Skip to main content

Concatenation of Regular Languages and Descriptional Complexity

  • Conference paper
Computer Science - Theory and Applications (CSR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5675))

Included in the following conference series:

Abstract

We investigate the deterministic and nondeterministic state complexity of languages that can be obtained as the concatenation of two regular languages represented by deterministic and nondeterministic finite automata. In the nondeterministic case, we show that the whole range of complexities from 1 to m + n can be obtained using a binary alphabet. In the deterministic case, we get the whole range of complexities from 1 to m ·2n − 2n − 1, however, to describe appropriate automata we use a growing alphabet.

Research supported by VEGA grant 2/0111/09.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Ullman, J.D., Yannakakis, M.: On notions of information transfer in VLSI circuits. In: Proc. 15th STOC, pp. 133–139 (1983)

    Google Scholar 

  2. Birget, J.-C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Domaratzki, M.: State complexity and proportional removals. J. Autom. Lang. Comb. 7, 455–468 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on context-free languages. Fundam. Inform. 83, 35–49 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Geffert, V. (Non)determinism and the size of one-way finite automata. In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) 7th International Workshop on Descriptional Complexity of Formal Systems, pp. 23–37. University of Milano, Italy (2005)

    Google Scholar 

  8. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205, 1652–1670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59, 75–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Internat. J. Found. Comput. Sci. 14, 1087–1102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) 7th International Workshop on Descriptional Complexity of Formal Systems, pp. 170–181. University of Milano, Italy (2005)

    Google Scholar 

  12. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  13. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α deterministic states. Theoret. Comput. Sci. 301, 451–462 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation. Internat. J. Found. Comput. Sci. 16, 511–529 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jirásek, J., Jirásková, G., Szabari, A.: Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet. Internat. J. Found. Comput. Sci. 19, 617–631 (2005)

    Article  MATH  Google Scholar 

  17. Jirásková, G.: Note on minimal finite automata. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 421–431. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330, 287–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jirásková, G.: On the State Complexity of Complements, Stars, and Reversals of Regular Languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 443–454. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Dokl. 11, 1373–1375 (1970)

    MATH  Google Scholar 

  21. Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function.Internat. J. Found. Comput. Sci. 13, 145–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. Develop. 3, 114–129 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoret. Comput. Sci. 320, 315–329 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  26. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 2, vol. I, pp. 41–110. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  27. Yu, S.: State complexity: Recent results and open problems. Fundam. Inform. 64, 471–480 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zijl, L.: Magic numbers for symmetric difference NFAs. Internat. J. Found. Comput. Sci. 16, 1027–1038 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jirásková, G. (2009). Concatenation of Regular Languages and Descriptional Complexity. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds) Computer Science - Theory and Applications. CSR 2009. Lecture Notes in Computer Science, vol 5675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03351-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03351-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03350-6

  • Online ISBN: 978-3-642-03351-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics