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Abstract—This paper presents an impact assessment for the 

imputation of missing data. The data set used is HIV 

Seroprevalence data from an antenatal clinic study survey 

performed in 2001. Data imputation is performed through five 

methods: Random Forests, Autoassociative Neural Networks 

with Genetic Algorithms, Autoassociative Neuro-Fuzzy 

configurations, and two Random Forest and Neural Network 

based hybrids. Results indicate that Random Forests are 

superior in imputing missing data in terms both of accuracy 

and of computation time, with accuracy increases of up to 

32% on average for certain variables when compared with 

autoassociative networks. While the hybrid systems have 

significant promise, they are hindered by their Neural 

Network components. The imputed data is used to test for 

impact in three ways: through statistical analysis, HIV status 

classification and through probability prediction with Logistic 

Regression. Results indicate that these methods are fairly 

immune to imputed data, and that the impact is not highly 

significant, with linear correlations of 96% between HIV 

probability prediction and a set of two imputed variables 

using the logistic regression analysis. 
 
Index Terms—autoassociative, impact, imputation, missing 

data, neural networks, random forests, sensitivity. 

 
I. INTRODUCTION 

MISSING data are a common difficulty encountered in 

many real-world situations and studies, and creates 

difficulties with data analysis, study and visualization [1], 

[2]. The missing information also reduces insight into the 

data, and the underlying cause for the fact that data are 

missing may make the data of particular interest. 

Furthermore, decision policies made by a decision making 
system often cannot exact a decision without all the 

information at hand. For this reason, it is important to find 

effective and viable methods of imputing data, and 

furthermore, the effect of this imputation should be 

considered such that insight is gained into the validity of 

decisions made by such decision making systems. The 

problem is assessed in the context of a real-world data set 

taken from an HIV sero-prevalence survey performed in 

South Africa in 2001 [3]. 

This paper evaluates the concept, classification, problem 

and treatment of missing data. Background into the various 

methods and paradigms used in the paper are then 
considered, followed by a description into the 

implementation of these concepts. The data set is 

considered, and thereafter feature selection on the data is 

described. Comparisons are drawn in the paradigms used, 

and the impact and sensitivity analysis is performed. 

Finally, a discussion is presented and conclusions are 

drawn. 

 

I. MISSING DATA 

Missing data are a problem inherent and common in data 
collection, especially when dealing with large, real-world 

data sets. Missing data are a problem since statistical 

methods have difficulty in performing when data are 

unknown. Studies have highlighted the need to research 

decision support systems when key information is missing 

or inaccessible [4]. The effect of missing data on such 

decision support systems is marked, and it is shown that 

results are degraded by simply assigning an arbitrary value 

to the missing data elements. 

In the context of surveys, missing data may result for a 

number of reasons. Incomplete variable collection from 

subjects, non-response from subjects declining to provide 
information, poorly defined surveys, or data being removed 

for reasons such as confidentiality are some of the 

explanations for missing data [1], [2]. 

 

A. Categorization of Missing Data and the Missing Data 

Mechanism 

Missing data can be categorized based on the pattern of 

missingness and the missingness mechanism. The methods 

with which the missing data are dealt are dependent on the 

category into which the data fall. Three broad categories for 

pattern missingness are defined: monotone missingness, file 
matching, and general missingness [5], [6]. If a set of 

variables for a given instance are
kyy ;...;1

, monotone 

missingness occurs if when a missing value yj occurs, the 

variables can be ordered such that
kj yy ;...;1+

are also 

missing. The pattern of file matching occurs when two 

variables are never jointly observed. Arbitrary missingness 

is a missingness pattern which occurs when neither of the 

former two patterns applies. 

Missing data are often classified into one of three 

mechanisms, as defined by Little and Rubin [5]. The 

mechanisms are listed as follows in order from least to most 

dependent on other information. 
1) Missing Completely At Random (MCAR) arises if the 

probability of a missing value is unrelated to the 

variable value itself or any other variable in the data 

set. 



 

2) Missing At Random (MAR) arises if the probability of 

missing data of a variable could depend on other 

variables in the data set, but not on the variable’s own 

value. 

3) Non ignorable case in which the probability of missing 
data is related to the value of the variable even if other 

variables are known/controlled. 
In the MCAR case, data cannot be predicted using any 
information in the set, known or unknown. For the MAR 

mechanism, there is a correlation between the missing data 

and the observed data, but not necessarily on the value of 

the missing data [7]. 
 

B. Dealing with Missing Data 

A number of strategies have been devised for dealing 

with missing data. The simplest means is discarding the 

instances in which missing data occur (a complete-case 

method), which is both inefficient and leads to potentially 

biased conclusions and observations. This is also not 

practical if a large proportion of data are missing. This 
method leads to information waste as information is 

discarded [1]. Despite this, the method is used commonly in 

practice [2]. Other techniques include available-case 

procedures, weighting procedures and imputation-based 

procedures [7]. The latter is discussed further here, since 

imputation methods can be applied to the MCAR and MAR 

cases [8]. 

Imputation techniques involve predicting the values of 

the data which are missing. Two categories of techniques 

exist, model-based techniques and non-model based 

techniques. Non-model based approaches include mean 
imputation and hot-deck imputation. These techniques have 

been said to decrease the variance estimates in statistical 

procedures [7]. Furthermore, such techniques may result in 

standard errors and bias on results. Model-based approaches 

include regression-based techniques, Expectation 

Maximization [9] and Multiple Imputation [8]. Neural 

network based approaches have been successfully 

implemented a number of times [1], [9], [10]. 
 

III. BACKGROUND 

A. Random Forests 

Ensemble or Network Committees are algorithms in 
machine learning which combine individual paradigms to 

form combinations which are often more accurate than the 

individual classifier alone [11]. In the classification case, 

overall predictions can be obtained from such a network 

using a weighted or an un-weighted voting system; in the 

regression case, overall predictions can be chosen through 

an averaging technique. Obtaining a general understanding 

of why such methods succeed is an active area of research 

[11], [12]. 

A Decision Tree is a tree with nodes which contain 

information corresponding to attributes in the input vectors. 
This information is used to follow a decision path for a 

given set of input attributes, depending on either 

thresholding nodes (as in the case of a continuous variable) 

or categorical nodes (as in the case of categorical data) [13]. 

Even though decision trees have appeal for being straight-

forward and fast, they are prone to being overly adapted to 

the training data or to a loss in accuracy for generalization 

through tree pruning [14]. 

“Random Forest” (RF) is an algorithm which generalizes 

ensembles of Decision Trees [15] through bagging 
(Bootstrap Aggregation) which combines multiple random 

predictors in order to aggregate predictions [16]. They 

allow for complexity without over-generalizing the training 

data [14]. RF can be used for both regression and 

classification, and has been used with success in the context 

of missing data [13]. Random Forests were first introduced 

in 2000 by Breiman, and “Random Forests” is a trademark 

of Cutler and Breiman [11]. Each tree in the RF is grown 

according to algorithm 1, and each tree forms an 

independent member of the forest [13]. 
 

 
 

If, as stated in [16], [13], Θ is the possible variables, and 

),( Θxh denotes a tree grown using Θ to classify a 

vector x , then a RF can be defined as 

 

,,...,2,1)},,({ Kkxhf =Θ=   (1) 
 

in which Θ⊆Θ k
. Thus, each tree in the forest contains an 

individually selected subset of the overall collection of 

attributes. 

The error rate of the RF is shown to be dependent on two 

properties [15]: 
 

• The correlation between any two trees in the forest 

• The strength of an individual tree in the forest 
 

The correlation refers to how similar one tree is to another, 

and increasing the correlation between trees increases the 

Forest Error Rate (FER). The strength refers to how strong 

a classifier the tree is, and increasing the strength of 

individual trees decreases the FER. The parameter m is 

directly proportional both to correlation and to strength, so 

there is an optimal range of m at which the correlation is 

minimized and the strength is maximized. 
Sample with replacement results in some of the training 

set not being used in training (approximately a third of the 

training data) [15]. These data are referred to as “out-of-
bag” (oob) data that are used to get an unbiased estimate of 

the performance of the RF, which is unlike cross-validation 



 

which may be biased [17]. Furthermore, oob data are used 

in predicting variable importance, which is discussed 

further in section VI. Information regarding strength and 

correlation can also be obtained from the oob methods, 

allowing one to gain insight into the forest [17]. The 

proximity is an NN × matrix obtained by running all the 

data down the tree, and if two cases are in the same 

terminal node, their proximity is increased by one [15]. 

This is a useful property which can be used in locating 

outliers or estimating missing data. 

RFs have been an area of active research in the last few 

years for their numerous advantageous features and high 
success [11]. RFs are said to work fast, have excellent 

accuracy offering improvements over single classification 

and regression trees (CART), be impervious to over-fitting 

the data, run efficiently on thousands variable numbers (no 

dimensionality problems), give an unbiased self-assessment 

and variable importance assessment, and have effective 

methods for missing data estimation and for outlier location 

[11], [15]. These properties make the RF algorithm a 

logical candidate for this missing data study. 
 

B. Other Paradigms 
For comparative purposes, other learning paradigms and 

hybrid networks are considered, consisting of elements such 

as Neuro-Fuzzy (NF) Networks, Multilayer Perceptron 

(MLP) Neural Networks (NN), and Genetic Algorithms 

(GA). These are generally connected in Autoassociative 

configurations [10], and the details are discussed further in 

section IV. While these are introduced briefly here, the 

interested reader is encouraged to visit the relevant 

references for more in-depth detail. 
1) Multilayer Perceptron Neural Network: MLPs are 

neural networks which consist of an interconnection of the 

processing elements, generally placed in three classes: the 
input layer, the output layer and the hidden layer [18]. A 

process of supervised learning allows the weights of the 

network to be adjusted until a satisfactory error is obtained 

between the output and target comparison, yielding a feed-

forward network capable of modeling the complex input 

output relationships [19]. The Neural Network architecture 

consists of the selection of the number of nodes (or 

neurones) in the hidden layer; how many inputs and outputs 

there are; and the type of activation function used. A 

number of different optimization strategies are available in 

training the network, such as conjugate gradient descent 
[18]. 

2) Neuro-Fuzzy: A fuzzy inference system (FIS) can be 

developed if we have knowledge expressible in terms of 

linguistic rules. Fuzzy systems involve interpretation of if-

then rules through a process of fuzzification (resolving the 

antecendent to a degree of membership), fuzzy operation 

and implication (the consequent assigns a fuzzy set to the 

output) [20]. Fuzzy inference is the entire process of 

mapping from a given input to a given output using fuzzy 

logic. While a fuzzy system makes use of natural language, 

a NN can be used if we have data for training. Drawbacks 

of each of the systems are seen to be complementary, and 

thus the integration of the two systems is logical. The FIS 

offers an advantage in terms of learning capability, while 

the extraction and learning of rules is a problem well suited 

to ANNs [21]. 

Neuro-Fuzzy systems consist of rule sets and inference 

systems combined with or governed by a connectionist 
structure for optimisation and adaptation to given data. 

Adaptive Neuro Fuzzy Inference System (ANFIS) 

implements a Takagi Sugeno (TS) FIS and consists of five 

layers, the first of which is for fuzzification of the input 

variables [21]. The second layer employs a T-norms 

operation which computes the rules of the antecedent. The 

third layer normalizes rule strength, while the fourth layer 

determines the consequent of the rule. It is important to 

note that in TS FIS, the consequent part of the rule is 

mathematically zero order or first order [20]. The fifth layer 

is the output layer, which computes the weighted global 

output as a combination of all the incoming information. 
The schematic architecture of this system is presented in 

[22], [23]. The system can employ grid partitioning or 

subtractive clustering techniques [20]. In the learning 

process, the parameters associated with the membership 

functions change – this change is an optimisation 

essentially facilitated by a gradient vector [23]. Using a 

combination of back-propagation and with the use of a least 

squares method [20], the fuzzy inference system is able to 

learn from the model data. A TS system is suited for 

modelling of non-linear systems by interpolating multiple 

linear models [20]. 
3) Genetic Algorithm: Biologically motivated modeling 

techniques have led to the development of stochastic 

optimization techniques, which are useful in control 

applications [24]. Genetic Algorithms (GA) are essentially 

optimisation search methods that are broadly used to solve 

optimisation problems, especially with large, difficult to 

interpret sets of data [24]. Genetic algorithms employ their 

heuristic search by modeling techniques of natural 

evolution including: crossover; inheritance; mutation; and 

selection [25]. 

Through a process of random search, genetic algorithms 

exploit the properties of biological evolution in order to 
solve optimisation problems [25]. A global optimum can be 

found through the process of modelling natural selection: 

the convergence exists due to the fitness of an individual in 

a given population dominating over another individual [26]. 

Each individual represents an element in the search space 

which may be an appropriate solution to the problem [25]. 

The individuals thereafter go through a process of 

evolution, and survival of the fittest ensues. 

Initially, individuals are selected in a population at 

random (within the range of appropriate values for which 

an optimum will be found) [24]. Through processes of 
crossover (in which a model of genetic recombination is 

utilised); inheritance; mutation and selection, individuals 

compete for reproductive rights and resources [26]. The 

more dominant genes (or good genes) will propagate 

through the species – and thus there is eventual 

convergence. 



 

Two parents may produce offspring which are better 

suited to the environment than either of the parents. 

Through this process, offspring become better adapted to 

the environment through generations of selection, since 

inferior offspring are eliminated through evaluation of their 

fitness (their inability to obtain resources and inability to 
breed) [25]. 

4) Autoassociative Networks: Autoassociative networks 

are system models in which the model is trained to recall 

the input. This means that the number of outputs is equal to 

the number of inputs [10]. The Autoassociative Neural 

Network Encoder (or autoencoder) usually has a smaller 

number of nodes in the hidden layer than the number of 

inputs (or outputs). This creates what is referred to as a 

bottleneck. The autoencoder network can detect missing 

datum elements }{ ux by forward propagating the known 

elements and a predicted value for the unknown elements, 

and minimising the overall error between the input and the 

output. The error is generally quantified, and minimised, 

using an intelligent search method, such as a genetic 

algorithm, as in [10] and [9]. The error can be evaluated as 

follows: 
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in which
ux indicates the unknown value(s), 

kx indicates 

the known value(s), and the function essentially defines the 

input-output relationship of the neural network with 

weights w . 

 
IV. METHODOLOGY AND SYSTEM TOPOLOGIES 

A. General Systems 

1) Random Forest (RF): A number of different methods 

and system topologies are investigated. The main topology 

investigated is a Random Forest (RF). The RFs used 

throughout the analysis generally have 70 trees, the 

parameter for minimum size of terminal nodes set at 7, and 

have the variables to be randomly sampled at each split (m) 

set to 3 (since there are 14 inputs (M), this is a reasonable 

number since it is required to be much less than the number 

of inputs [17]). This combination was determined 
experimentally to be the optimal set of parameters through 

maximisation of the number of hits (i.e. the number of 

correct predictions). Regression RFs are used when 

predicting ordinal variables, which are encoded to be 

continuous values ranging from 0 - 1, and Classification 

RFs when predicting categorical variables, such as HIV 

Status (as discussed in table I). RF was implemented 

through a MATLAB interface [27]. 
Since each RF makes a single prediction, an attempt was 

made to form a RF to predict each of the fourteen variables, 

and combine this with a GA to form a type of RF based 

autoassociative network. A similar procedure is followed 
for the Neuro-Fuzzy system, and discussed in section IV-

A3. This method did not yield favourable results. However, 

the fourteen forests were used to impute different missing 

variables, depending on which was missing. In order to 

achieve this, the methodology presented in figure 1 is 

employed. 
2) Autoassociative Neural Network: The Autoassociative 

Neural Network (implemented in MATLAB using the 

Netlab toolbox [28]) combined with the GA (implemented 
using the GAOT toolbox [29]) (AANN-GA) is set up with a 

bottleneck in the number of hidden nodes. For the 14 

input/output systems, the optimal number of hidden nodes, 

determined experimentally, was set to 11. This allows the 

data to be generalized while rejecting redundancy. The 

number of training cycles was determined to be 400, the 

minimum point of the validation curve. A linear activation 

function was used with scaled-conjugate descent training. 

 

 
Fig. 1. Flow chart indicating concept used in imputing multiple missing 

variables with regression and classification RFs 
 

3) Autoassociative Adaptive Neuro-Fuzzy Inference 
System: The Autoassociative Neuro-Fuzzy System with a 

GA (AANFGA) implements a network of 14 ANFIS 

networks. Since each network predicts a single value, a 

system of 14 is set up in order to minimise the error 

between the input and the output in an autoassociative 

configuration. Each of the ANFIS systems uses subtractive 

clustering to train, with a training radius of 0.2, 20 training 

epochs, and a stopping criterion of 0.01. 

 

B. Hybrid Systems 

1) Random Forest & Autoassociative Neural Network 

Hybrid: In this topology, the RF is placed in ’cascade’ with 
an AANN-GA, yielding what is referred to in this paper as 

the RF-AANN-GA. The RF is used to predict a set of 

missing variables in an experiment set, and the predictions 

are recorded. These predictions are then used as limits for 

the search space of the GA, in the AANN-GA system. 

Since the variable range is 0 - 1, a tolerance of 10 % is 

placed on the variable (i.e. 0.05 is added and subtracted 

from the predicted value) such that the GA has a slightly 

broader search space. This corresponds approximately to a 

four year interval for age (for example). The principle is 

that by limiting the search space, the AANN-GA will be 
improved in performance. A similar principle is 

successfully applied in [1], in which C4.5 Decision Trees 

are used rather than the RF to limit the search space. The 

results obtained by [1] for the C4.5 AANNGA are also 

compared to the presented systems. The AANNGA and RF 



 

have the same structures and parameters as the 

aforementioned standalone optimised structures. 

2) Autoassociative Neural Network & Random Forest 

Hybrid: In this topology, the AANN-GA system is placed 

in cascade with a RF, yielding what is referred to in this 

paper as the AANN-GA-RF. The principle behind the 
operation here is that the RF learns the underlying problems 

in the AANN-GA system and compensates for them. In 

order to achieve this hybrid system, the data are divided 

into four sets: Training; Validation; Testing and 

Experimental. The training and validation data are used to 

train and obtain the best model for the AANN-GA using 

early stopping [30]. Thereafter, data are removed from the 

testing as well as the experiment set to yield artificially 

incomplete sets, and these incomplete sets are propagated 

through the AANN-GA to obtain missing data predictions 

from the AANN-GA. The testing data and imputed values 

are made to form a complete set. This testing set is then 
used as a training set for the RF, with the target being the 

original, correct data. In this way, the RF is realised to track 

missing data using the error from the AANN-GA as a 

reference, and compensate for it. The experimental set is 

then used to test the RF. 
 

V. DATA EVALUATION AND PREPROCESSING 

Preprocessing of data is crucial in order for the data to be 

of appropriate form for the machine learning paradigms. 

The data set used is based on a National HIV and Syphilis 

Sero-Prevalence Survey of Women attending antenatal 
clinics in South Africa, and is taken from the study 

performed in 2001 [3]. The data consist of survey 

information from 16 743 pregnant women. The variables 

contained in the data set are outlined in table I. 
 

 
 

Note that the data range given is for once the variables have 

been processed, as is discussed below. Gravidity refers to 

the number of times a woman has been pregnant, and parity 

the number of times the woman has given birth. Father’s 

Age refers to the age of the father responsible for the 

current pregnancy. Education is specified as 0 (no 

education); 1 - 12 (for grades 1 through to 12); and 13 

(tertiary education). Province categorises a person in to one 

of the 9 South African provinces, and race categorises a 

person in to one of 6 race categories. 

Since we are dealing with a real-world study, involving 

missing data as discussed in section II, the data contain 

inherent errors. In order to yield a complete set, the data are 
first processed according to the following logical rules, and 

any datum satisfying the following is labeled as “missing”: 
 

• Data cannot be negative 

• Age of female must be between 12 to 50 

• Age of male must be greater than 12 

• Gravidity cannot be less than parity 

• The education level cannot exceed 13 

• All fields must be valid as specified. 
 

The data were normalised, and binary encoding was applied 

to the categorical data of race and province, since these 
variables are not ordinal, and this may lead to problems for 

the learning paradigms [31]. 
 

VI. FEATURE SELECTION AND MULTIPLE MISSING VALUES 

Features of the data can be selected for by the RF 

algorithm. The RF algorithm provides estimates of the 

importance of each variable in the data set in predicting a 

given output [15]. This is performed with the oob data. On 

predicting for variables in the given data set, it is found, as 

expected, that variables for which effective estimates are 

obtained on missing data have high correlations with other 
variables in the set. 

If we are to test the impact of two or more missing 

variables, there are a large number of permutations that 

require testing. 
 

 
Fig. 2. Graph indicating variable importance for imputing the Age variable 
 

However, feature selection allows us to test 
combinations of variables which have been selected 

according to their mutual correlations. This allows for a 

more meaningful analysis to be performed. This analysis 

offers insight into why certain variables are certainly 

removable when predicting other certain variables, and 

offers valuable information when attempting to overcome 

the curse of dimensionality [32]. Fortunately, RF is not 

prone to the curse of dimensionality, but ANFIS 

unfortunately is. This analysis explains the reason for this, 

and it is to be noted that this is the reason that fewer tests 



 

are done on multiple missing variables. This knowledge is 

applied in the impact assessment of section VIII. 
 

