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Abstract. Our main goal is to introduce three clustering functions
based on the central tendency deviation principle. According to this ap-
proach, we consider to cluster two objects together providing that their
similarity is above a threshold. However, how to set this threshold ? This
paper gives some insights regarding this issue by extending some clus-
tering functions designed for categorical data to the more general case of
real continuous data. In order to approximately solve the corresponding
clustering problems, we also propose a clustering algorithm. The latter
has a linear complexity in the number of objects and doesn’t require a
pre-defined number of clusters. Then, our secondary purpose is to in-
troduce a new experimental protocol for comparing different clustering
techniques. Our approach uses four evaluation criteria and an aggrega-
tion rule for combining the latter. Finally, using fifteen data-sets and
this experimental protocol, we show the benefits of the introduced clus-
ter analysis methods.

Key words: Cluster analysis, clustering functions, clustering algorithm,
categorical and real continuous data, experimental protocol.

1 Introduction

Clustering is one of the main tasks in data analysis and in data mining fields
and has many applications in real-world problems. Given a set of N objects
O = {o1, . . . , oN}, described by a set of P features D = {D1, . . . , DP }, the clus-
tering problem consists in finding homogeneous groups of these objects. However,
clustering is a NP-hard problem and one has to use heuristics for processing large
data-sets. Reviews of such heuristics can be found in [1–3]. With respect to the
usual taxonomy of clustering methods [1], the present paper aims at contribut-
ing to the family of hard partitional techniques. As it was underlined in [3, 4],
one important factor in that case, is the partitioning function that a clustering
algorithm attempts to optimize. Hence, the contributions of this paper are the
following ones.



First, we introduce three clustering functions that have the following general
formulation:

F (S, µ, X) =
N∑

i,i′=1

(Sii′ − µii′)Xii′ . (1)

where: S is a similarity matrix; µ is a matrix of central tendency measures of
similarities given for each pair of objects; and X is a relational matrix which
general term, Xii′ , equals 1 if oi and oi′ are in the same cluster; 0 otherwise. X
is similar to an adjacency matrix, yet, as it must be a partition, it has to satisfy
the following linear constraints [5, 6], ∀i, i′, i′′ = 1, . . . , N :

Xii = 1 . (reflexivity)
Xii′ −Xi′i = 0 . (symmetry)
Xii′ + Xi′i′′ −Xii′′ ≤ 1 . (transitivity)

(2)

Following the relational analysis method (RA in the following) in cluster analysis
[6, 7], the related clustering problems that we want to solve can be formally stated
as: maxX F (S, µ, X) with respect to the linear constraints1 given in (2).

Regarding (1), our main point of interest concerns the variable µ. By maxi-
mizing F (S, µ, X), we highly consider to group oi and oi′ together if their simi-
larity Sii′ is greater than µii′ . However, how to set µii′ ? On which basis should
we compute µii′ ? Several existing clustering methods are based on the same
kind of objective function [9, 6]. However, most of them consider µii′ as a con-
stant parameter which can be set by the user. On the contrary, in this paper, we
define new clustering functions for which the quantities µii′ are data-dependent
and are interpreted as central tendency measures of pairwise similarities.

Then, in order to rapidly find an approximate solution X, we also introduce
a clustering algorithm that amounts to a local search based technique. This
approach is quite similar to the leader algorithm proposed in [9] and is also
studied in the RA context in [6, 2]. These techniques interesting as they don’t
require to fix the number of clusters.

The secondary purpose of this work, is to suggest a new experimental protocol
for assessing different cluster analysis methods. Indeed, in most papers covering
clustering techniques, only one or two assessment measures are used. In this
work, we propose to take into account four different evaluation criteria and a
score aggregation method in our experimental protocol. Hence, we propose to use
this approach for benchmarking the introduced clustering methods.

The rest of this paper is organized as follows. In section 2, we introduce the
central tendency deviation principle and define three new clustering functions.
Next, in section 3, we detail the associated clustering algorithm. Then, we present
our experimental protocol and the obtained results, in section 4. Finally, we give
some conclusions and future work in section 5.

1 Note that we can use integer linear programming to solve this clustering problem
[5, 7] but only for very small data-sets. Indeed, as it was already mentioned, this
optimization problem is a NP-hard one [8].



2 Maximal association criteria and the central tendency
deviation principle

In this section, we introduce three clustering functions for partitioning continu-
ous numerical data. Firstly, we recall the maximal association approach in the
RA framework [7]. In this context, association measures are used in their rela-
tional representations in order to design objective functions for clustering cate-
gorical data. Secondly, we extend these clustering functions to the more general
case of continuous data. In that perspective, we underline the central tendency
deviation principle.

2.1 Contingency and relational representations of association
measures

Contingency table analysis aims at measuring the association between categor-
ical variables. Let V k and V l be two categorical variables with category sets
{Dk

s ; s = 1, . . . , pk} and {Dl
t; t = 1, . . . , pl} (pk being the number of category of

V k). Their associated contingency table denoted n of size (pk ×pl), is defined as
follows: nst = Number of objects in both categories Dk

s and Dl
t. Then, it exists

many association criteria based on the contingency table [10, 11]. We are partic-
ularly interested in the three following ones:
• The Belson measure (denoted B) introduced in [12] which is related to the
well-known χ2 measure. The former is actually a non-weighted version of the
latter.
• The squared independence deviation measure (denoted E) which was intro-
duced in [11] and studied in [13] for measuring similarities between categorical
variables.
• The Jordan measure (denoted J), which is a coefficient based upon [14] but
which was formally introduced in [11].

We recall below, the contingency representation of these criteria2.

B(V k, V l) =
pk∑

s=1

pl∑
t=1

(
nst −

ns.n.t

N

)2

.

E(V k, V l) =
∑
s,t

n2
st −

∑
s n2

s.

∑
t n2

.t

N2
.

J(V k, V l) =
1
N

∑
s,t

(
nst

(
nst −

ns.n.t

N

))
.

where ns. =
∑pl

t=1 nst.
In the context of the RA approach in contingency table analysis [11, 15, 7], we

can equivalently express the previous criteria using relational matrices. For V k,
its relational matrix is denoted Ck and its general term Ck

ii′ equals 1 if oi and

2 Notice that all of them are null when the variables V k and V l are statistically
independent.



oi′ are in the same category; 0 otherwise. Then, one can observe the following
identities between contingency and relational representations [16, 15]:

∑
s,t

n2
st =

∑
i,i′

Ck
ii′C

l
ii′ ;

∑
s

n2
s. = Ck

.. ;
∑
s,t

nstns.n.t =
∑
i,i′

Ck
i. + Ck

.i′

2
Cl

ii′ . (3)

where
∑

i Ck
ii′ = Ck

.i′ and
∑

i,i′ C
k
ii′ = Ck

.. .
Consequently, we obtain the following relational representations of the stud-

ied coefficients [15]:

B(Ck, Cl) =
N∑

i=1

N∑
i′=1

(
Ck

ii′ −
Ck

i. + Ck
.i′

N
+

Ck
..

N2

)
Cl

ii′ . (4)

E(Ck, Cl) =
∑
i,i′

(
Ck

ii′ −
Ck

..

N2

)
Cl

ii′ . (5)

J(Ck, Cl) =
1
N

∑
i,i′

(
Ck

ii′ −
Ck

i.

N

)
Cl

ii′ . (6)

The relational formulation of association measures is of interest for analyzing the
differences between such coefficients [17]. In our context, this formalism allows to
define clustering functions for categorical data. We recall and extend this aspect
in the following subsection.

2.2 Maximal association criteria and their extensions

Let suppose M categorical variables V k; k = 1, . . . ,M and let ∆ represent one
of the three studied association measures (4), (5) or (6). Then, the maximal
association problem introduced in [7], can be formally stated as follows:

max
X

1
M

M∑
k=1

∆(Ck, X) .

where X is a relational matrix which satisfies (2).
In other words, we want to find the consensus partition X that maximizes

the mean average association with all categorical variables Ck; k = 1, . . . ,M .
This amounts to a clustering model for categorical data or consensus clustering
[18]. Thanks to the relational representation, we have the following property [7]:

1
M

M∑
k=1

∆(Ck, X) =
1
M

∆

(
M∑

k=1

Ck, X

)
=

1
M

∆ (C, X) . (7)

where C =
∑M

k=1 Ck and Cii′ is the number of agreements between oi and oi′

(the number of variables for which both objects are in the same category).



Therefore, it appears that the mean average of the association between X
and the relational matrices Ck; k = 1, . . . ,M , is equivalent to the association
between the former and an aggregated relational matrix3, C.

The summation property (7) is the basis of the extension of the studied objec-
tive functions, that we are going to introduce. Indeed, let represent categorical
data as an indicator matrix T of size (N × P ) where P =

∑M
k=1 pk. In that

representation, we consider all categories of all nominal variables. Accordingly,
we denote D = {D1, . . . , DP } the set of all categories. Then, the general term
of T , Tij , equals 1 if oi is in category Dj ; 0 otherwise. In that representation,
any object oi is a binary vector of size (P × 1) and the following observation
becomes straightforward: Cii′ =

∑P
j=1 TijTi′j = 〈oi, oi′〉, where 〈., .〉 is the eu-

clidean dot product. Given this geometrical view, we can consider the extension
of the clustering functions recalled previously to the more general case of con-
tinuous numerical features. Indeed, we simply interpret Cii′ as a dot product
between vectors oi and oi′ and we symbolically replace any occurrence of C with
a generic notation S. Henceforth, we assume that S is a Gram matrix (also
called similarity matrix) and the vectors oi; i = 1, . . . , N , are represented in a
continuous feature space T of dimension P .

2.3 The central tendency deviation principle

According to the previous subsection, the objective functions that we want to
study are the following ones4.

B (S, X) =
∑
i,i′

(
Sii′ −

(
Si.

N
+

Si′.

N
− S..

N2

))
Xii′ . (8)

E (S, X) =
∑
i,i′

(
Sii′ −

S..

N2

)
Xii′ . (9)

J (S, X) =
∑
i,i′

(
Sii′ −

1
2

(
Si.

N
+

Si′.

N

))
Xii′ . (10)

where Si. = S.i =
∑

i′ Sii′ (since S is symmetric) and S.. =
∑

i,i′ Sii′ .
Given the previous equations, we can draw out the central tendency deviation

principle. Indeed, one can observe that all objective functions are based on a
comparison between the similarity of two objects and a central tendency measure.

In the case of B defined in (8), the transformation from Sii′ to(
Sii′ − Si.

N − Si′.
N + S..

N2

)
is a geometrical one and is known as the Torgerson

transformation [19]. Let g = 1
N

∑N
i=1 oi be the mean vector. Then, we have:(

Sii′ − Si.

N − Si′.
N + S..

N2

)
= 〈oi − g, oi′ − g〉. For the Belson function, the objects

oi and oi′ could be clustered together providing that their dot product, centered
with respect to the mean vector g, is positive.
3 Also called the collective Condorcet matrix in the RA approach [5].
4 For the Jordan function, we drop the factor 1

N
.



Regarding E given in (9), the central tendency is the mean average over all
pairwise similarities, S..

N2 . This approach is also a global one as it considers all
(pairs of) objects. In that case, oi and oi′ are more likely to be in the same
cluster if their own similarity is above the mean average of all similarities.

Unlike the previous cases, the function J introduced in (10), is based on a
local central tendency approach. For the Jordan function, oi and oi′ have more
chances to be grouped together if their similarity is greater than the arithmetic
mean of the mean average of their similarity distributions Si.

N and Si′.
N .

However, one special case to consider is when the data are already centered.
Indeed, if Sii′ = 〈oi− g, oi′ − g〉, all three clustering functions become equivalent
as Si.

N = Si′.
N = S..

N = 0. Despite this point, we propose a version of the clustering
functions that combines two kinds of central tendency approaches.

Following the previous observation and the Belson function, we first center
the data. This leads to similarities Sii′ that are either positive or negative. Next,
we focus on positive similarities only. Indeed, the latter are related to pairs
of vectors whose cosine index is positive which indicates that they are rather
similar. Thus, let S+ be the set of pairs of objects having positive similarities:
S+ = {(oi, oi′) ∈ O2 : Sii′ ≥ 0}. Then, we compute the central tendency mea-
sures related to the clustering criteria, on the basis of pairs belonging to S+.
More concretely, below are the clustering functions that we propose to define:

B+ (S, X) =
∑
i,i′

(
Sii′ −

(
S+

i.

N+
i.

+
S+

i′.

N+
i′.

− S+
..

N+
..

))
Xii′ . (11)

E+ (S, X) =
∑
i,i′

(
Sii′ −

S+
..

N+
..

)
Xii′ . (12)

J+ (S, X) =
∑
i,i′

(
Sii′ −

1
2

(
S+

i.

N+
i.

+
S+

i′.

N+
i′.

))
Xii′ . (13)

with, ∀i = 1, . . . , N : S+
i. =

∑
i′:(oi,oi′ )∈S+ Sii′ ; S+

.. =
∑

i,i′:(oi,oi′ )∈S+ Sii′ ; N+
i. =

#{oi′ ∈ O : (oi, oi′) ∈ S+} and N+
.. = #S+ (# being the cardinal).

Intuitively, this two-step approach allows to obtain more compact clusters
since pairs of objects that are finally clustered together must have very high sim-
ilarities compared to central tendency measures based upon the most relevant
similarities which are the positive ones and which actually correspond to the
nearest neighbors of objects.

To sum up, we give in Table 1, the parameters µ of the respective clustering
functions. This table uses the notations provided in equation (1). Henceforth, we
are interested in the following clustering problems: maxX ∆+ (S, X) with respect
to the constraints in (2), where ∆+ is one of the three functions in Table 1.



Table 1. Clustering functions and their central tendency measures

Clus. func. Central tendency measures

B+(S, X) = F (S, µB+
, X) µB+

ii′ =
S+

i.

N+
i.

+
S+

i′.
N+

i′.
− S+

..
N+

..

E+(S, X) = F (S, µE+
, X) µE+

ii′ =
S+

..
N+

..

J+(S, X) = F (S, µJ+
, X) µJ+

ii′ = 1
2

„
S+

i.

N+
i.

+
S+

i′.
N+

i′.

«

3 A Clustering algorithm based on transfer operations

The clustering problems that we have formally presented as integer linear pro-
grams, can be optimally solved but for very small data-sets. In this paper, we
target large data-sets and our purpose is to introduce a clustering algorithm that
allows to rapidly find an approximate solution X to these clustering problems.
Regarding the notations, let U = {u1, . . . , uq} be the partition solution repre-
sented by the relational matrix X (q being the number of clusters of U). Hence,
ul; l = 1, . . . , q, represents the set of objects that are within this cluster. As we
have mentioned in section 1, the core of this heuristic is not new. Actually it can
be seen as a prototype-based leader algorithm but employing similarities instead
of euclidean distances. The basic ideas of this algorithm were already suggested
in [9, 6, 2] for example. After introducing the mechanism of such an algorithm,
we recall its particular weakness and propose a simple solution to overcome it.

3.1 The basic algorithm and its scalable version

Given U , a current partition of the objects, we want to find out if the transfer
of an object oi to any other clusters of U distinct from its current cluster, can
increase the clustering function value. To this end, we introduce the following
contribution measures. In the equations below, ui symbolically represents the
current cluster of oi; ul an existing cluster but different from ui and {oi} the
singleton constituted of oi.

contui(o
i) = 2

∑
i′:oi′∈ui

(Sii′ − µii′)− (Sii − µii) . (14)

contul
(oi) = 2

∑
i′:oi′∈ul

(Sii′ − µii′) + (Sii − µii) ∀ul 6= ui . (15)

cont{oi}(oi) = (Sii − µii) . (16)

With respect to the objective function (1), and all other things being equal, one
can observe that the quantities5 measures given in (14), (15) and (16), allow to

5 Notice that S and µ are symmetric in our context. In the case of contui(o
i)

for example, the non-symmetric formulation would be:
P

i′:oi′∈ui
(Sii′ − µii′) +P

i′:oi′∈ui
(Si′i − µi′i)− (Sii − µii).



decide whether object oi should: stay in its current cluster; be transferred into
another cluster; or generate a new cluster.

Regarding (15), let contul∗ (oi) be the maximum contribution of oi to an
existing cluster (distinct from its current cluster). Then, in order to maximize
the objective function (1), one can observe that the algorithm should:
• create a new cluster if cont{oi}(oi) is greater than contui

(oi) and contul∗ (oi),
• transfer oi to ul∗ if contul∗ (oi) is greater than contui

(oi) and cont{oi}(oi),
• do nothing in all remaining cases.
Given this basic operation, the algorithm processes all objects and continue until
a stopping criterion is full-filled. Typically, we fix a maximal number of iterations
over all objects (denoted nbitr in the following).

Since we improve the clustering function value at each operation, this algo-
rithm converges to a local optimum.

In order to have an efficient implementation of the algorithm, we need to
compute the contribution quantities (14) and (15) efficiently. In the following,
we start by discussing the computation of the central tendencies µii′ . In a second
time, we present an efficient way for computing the contribution quantities (14)
and (15) using prototypes.

According to Table 1, we need to compute the following statistics to deter-
mine µii′ : the (N×1) vectors of general terms S+

i. and N+
i. and/or the scalars S+

..

and N+
.. . All these statistics will be referred as the “components of µ”. They are

computed before applying the clustering heuristic and are considered as inputs
of the algorithm. The computation cost of these statistics is O(N2 × P ). How-
ever, we only need one iteration to calculate them. Moreover, we can compute
these different vectors incrementally.

Next, if we consider the formulation of the contributions given in (14) and
(15) in terms of S, the computation cost of the algorithm is of order O(N2×P ×
nbitr). When N is high, this implementation is costly. Hopefully, in our context,
we can reduce the complexity cost of these quantities. Let us recall that, we are
given the feature matrix T of size (N ×P ) as input. Furthermore, let us assume
that the space dimension is much lower6 than the number of objects, P << N .
Then, since S = T ·T ′, we can use the linearity properties of the dot products in
order to quickly compute the contributions (14) and (15) by using prototypes.
First, one can observe that:∑

i′:oi′∈ul

Sii′ =
∑

i′:oi′∈ul

〈oi, oi′〉 = 〈oi, hl〉 where hl =
∑

i′:oi′∈ul

oi′ . (17)

hl is the non-weighted mean vector of size (P × 1) representing the cluster ul.
Hence, using hl; l = 1, . . . , q, as prototypes allows to reduce the computation
cost of

∑
i′:oi′∈ul

Sii′ from O(#ul×P ) to O(P ). Second, the computation of the
aggregated central tendencies measures,

∑
i′:oi′∈ul

µii′ , can also be reduced by

6 For high-dimensional space we can assume a pre-processing step that reduces the
dimension of the feature space.



Table 2. Clustering functions and aggregated central tendency measures of the con-
tribution of object oi to a cluster

Clus. func. Aggregated central tendency measures

B+(S, X)
P

i′:oi′∈ul
µB+

ii′ = #ul
S+

i.

N+
i

+ νl −#ul
S+

..
N2

E+(S, X)
P

i′:oi′∈ul
µE+

ii′ = #ul
S+

..
N2

J+(S, X)
P

i′:oi′∈ul
µJ+

ii′ = 1
2

„
#ul

S+
i.

N+
i

+ νl

«

keeping up to date the vector ν of size (q × 1) of general term:

νl =
∑

i′:oi′∈ul

S+
i′.

N+
i′.

. (18)

Using ν, we can reduce the computation cost of
∑

i′:oi′∈ul

S+
i′.

N+
i′.

, that is involved

in the calculation of
∑

i′:oi′∈ul
µii′ , from O(#ul) to O(1). Accordingly, we give

in Table 2, the aggregated central tendency measures of the contribution of oi

to a cluster ul, for the different clustering functions.
To sum up, if we pre-compute the components of µ and use the prototypes

hl; l = 1, . . . , q, and ν then we can reduce the computation cost of the clustering
algorithm to O(N × q × P × nbitr). In the meantime, the memory cost is kept
to O(N × P ). These results are quite satisfying as they make the computation
cost and memory cost of such an algorithm comparable to the popular k-means
method with respect to the number of objects to be clustered. We finally give in
Algorithm 1, the pseudo-code of the proposed clustering algorithm.

3.2 Setting the scanning order of objects

One important issue related to Algorithm 1 is its dependency regarding the scan-
ning order of the objects to cluster. To tackle this problem we propose to use
one of the component of the central tendency µ that we have introduced before-
hand. More precisely, we propose to scan the objects according to the increasing
order of (N+

1. , . . . , N
+
N.). For object oi, N+

i. represents the number of objects with
which it has a positive similarity (assuming centered data). Accordingly, we first
process the less positively connected objects. This approach can be seen as a
strategy for finding small and stable clusters rapidly. To some extent, it also can
be viewed as a way for eliminating noise. Indeed, if we choose the decreasing
order, the most positively connected objects will be processed first and they will
bring in their clusters noisy objects.

4 Experiments

In this section, we introduce an experimental protocol that aims to compare
different clustering techniques. This protocol takes into account four different



Algorithm 1 Transfer based heuristic
Require: nbitr = number of iterations; T = the feature matrix; µ = the central tendency compo-

nents.
Take the first object oi as the first element of the first cluster u1:
q ← 1 where q is the current number of cluster
Update h1 and ν1
for itr = 1 to nbitr do

for i = 1 to N do
if oi hasn’t been assigned a cluster yet then

Set contui
(oi)← −∞ and compute cont{oi}(o

i) using (16)

else
Compute contui

(oi) using (14), (17), Table 2 and compute cont{oi}(o
i) using (16)

end if
for ul in the set of already constituted clusters do

Compute contul
(oi) using (15), (17), Table 2

end for
Find ul∗ the cluster which has the highest contribution with object oi

if cont{oi}(o
i) > contul∗ (oi) and cont{oi}(o

i) > contui
(oi) then

Create a new cluster ul′ whose first element is oi:
q ← q + 1

Update hl′ and νl′ and update hi and νi

else
if contul∗ (oi) > cont{oi}(o

i) and contul∗ (oi) > contui
(oi) then

Transfer object oi to cluster ul∗ :

Update hl∗ and νl∗ and update hi and νi

if the cluster ui where was taken oi is empty then
q ← q − 1

end if
end if

end if
end for

end for

evaluation criteria. The latter can be seen as four different “point of views”
when ranking the clustering techniques. Therefore, we use an aggregation rule
for combining the different rankings into one global ranking. In our experiments,
we take the k-means algorithm as the baseline. We compare the results provided
by the latter to the ones given by the clustering heuristic defined in Algorithm
1 and associated to the clustering functions mentioned in Table 1. We used
fifteen data-sets of the UCI Machine Learning repository [20]. The results that
we obtained show improvements over the k-means procedure.

4.1 Experimental protocol

We propose to use four evaluation criteria defined in the literature for assessing
the clustering algorithms’ results. Usually, only one or two assessment coefficients
are used. In this paper, we argue that the more evaluation criteria we use in an
experimental protocol, the more robust the conclusions we can draw out from
the latter.

We assume that for a given data-set, we have at our disposal, the true label
of all objects. Accordingly, we denote by V = {v1, . . . , vk} the true partition of
the data-set. In that case, vm;m = 1, . . . , k, is called a class.

Then, the evaluation criteria we propose to use are the following ones: the
entropy measure [4], the Jaccard index [21, 22], the adjusted Rand Index [23]



and the Janson-Vegelius coefficient [24, 15, 22]. They are formally defined below
where X and C are the respective relational matrices (see subsection 2.1) of U
and V :

Ent(U, V ) =
q∑

l=1

#ul

N

(
−1

log(k)

(
k∑

m=1

#(ul ∩ vm)
#ul

log(
#(ul ∩ vm)

#ul
)

))
.

Jac(X, C) =

∑N
i,i′=1 Cii′Xii′ −N∑N

i,i′=1 (Cii′ + Xii′ − Cii′Xii′)−N
.

AR(X, C) =
N2
∑N

i,i′=1 Cii′Xii′ −
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.
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) (
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q

)
√∑N

i,i′=1

(
Cii′ − 1

k

)∑N
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(
Xii′ − 1

q

) .

