Skip to main content

New Plain-Exponential Time Classes for Graph Homomorphism

  • Conference paper
Computer Science - Theory and Applications (CSR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5675))

Included in the following conference series:

  • 491 Accesses

Abstract

A homomorphism from a graph G to a graph H (in this paper, both simple, undirected graphs) is a mapping f: V(G) →V(H) such that if uv ∈ E(G) then f(u)f(v) ∈ E(H). The problem Hom (G,H) of deciding whether there is a homomorphism is NP-complete, and in fact the fastest known algorithm for the general case has a running time of O*n(H)cn(G), for a constant 0 < c < 1. In this paper, we consider restrictions on the graphs G and H such that the problem can be solved in plain-exponential time, i.e. in time O*c n(G) + n(H) for some constant c. Previous research has identified two such restrictions. If H = K k or contains K k as a core (i.e. a homomorphically equivalent subgraph), then Hom (G,H) is the k-coloring problem, which can be solved in time O*2n(G) (Björklund, Husfeldt, Koivisto); and if H has treewidth at most k, then Hom (G,H) can be solved in time O*(k + 3)n(G) (Fomin, Heggernes, Kratsch, 2007). We extend these results to cases of bounded cliquewidth: if H has cliquewidth at most k, then we can count the number of homomorphisms from G to H in time O*(2k + 1) max (n(G),n(H)), including the time for finding a k-expression for H. The result extends to deciding HomG,H) when H has a core with a k-expression, in this case with a somewhat worse running time.

If G has cliquewidth at most k, then a similar result holds, with a worse dependency on k: We are able to count Hom (G,H) in time roughly O*(2k + 1)n(G) + 22kn(H), and this also extends to when G has a core of cliquewidth at most k with a similar running time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion. SIAM J. Comput. (to appear); prelim. versions in FOCS 2006

    Google Scholar 

  2. Byskov, J.M.: Exact Algorithms for Graph Colouring and Exact Satisfiability. PhD thesis, University of Aarhus (2005)

    Google Scholar 

  3. Corneil, D.G., Habib, M., Lanlignel, J.-M., Reed, B.A., Rotics, U.: Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract). In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 126–134. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. System Sci. 46, 218–270 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Applied Mathematics 101(1-3), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R.G., Fellows, M.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  7. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms Appl. 7(2), 131–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization is NP-hard. In: STOC 2006, pp. 354–362 (2006)

    Google Scholar 

  9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  10. Fomin, F.V., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms. Theory of Comput. Syst. 41(2), 381–393 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1) (2007)

    Google Scholar 

  12. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph homomorphisms. European J. Combin. 29, 900–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutin, G., Rafiey, A., Yeo, A.: Minimum cost and list homomorphisms to semicomplete digraphs. Discrete Applied Mathematics 154(6), 890–897 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Applied Mathematics 154(6), 881–889 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory, Ser. B 48(1), 92–110 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jonsson, P., Nordh, G., Thapper, J.: The maximum solution problem on graphs. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 228–239. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Lawler, E.: A note on the complexity of the chromatic number problem. Information Processing Letters 5, 66–67 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2-3), 357–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wahlström, M. (2009). New Plain-Exponential Time Classes for Graph Homomorphism. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds) Computer Science - Theory and Applications. CSR 2009. Lecture Notes in Computer Science, vol 5675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03351-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03351-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03350-6

  • Online ISBN: 978-3-642-03351-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics