to individuals.

2. The actual negotiation, in which the seller, starting from a super-graph for a class
(population) of buyers, will negotiate with an individual buyer, drawn at random
from the buyer population above. In this case, learning occurs based on the buyer’s
previous bids during the negotiation, so information is buyer-specific. However,
this learning at this stage is guided by the structure of the super-graph extracted in
the first phase.

Phase 2 is described in our previous work [10]. The rest of this paper will focus
on describing the first phase of our model, namely retrievingthe structure of the utility
super-graph from previous data.
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Fig. 2.Top-level view of our agent architecture and simulation model

3 Constructing the Structure of Utility Graphs Using Concluded
Negotiation Data

Suppose the seller starts by having a dataset with information about previous concluded
negotiations. This dataset may contain complete negotiation traces for different buyers,
or we may choose, in order to minimize bias due to uneven-length negotiations, to
consider only one record per negotiation. This can be eitherthe first bid of the buyer
or the bundle representing the outcome of the negotiation (for details regarding how
this negotiation data is generated and buyer profiles for thesimulated negotiations are
generated, please see the experimental set-up descriptionin Section 4).

The considered dataset is not personalised, i.e. the data which is collected online
cannot be traced back to individual customers (this is a reasonable assumption in e-
commerce, where storing a large amount of personalised information may harm cus-
tomer privacy). However, in constructing of the minimal utility graph which the cus-
tomers use, we implicitly assume that customers’ preference functions are related - i.e.
their corresponding utility graphs, have a (partially) overlapping structure.
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Our goal is to retrieve theminimal super-graph of utility interdependences which
can be present for the class or population of buyers from which the negotiation data was
generated.

We assume that past data can be represented as aN ∗ n matrix, whereN is the
number of previous negotiation instances considered (e.g.up to 3000 in the tests re-
ported in this paper) andn is the number of issues (e.g. 50 for our tests). All the data is
binary (i.e. with values of ”1” in the case the buyer asked forthis item or ”0” if he does
not). Item-based collaborative filtering [12] works by computing ”similarity measures”
between all pairs of items in the negotiation set. The steps used are:

1. Compute raw item-item statistics (i.e. from existing negotiation data)
2. Compute item-item similarity matrices (from the raw statistics)
3. Compute qualitative utility graph, by selecting which dependencies to consider

from the similarity matrices.

In the following, we will examine each of these separately.

3.1 Computing the ”raw” statistic matrices

Since what we need to compute is item-item similarity measures, we extract from this
data some much smaller (n*n tables) which are sufficient to compute the required mea-
sures. We use the following notations throughout this paper:

– N for the total number of previous negotiation outcomes considered
– For each itemi = 1..n Ni(1) andNi(0) represent the number of times the item was

(respectively was not) asked by the buyer, from the total of Nprevious negotiations
– For each pair of issuesi, j = 1..n we denote byNi,j(0, 0), Ni,j(0, 1), Ni,j(1, 0)

andNi,j(1, 1) all possibilities of joint acquisition (or non acquisition) of items i
and j.

From the above definitions, the following property results immediately:Ni,j(0, 0)+
Ni,j(0, 1) +Ni,j(1, 0) +Ni,j(1, 1) = Ni(0) +Ni(1) = Nj(0) +Nj(1) = N , for all
itemsi, j = 1..n.

3.2 Computing the similarity matrices

The literature on item-based collaborative filtering defines two main criteria that could
be used to compute the similarity between pairs of items. We discuss them in sepa-
rate sub-sections. Since their mathematical definitions (as presented in [12]) are for
real-valued preference ratings, we needed to derive the appropriate form for the binary
values case. In the following we present just the resulting formulas, and abstract away
from how they were deduced from the model presented in [12].

Cosine-based similarity For cosine based similarity, two separate matrices are com-
puted: one for likely complementarity between a pair of items and one for likely sub-
stitutability. Both of these have positive entries (between 0 and 1), a higher number
denoting a stronger potential similarity.



Learning Structure of Utility Graphs for Multi-Issue Negotiation 9

The formula to compute the entries in the complementarity matrix is:

Simcompl(i, j) =
Ni,j(1, 1)

√

Ni(1) ∗Nj(1)
(1)

The formula for entries in the substitutability matrix is:

Simsubst(i, j) =
Ni,j(0, 1) +Ni,j(1, 0)

√

Ni(1) ∗Nj(1)
(2)

Correlation-based similarity For correlation-based similarity, just one similarity ma-
trix is computed containing both positive and negative values (to be more precise be-
tween -1 and 1). We first we define for each itemi = 1..n, the average buy rate:

Avi =
Ni(1)

N
(3)

The following two terms are defined:

ψ1 = Ni,j(0, 0) ∗Avi ∗Avj −Ni,j(0, 1) ∗Avi ∗ (1 −Avj)

−Ni,j(1, 0) ∗ (1 −Avi) ∗Avj +Ni,j(1, 1) ∗ (1 −Avi) ∗ (1 −Avj)

and the normalization factor:

ψ2 =

√

Ni(0) ∗Ni(1)

N
∗

√

Nj(0) ∗Nj(1)

N

The values in the correlation-based similarity matrix are then computed as:

Sim(i, j) =
ψ1

ψ2
(4)

3.3 Building the super-graph of buyer utilities

After constructing the similarity matrices, the next step is to use this information to build
the utility super-graph for the class of buyers likely to be encountered in future negotia-
tions. This amounts to deciding which of the item-item relationships from the similarity
matrixes should be included in this graph. For both similarity measures, higher values
(i.e. closer to 1) represent stronger potential complementarity. For substitutability de-
tection, the cosine similarity uses a different matrix, while the correlation-based it is
enough to select values closer to -1.

Ideally, all the inter-dependencies corresponding to the arcs in the graph represent-
ing the true underlying preferences of the buyer should feature among the highest (re-
spectively the lowest) values in the retrieved correlationtables. When an interdepen-
dency is returned that was not actually in the true graph, we call this is spurious (or
erroneous) arc or interdependency. Due to noise in the data,it is unavoidable that a
number of such spurious arcs are returned. For example, if itemI1 has a complimentary
value withI2 andI2 is substitutable withI3, it may be that itemsI1 andI3 often do not
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appear together, so the algorithm detects a substitutability relationship between them,
which is in fact spurious.

The question on the part of the seller is: how many dependencies should be consid-
ered, given that the seller does not know the number of dependencies which should be
actually present in the minimal super-graph which it needs to retrieve? Setting a value
threshold for the strength of interdependencies to be considered has so far proved error-
prone, since it may include too many or too few dependencies.If we choose too few
dependencies, there is a high probability that dependencies actually present in the utility
graph may be missed. If we choose too many, then surely a largenumber of spurious
(i.e. dependencies not in the real graph of any buyer) will beincluded. Both of these
cases can negatively affect the Pareto-efficiency and negotiation speed in the negoti-
ation stage (stage 2 of our set-up), though missing dependencies can typically have a
larger negative effect.

One way to tackle this problem is to set a formal limit on the maximum complexity
(i.e. density) of the class of utility graphs which can be handled by our approach. More
precisely stated, we restrict our attention to graphs wherethe number of edges (i.e.
dependencies) is a linear function of the number of vertexes(i.e. items in the negotiation
set). Formally, ifn is the number of items under negotiation, then we assume the number
of dependencies in the utility graph of the buyer should not exceed a factor ofkmax ∗n,
wherekmax is a small positive number.

This restriction is reasonable considering our application domain, since we are mod-
eling preferences of human buyers in e-commerce scenarios.From a human cognition
perspective, it is reasonable to assume that the number of utility inter-dependencies
(i.e. complementarity and substitutability effects) between a set of items is linear in
the number of items and not exponential, for most realistic products (e.g. books, music
tunes etc.) sold on the internet. From a graph-theoretic perspective, this restriction also
makes sense, since our negotiation algorithm (reported in [10]) explicitly relies on the
assumption that utility graphs used in the negotiation havea tree-width of maximum 2
(which means that their maximum number of edges is restricted to 2 ∗ n). We stress,
however, that we make no assumption on number of issues whichcan be handled in
our negotiation set, only on the maximum degree of interdependencies between these
issues (density of the utility graph). Further work will focus, using results from random
graph theory [1], on better identifying and defining cut-offvalues ofkmax for different
types of graph structures complexity.

For the experimental results presented in this paper, in building the minimal super-
graph we approximatekmax = 1.5, which means we restrict our attention to graphs
that have a number of edges relatively close to the number of vertexes. We found that
this ratio provides a relatively good balance between including too many spurious de-
pendencies and the chance of missing some of them.

4 Experimental results

The model above was tested for a setting involving 50 binary-valued issues (items).
Two sets of tests were performed: one for the cosine-based similarity criteria, one for
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the correlation-based similarity. There are two dimensions across which the two criteria
need to be tested:

– The strength of the interdependencies in the generated buyer profiles. This is
measured as a ratio of the average strength of the inter-dependency over the average
utilities of an individual item. To explain, each buyer profile is generated as follows:
First, for each item, an individual value is generated by drawing from identical,
independent normal distributions (i.i.d.) of centerCindividual−item = 1 and vari-
ance 0.5. Next, the substitutability/complementarity effects for each binary issue
dependency (i.e. each cluster containing two items) are generated by drawing from
a normal i.i.d-s with a centersCnon−linearity and the same spread 0.5. The strength
of the interdependency is then taken to beCnon−linearity

Cindividual−item
. The smaller this ratio is,

the more difficult it will be to detect non-linearity (i.e. complementarity and sub-
stitutability effects between items). In fact, if this ratio takes the value 0, there are
no effects to detect (which explains the performance at thispoint), at 0.1 the effects
are very weak, but they become stronger as it approaches 1 and2.

– Number of previous negotiations from which information (i.e. negotiation trace)
is available.

The performance measure used is computed as follows. Each run of an algorithm
(for a given history of negotiations, and a certain probability distribution for generating
that history) returns an estimation of the utility graph of the buyer. Our performance
measure is the recall, i.e. the percentage of the dependencies from the underlying utility
graph of the buyer (from which buyer profiles are generated) which are found in the
graph retrieved by the seller. Due to noise and/or insufficient data, we cannot expect
this graph retrieval process to always have 100% accuracy. We therefore studied what
is the effect of an imprecise graph on the part of the seller onthe negotiation process
itself (stage 2 of our approach). This is discussed in Section 4.2.

The setting presented above was tested for both cosine-based and correlation based
similarity. Figure 3 gives the resulting graphs for the cosine-based case, while Fig. 4
gives the results for the correlation-based one. Each of thepoints plotted and resulting
dispersions was computed by averaging over 50 different tests. In all these tests, to
make them independent as possible, a new data set was generated. For each set of tests,
the structure of the graph was also generated at random, by selecting at random the
items (vertexes) connected by each edge representing a utility inter-dependency. For 50
issues, 75 random binary dependencies were generated for each test set, 50 of which
were positive dependencies and 25 negative ones.

4.1 Results for cosine-based similarity vs. correlation based similarity: an
interpretation of results

The overall conclusion which can be drawn from our tests (seeFig. 3 and Fig. 4) is
that one of the techniques we investigated, namely correlation-based similarity is con-
siderably more successively than the simpler, cosine-based similarity technique. This
can be easily observed from Fig. 3 and Fig. 4: while correlation-based similarity can
extract 96% (+/- 7%) of dependencies correctly given enoughdata (from around 1500
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completed negotiations) and strong enough dependency effects (above 1), cosine-based
similarity achieves a maximum of just above 40%. Thus, we conclude that correlation-
based similarity is the most suitable one for the problem of learning the structure of
utility graphs, from the item-based collaborative filtering techniques mentioned in ex-
isting literature we are aware of.
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Fig. 3. Results for the cosine-based similarity. Left-side graph gives the percentage of correctly
retrieved dependencies, with respect to the average interdependency strength, while right-side
graph gives the percentage of correctly retrieved dependencies with respect to the size of the
available dataset of past negotiation traces.

4.2 Effect of errors in the retrieved utility graph on the negotiation process

As we have shown in Sec. 2.3, in order for the second phase of our approach to reach
efficient outcomes, it is necessary that the seller starts the negotiation with the minimal
super-graph of utility interdependencies for the class of buyers he will encounter in
negotiations. However, as shown in Sec. 4.1, it is not alwayspossible to retrieve the
structure of this graph with 100% accuracy, if inter-dependencies to be detected are not
strong enough or if insufficient data is available from previous negotiations. Therefore,
in further tests, we investigated the effect of an inaccurate (partially incorrect) graph on
the performance of the negotiation algorithm itself (stagetwo of our model [10]). The
results from these tests are shown in Fig. 5.

Tests from Fig. 5 show that our negotiation algorithm exhibits a ‘graceful degra-
dation‘ property. This means that it is not necessary to have100% accuracy (in terms
of correctly retrieved edges), since a certain degree of error (under 10%) would not
degrade the Pareto-efficiency of the outcomes very significantly, though it may lead



Learning Structure of Utility Graphs for Multi-Issue Negotiation 13

 0

 20

 40

 60

 80

 100

 120

 0  0.1  0.25  0.5  1  2

C
o

rr
e

c
tl
y
 r

e
tr

ie
v
e

d
 d

e
p

e
n

d
e

n
c
ie

s
 (

%
 o

f 
to

ta
l)

Strength of interdependencies, as ratio to average item utility

Percentage of correctly retrieved edges

 0

 20

 40

 60

 80

 100

 120

 0 100  300  500  1000  1500  2000  2500

C
o

rr
e

c
tl
y
 r

e
tr

ie
v
e

d
 d

e
p

e
n

d
e

n
c
ie

s
 (

%
 o

f 
to

ta
l)

Number of previous negotiation outcomes considered

Percentage of correctly retrieved edges

Fig. 4. Results for the correlation-based similarity. Left-side graph gives the percentage of cor-
rectly retrieved dependencies, with respect to the averageinterdependency strength, while right-
side graph gives the percentage of correctly retrieved dependencies with respect to the size of the
available dataset of past negotiation traces.

to slightly longer negotiations, in terms of the number of steps needed to reach these
outcomes.

5 Discussion

In this section we provide a review of related work, with special attention to the features
relevant for our approach. We conclude by summarizing the main contributions of our
work and identifying directions for future research.

Several previous results model automated negotiation as a tool for supporting the
buyer’s decision process in complex e-commerce domains [13, 4, 5, 3]. Most of the work
in multi-issue negotiations has focused on the independentvaluations case. Faratin,
Sierra & Jennings [8] introduce a method to search the utility space over multiple at-
tributes, which uses fuzzy similarity criteria between attribute value labels as prior in-
formation. Coehoorn and Jennings [7] extends this model with a method to learn the
preference weights that the opponent assigns to different issues in the negotiation set,
by using kernel density estimation. These papers have the advantage that they allow
flexibility in modeling and deal with incomplete preferenceinformation supplied by
the negotiation partner. They do not consider the question of functional interdependen-
cies between issues, however.

Other approaches to multi-issue negotiation problem are the agenda based approach
(Fatima et. al. [11]) and the constraint-based negotiationapproach (Luo et. al. [14]).
Debenham [3] proposes a multi-issue bargaining strategy that models the iterative in-
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Fig. 5. Effect of errors (i.e. a number of incorrectly retrieved dependencies in the super-graph
used by the seller) on the negotiation process

formation gathering which takes place during the negotiation. The agents in [3] do not
explicitly model the preferences of their opponent, but construct a probability distribu-
tion over all possible outcomes. However, these approachesare not explicitly designed
to address the problem of complex and high dimensional negotiations.

Two negotiation approaches that specifically address the problem of complex inter-
dependencies between multiple issues — and are therefore most related to our work
— are [5, 6]. Klein et. al. [5] use a setting similar to the one considered in this pa-
per, namely bilateral negotiations over a large number of boolean-valued issues with
binary interdependencies. In this setting, they compare the performance of two search
approaches: hill-climbing and simulated annealing and show that if both parties agree
to use simulated annealing, then Pareto-efficient outcomescan be reached. In a similar
line of work, Lin [6] uses evolutionary search techniques toreach optimal solutions.
Both of these approaches have the advantage that they are scalable to large numbers
of issues and Pareto-efficient outcomes can be reached without any prior information
(such as the utility super-graph for a class of buyers in our model). However, a draw-
back of these learning techniques is the large number of negotiation steps needed to
reach an agreement (around 2000 for 50 issues [5]).

By comparison with this work, our approach uses an explicit model of the buyer
utility function - in the form of a utility graph. A difference of our approach (presented
both in this paper and in [10]) from other existing negotiation approaches is that we use
information from previous negotiations in order to aid buyer modeling in future negoti-
ation instances. This does not mean that negotiation about specific customers need to be
stored, only aggregate information about all customers. The main intuition behind our
model is that we explicitly utilize, during the negotiation, the clustering effect between
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utility functions of a population of buyers, an effect whichis used by most Internet
recommendation engines today. This allows us to handle veryhigh dimensional and
complex negotiations efficiently (with a limited number of negotiation steps).

The main contribution of this paper, in addition to the one highlighted in [10], is
that it shows that the whole process can be automatic: no human input is needed in
order to achieve efficient outcomes. We achieve this by usingtechniques derived from
collaborative filtering (widely used in current e-commercepractice) to learn the struc-
ture of utility graphs used for such negotiations. We thus show that the link between
collaborative filtering and negotiation is a fruitful research area, which, we argue, can
lead to significant practical applications of automated negotiation systems.
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