Each of these four coefficients allows to rank the different clustering functions.
Except for the entropy measure, the higher the score, the better the clustering
output U . Since we want to use several data-sets in the experiments, we have
as many rankings as pairs in (evaluation criteria × data-sets). Consequently, we
need to combine all these rankings. To this end, we propose to use Borda’s rank
aggregation rule. In that case, let assume that we need to aggregate r rankings
of c clustering techniques’ result. Then, for each ranking, Borda’s rule consists
in scoring the best result with c − 1, the second one with c − 2 and so on until
the last one which has a null score. Then, the final ranking of the clustering
techniques is obtained by summing the r different scores distributions. The best
method is the one which has the highest aggregated score.

As for each clustering method, we have to aggregate rankings with respect to
two dimensions (evaluation criteria × data-sets), we apply the previous aggrega-
tion method in a two-step framework. Given a data-set, we start by aggregating
the ranks provided by the different evaluation criteria. Thus, for each data-set,
we obtain a first aggregated ranking of the clustering techniques. Then, we ag-
gregate these consolidated rankings given by each data-set which are now seen
as criteria. This second aggregated score distribution provides us with the global
ranking that allows to compare the clustering techniques from a global viewpoint.

4.2 Experiments settings

We report in Table 3, the description of the fifteen data-sets of the UCI Machine
Learning repository [20], that we included in our experiments. These data-sets
concern several domains with distinct numbers of objects, features and classes.
Our aim is to have a global evaluation of the introduced cluster analysis models
rather than a specific evaluation restricted to a certain kind of data-sets. For each
data-set we centered7 and standardized the feature matrix. We also normalized
7 Following the comments given in subsection 2.3.



Table 3. Data-sets description

Name iris sonar glass ecoli liv- ionos wdbc synt- veh- yeast mfeat img- abalo pag- land
dis cont silh -fou seg blo sat

Nb. obj. 150 208 214 336 345 351 569 600 846 1484 2000 2310 4177 5473 6435
Nb. feat. 4 60 10 7 6 34 32 60 18 8 76 18 8 10 36
Nb. clas. 3 2 6 8 2 2 2 6 4 8 10 7 28 5 6

each object’s vector in order to have a unit norm. The resulting feature matrix
T is the input of all clustering techniques. Concerning the clustering functions
we have introduced in this paper, this amounts to take the Gram matrix S as
the cosine similarity matrix between centered vectors. Besides, when applying
Algorithm 1, we set nbitr = 10.

We take the k-means algorithm as the baseline since this technique is pretty
closed in spirit to our proposal (transfer operations) and since it was shown that
it provides relevant results compared to other clustering techniques [25]. In our
experiments, we set k as the number of true classes for the k-means algorithm
while keeping free this parameter for Algorithm 1. Moreover, for each data-set,
we launched 5 different runs with random seeds for the k-means method and
took the mean average of the evaluation criteria measures.

4.3 Experiments results and discussions

We report in Table 4, the experiments results (in %) we obtained for each triple
(evaluation measure × data-set × clustering algorithms). For each pair (evalua-
tion measure × data-sets) we put in bold the score of the best method. We also
give in the bottom lines of Table 4, the number of clusters found by the differ-
ent methods. According to Table 4, one general comment we can make is that
the evaluation measures do not necessarily agree about their rankings. Given a
data-set, it happens that one clustering method is ranked first for one evaluation
measure and last for another one. Besides, some assessment measures are quite
dependent on the number of clusters found. This is typically the case for the
entropy measure (better for larger number of clusters) and the Jaccard index
(better for smaller number of clusters). These observations justify our approach
that supports the use of several evaluation criteria in order to have many “opin-
ions”. Accordingly, if we apply the experimental protocol we have described in
subsection 4.1, we find the following global ranking: J+ � E+ � B+ ∼ k-means.
As we can see, cluster analysis based on the central tendency deviation principle
can outperform the k-means technique. Besides, the Jordan criterion J+ seems
to be the most consensual clustering approach. Interestingly, it is not the one
that was most often ranked first. This indicates that the J+ objective function
is quite robust compared to the other approaches and with respect to the wide
variety of data-sets we tested. However, it is worth noticing that regarding higher
dimensional data-sets such as synt-cont or mfeat-fou, the B+ function seems to
perform better. Regarding the number of clusters found, E+ gives, on average,
the highest number of clusters; next comes B+ (except for the iris and abalone
data-sets); and then J+. The number of clusters found using our proposals are



Table 4. Results according to the four evaluation criteria and number of clusters found.

Ent iris sonar glass ecoli liv- ionos wdbc synt- veh- yeast mfeat img- abalo pag- land
dis cont silh -fou seg blo sat

B+ 35.7 80.5 50.4 26.7 94.1 45.1 17.4 17.0 80.0 53.1 44.6 44.1 61.8 21.5 38.6

E+ 30.6 75.5 43.4 23.0 94.7 33.6 18.1 25.8 78.8 52.1 42.5 49.8 64.5 16.0 37.4

J+ 34.1 72.3 45.1 23.6 94.6 36.6 18.8 27.3 82.8 52.4 43.8 41.4 66.0 17.9 36.5
k-m 36.6 97.9 55.4 24.3 98.0 82.1 43.8 26.8 89.4 50.3 51.0 43.2 59.3 20.1 36.8

Jac

B+ 36.7 12.4 22.7 32.1 11.8 23.8 28.5 57.4 14.4 16.2 31.6 36.0 10.7 23.2 48.7

E+ 54.3 12.2 28.1 52.8 13.2 23.9 34.5 43.0 17.1 16.2 26.1 31.2 11.5 24.9 44.1

J+ 42.0 10.8 27.8 48.6 11.4 24.7 30.7 44.5 17.0 16.2 30.1 38.4 11.6 23.5 47.3
k-m 57.1 36.4 27.7 37.6 44.0 42.9 73.6 51.8 18.3 19.4 27.6 39.2 5.5 39.9 44.5

AR

B+ 36.4 4.1 22.3 37.2 1.0 18.0 26.2 67.7 8.0 14.3 42.6 44.9 7.0 3.6 57.3

E+ 57.8 3.0 26.2 59.6 0.1 18.5 32.2 51.0 8.8 14.2 35.7 37.5 5.9 7.4 51.8

J+ 45.4 3.9 26.7 55.4 0.8 21.1 28.5 52.8 8.9 14.3 40.7 47.8 6.1 5.6 55.5
k-m 58.7 1.9 22.1 43.6 -0.6 17.0 66.8 61.2 7.9 18.0 36.8 47.6 4.9 10.7 53.0

JV

B+ 33.2 6.3 24.1 41.1 1.8 26.5 37.5 67.5 8.2 18.1 42.3 44.3 15.7 26.2 57.0

E+ 55.0 4.5 31.8 64.5 0.6 27.3 42.0 46.3 8.3 20.3 34.9 36.2 18.0 40.0 49.6

J+ 46.5 6.3 31.0 60.3 1.5 31.8 39.5 50.4 8.5 19.6 39.9 47.0 17.3 32.2 54.2
k-m 58.7 1.9 27.2 46.6 0.8 17.1 67.0 61.6 7.9 21.5 36.9 48.2 6.2 37.6 53.1

Nb. clus.

B+ 24 11 7 9 10 13 8 7 9 12 16 11 146 9 10

E+ 7 22 15 15 13 48 21 66 21 19 42 16 69 20 49

J+ 6 17 9 12 11 17 15 14 13 16 27 11 19 12 16
k-m 3 2 6 8 2 2 2 6 4 8 10 7 28 5 6

distinct from the original number of classes. For most of the data-sets, the for-
mer is greater than the latter. This suggests that classes can contain several
homogeneous subclasses that is interesting to find out in a knowledge discovery
context.

5 Conclusion and future work

We have introduced three clustering functions for numerical data based on the
central tendency deviation concept. These partitioning criteria can be seen as
extensions of maximal association measures that were defined for clustering cat-
egorical data. We have presented an algorithm that approximately solves the
clustering problems we have proposed. Moreover, we have defined a robust ex-
perimental protocol that involves four different assessment measures and an
aggregation rule. We tested our clustering functions using fifteen data-sets and
have showed that our proposals can perform better than the k-means algorithm.

In our future work, we intend to further analyze the geometrical properties
of the clustering functions we have introduced in order to potentially apply them
in more specific contexts such as high dimensional data or clusters with different
shapes for example.
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