 
 

An example of the feature selection output in terms of 

variable importance is presented for the age variable in 

figure 2. Table II presents the notable importance in the 
other variables for each variable examined. The predictions 

are generally logically sensible, for example, gravidity 

should be highly correlated with parity, and age with the 

father’s age should generally be correlated. However, the 

importance of parity in predicting province (location) seems 

interesting. 
 

VII. COMPARISON AND RESULTS 

Table III indicates the results on testing the missing data 

prediction ability of the various systems. The results are 

found by predicting missing data of the indicated variables, 

and calculating the percentage of values accurately 
predicted within the specified ranges. MAR and MCAR are 

not distinguished, and the Non-Ignorable case is neglected 

in the analysis. Note that the C4.5 AANN-GA results are 

obtained for the appropriate ranges from [1]. The ranges are 

indicated in the table (for example, age prediction is 

assessed for prediction percentages within 1, 2, 4, 6 and 10 

years). 

Testing is performed to determine the best of the 

techniques specified in section IV. It is evident from the 

result that the RF and RF hybrids outperform the other 

methods of missing data prediction. There is significant 
improvement in the RF from the commonly used AANN-

GA method, with an average percentage increase of 7.6 % 

for the indicated categories. Education prediction increases 

by an average of 31.2 % from the AANN-GA to the RF 

across the specified categories. The improvement from the 

AANN-GA to the AANN-GARF is a significant one, 

indicating that the hybrid method of section IV is working, 

but the results are comparable to the standalone RF. 

Furthermore, for the case of the RF-AANNGA it is 

observable through experimentation that narrowing the 

search bounds of the GA improves the performance. Thus, 

introducing the AANN-GA with larger search bands starts 

to degrade the performance of the hybrid, indicating that 

this hybrid’s results are suffering from problems within in 

the AANN-GA. The AANN-GA and AANF-GA perform 

relatively badly in different aspects: age prediction (for the 

AANF-GA) and education prediction (for the AANN-GA). 

The RF performs well in all respects and does not suffer 
drawbacks in either of these categories. 
 

 
 

While the hybrid methods appear to show potential, the 

computational time trade-off for the use of these methods 

(due to the need to cascade NNs with GAs) is not warranted 

for performance improvement. This is especially so in lieu 

of the relative computation time taken, as indicated in IV. It 

is to be noted that the study to obtain this table was 
performed in MATLAB, using the tools specified in section 

IV. Thus, the programming is not standardised, and this 

result should be treated as a basic evaluation. That said, it is 

to be noted that RF is generally documented as being 

relatively fast machine learning tools [11], [14], [15], [17], 

and this is clearly reflected in the table. 
 

 
 



 

 
 

The HIV status of the individual is predicted by a RF 
classifier, and the results are presented in table V. The other 

configurations were also used to predict HIV status, 

however, this is not discussed further, since the results of 

the RFs alone are used in the impact and sensitivity 

assessment of section VIII. The AANN-GA accuracy 

obtained at 64.2 % with an F-measure of 0.43. The 

classification results obtained are lower than those found in 

[10], and this is a trade-off to be discussed in the 

recommendations of section IX-B. 
 

VIII. IMPACT AND SENSITIVITY ASSESMENT 
The impact of estimating the missing data is evaluated 

within this section by evaluating three aspects: the 

statistical impact on the data, the impact on HIV 

classification, and the impact on a decision making system. 

This assessment gives an overall picture, since it offers 

insight into the effects of imputation within the data 

(statistical assessment [33]), and on the effects of 

imputation on classifiers [4], [10] and on a decision making 

system. Study variables are selected based on their mutual 

correlations, and based on the prediction performance of the 

RF predictor. Note that for each missing variable (s), two 

sets are defined, one which has variables imputed through 
RFs (Sets RFx) and one which has the variable(s) randomly 

assigned (Sets Rx). The randomly defined sets act as an 

experiment control to ensure that the imputed results 

presented are not spurious. Note that when these sets are 

used in conjunction with an HIV classifier or decision 

making system, as in sections VIII-B and VIII-C, HIV data 

is not used as an input to impute the missing data. Using the 

variable selection technique discussed in section VI, and the 

results of section VII the following sets are defined: 
 

• The original complete target data set (Set T) 

• A single imputed variable with average prediction 
performance - Age (Sets RF1A & R1A) 

• A single imputed variable with poor prediction 

performance 

• Education (Sets RF1B & R1B) (important for HIV 

prediction as per table II) 

• A single imputed variable with good prediction 

performance 

• Gravidity (Sets RF1C & R1C) 

• Two imputed variables which are of high mutual 

importance (as per table II) - Age and Father’s Age 
(Sets RF2A & R2A) 

• Three imputed variables - Age, Education, 

Father’s Age (Set RF3A & R3A) 

• Four imputed variables - Age, Education, Father’s 

Age, Gravidity (Set RF4A & R4A). 
 

Some of the evaluation techniques include the goodness 

of fit measures in terms of the KS test [33] and the 

Mahalanobis Distance (the mean distance is taken) [34]. 

These give a statistical measure of the similarity between 
the data sets, and are regarded as a good measure of the fit 

between results. The mean squared error offers a relative 

indication of the difference between data sets, and is 

calculated as 
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in which N is the entire data set, 
iT  represents the 

thi  

target value and 
iP  represents the 

thi  predicted value. 

 

A. Statistical Impact 

The statistical impact on the data is measured through a 

number of statistical measures. Missing data are imputed by 

the RF algorithm, and this creates a new set which is 

compared to the original, complete set. A control set which 

contains a randomly imputed set is created for comparison. 

This allows one to observe that the variation in values 

between the imputed values and the true set cannot be 
attributed to random factors. Tables VI, VII and VIII 

present statistical results for the variables of age, education 

and gravidity respectively. 
 

 
 

A Quantile-Quantile Plot [33] (QQ Plot) allows one to 

view the deviation in the distributions of a given variable. 

The extent of deviation from a straight line indicates 

distribution deviation. Figure 3 presents QQ Plots for the 

real set and the imputed variable and for the real set and 

randomly imputed values. Note the former plot is fairly 

linear, with the interpolated line intercepts close to the 

origin and to the coordinates (1, 1), indicating a good 



 

distribution match, whereas the latter plot is fairly non-

linear. 
 

 
 

 

 
 

B. Impact on HIV Classification 

We define for classification the categories in table IX 

[10]. From the definitions, we can define evaluation metrics 

in order to evaluate the classifiers. First, the accuracy of the 

classifier is defined [10]: 

 

FPTPFNTN

TPTN
Accuracy

+++

+
= .  (4) 

 

Sensitivity allows one to assess how well the classifier can 

recognise positive samples, and is measured as 
FNTN

TP

+

. 

Specificity measures how well the classifier recognises 

samples as negative, and is evaluated as
FNTN

TN

+

. 

Precision is a measure of the percentage of samples 

correctly specified as positive, 
FPTP

TP

+

[35]. Note that 

Recall (Re) is the same measure as Sensitivity [36]. 

The
measureF is used to assess a system when a single 

number is preferred [36], 

 

RP

RP
Fmeasure

+

××
=

2 ,   (5) 

 

where P is the precision and R is the recall. 
 

 

 
 

Fig. 3. QQ Plots of the target data set of age with the RF imputed set 

(above) and with the set with age randomly imputed (below) 
 

 
 

In order to assess the impact of imputed data on HIV 

Classification, a number of imputed data sets and data sets 

with randomly assigned values are propagated through a RF 

classifier. Tables X and XI compare these results with that 

of the classification results of the target (complete) set 

(presented in table V in a confusion matrix). 



 

 
 

 

 
 

Evident from these tables is that the classifier, though 

indicated to be of average performance from the F measure, 

shows resilience and almost immunity to the sets with 

estimated data, especially with 1 or 2 imputed variables. 

The effects of the random data sets are evident, with F 

measures dropping into the 0.2 range. This experimental 

control ensures that the variables do affect the classifier, 

and thus indicates that the experimental results are not 

spurious. 
 

C. Impact on Decision Making System 

A Logistic Regression [37] (LR) decision making system 
is designed, which, based on input, computes the 

probability that the output variable belongs to a given set. 

The output variable is specified to be HIV Status, and we 

thus obtain probability of an individual’s membership to the 

HIV Positive class or Negative class. The original set T is 

propagated through the regressor, and a set of probabilities 

that individuals are HIV positive is obtained. Thereafter, the 

sets with various imputed variables are propagated through 

the regressor, to yield a set of probabilities that individuals 

(with imputed demographics) are HIV positive. The 

probabilities resulting from the original set (T) are 

compared with the probabilities resulting from the imputed 

sets (RF1A, etc.). Results of this test are presented within 

this section. The probabilities are expressed as percentages, 

and where tests of fit are involved (e.g. the KS test) the 

relevant result data are compared with the results from the 

original set T. The results are fairly similar for the different 
single imputed variable sets, and thus results presented in 

table XII are for the statistical differences in the regressor 

outputs due to set T, and due to the sets with one, two and 

four imputed variables. 
 

 
 

Once again, the results indicated in table XII predict a 

fair amount of immunity to imputed data on the 

probabilities given by the LR analysis. The original data set 

and the set with one, two and even four imputed values do 

not significantly change the predictions of the LR. This is 

emphasized in figure 4 which indicates the QQ plot of the 
two probability distributions from the logistic regression 

analysis. First, the prediction from the logistic regression 

analysis is plotted against the prediction for the 2 imputed 

variable set. Second, the prediction from the logistic 

regression analysis is plotted against the prediction for the 4 

imputed variable set. Note that the plots are fairly linear, 

indicating high similarity between probability results from 

the LR. As the number of imputed variables increases, the 

correlation decreases. This indicates that the number of 

imputed variables does indeed have an effect on the results. 

Note that the randomly generated sets (R1A, R2A and 
R4A) indicate significant deviation on propagation through 

the LR analysis. These sets cause the variance in the data to 

increase by a significant amount. This indicates that the LR 

analysis is sensitive to the data that are tested, thus 

validating the experiment. 

 

IX. DISCUSSION 

A. Impact on Society 

Through the study of the impact of imputation of missing 

data on these types of systems, it is notable that missing 

data imputation does not significantly negatively impact on 



 

classifiers and decision-making systems. A considerable 

impact on society can be noted from the work. A decision-

based system for preliminary HIV classification in a 

healthcare or study context is invaluable. Furthermore, 

missing data which renders potentially useful information 

in a given study meaningless can, through appropriate 
imputation, be made into meaningful data. This can help 

studies of this nature to uncover the statistical trends that 

are said to be discarded through the removal of missing 

entries (in, say, a complete-case method). Therefore, 

decisions can be made with some confidence on instances 

which previously were impossible due to missing 

information. 
 

 

 
 

Fig. 4. QQ Plot of result from logistic regression probability analysis on 

HIV status for the true set (T) and the set with 2 imputed variables (R2A) 

(above); and logistic regression probability analysis on the HIV status for 

the true set (T) and the set with 4 imputed variables (R4A) (below) 
 

B. Recommendation for Future Work 

The results obtained from the AANF-GA (which 

implements ANFIS) are relatively considerably poor. 

Despite the fact that ANFIS struggles with high 
dimensionality data, train was possible through subtractive 

clustering. However, it was not feasible to train the ANFIS 

system with grid partitioning unless variables were 

removed, and this would affect the comparison with other 

systems. In order to maintain a critical study, all learning 

paradigms were tested with the same number of input 

variables. This said, the ANFIS system may still have 

promise and should not be completely disregarded. 

The RF implementation within this work is through RF 

regression and classification. However, as discussed in 

section III-A, RF has a built in method of assessing missing 

data by initially estimating data, and thereafter evaluating 

matches at terminal nodes. In the context of standardizing 

testing impact in the way that is presented in this paper, the 

terminal node method was not feasible. However, this 

certainly should be investigated in future work. 

The RF HIV classifier does not perform exceedingly 

well when compared with classifiers using the same data 
[10], and requires investigation. However, for the 

application, the RF classifier was used for comparative 

purposes in impact assessment, and thus the performance of 

this element is not crucial when compared with the RFs 

used for data imputation. 

 
X. CONCLUSION 

Missing data causes significant information loss in 

studies as information is wasted, and no insight is gained 

into the underlying causes for the missing data. Through the 

use of survey data of results from an HIV sero-prevalence, 

this paper investigates five machine learning paradigms in 
order to obtain imputed data for an impact assessment on 

the effects of missing data: RFs, AANN-GA, AANF-GA, 

RF-AANN-GA and AANN-GA-RF. From the five, RFs are 

chosen for impact analysis due to their superiority in both 

prediction accuracy and in computation time taken. Data 

sets are generated with one, two, three and four imputed 

variables each, and these sets are used for evaluating 

impact. Impact is determined in three ways: through 

evaluating statistical deviations of the imputed variables 

relative to the true values; through an HIV classifier 

performance; and through a logistic regression analysis for 
probability prediction. Results indicate that these decision 

making systems are in fact rather immune to the imputation 

of missing data, when adequate imputation techniques are 

used. These results imply that decision based systems are 

therefore able to make informed decisions where previously 

impossible on instances with missing information through 

imputation. 
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