Skip to main content

Employing Sink Mobility to Extend the Lifetime of Wireless Sensor Networks

  • Conference paper
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2008)

Abstract

Wireless sensor networks (WSNs) often employs miniaturized battery-operated nodes. Since in most setups it is infeasible or impractical to replace the onboard energy supply, the design and operation of WSNs are subject to a great deal of optimization. Among the most popular strategies is the pursuance of multi-hop routes for forwarding collected sensor data to a gateway. In that case, the gateway becomes a sink for all traffic and the close-by nodes relay lots of packets and deplete their battery rather quickly. In this paper, the mobility of the gateway is exploited to balance the load on the sensors and avoid the overload on the nodes in the proximity of the gateway. A novel approach for defining a travel path for the sink is presented. The proposed approach is validated in a simulated environment and is shown to significantly boost the network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38, 393–422 (2002)

    Article  Google Scholar 

  2. Chong, C.-Y., Kumar, S.: Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)

    Article  Google Scholar 

  3. Biagioni, E., Bridges, K.: The Application of Remote Sensor Technology to Assist the Recovery of Rare and Endangered Species. The International Journal of High Performance Computing Applications, Special issue on Distributed Sensor Networks 16(3), 112–121 (2002)

    Google Scholar 

  4. Wireless Network uses “Smart Dust” Technology, Science Applications International Corporation Magazine (Winter 2004/2005), http://www.saic.com/news/saicmag/2005-winter/wireless.html

  5. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data MULEs: Modeling a Three-tier Architecture for Sparse Sensor Networks. In: First IEEE International Workshop on Sensor Network Protocols and Applications (SNPA 2003), pp. 30–41. IEEE Press, New York (2003)

    Chapter  Google Scholar 

  6. Kim, H.S., Abdelzaher, T.F., Kwon, W.H.: Minimum Energy Asynchronous Dissemination to Mobile Sinks in Wireless Sensor Networks. In: First International Conference on Embedded Networked Sensor Systems (SenSys 2003), pp. 193–204. IEEE Press, New York (2003)

    Chapter  Google Scholar 

  7. Akkaya, K., Younis, M.: A Survey on Routing Protocols for Wireless Sensor Networks. Journal of Ad Hoc Networks 3(3), 325–349 (2005)

    Article  Google Scholar 

  8. Xu, K., Hassanein, H., Takahara, G., Wang, W.: Relay Node Deployment Strategies in Heterogeneous Wireless Sensor Networks: Single-hop Communication Case. In: IEEE Global Telecommunication Conference (GLOBECOM 2005). IEEE Press, New York (2005)

    Google Scholar 

  9. Ishizuka, M., Aida, M.: Performance Study of Node Placement in Sensor Networks. In: 24th International Conference on Distributed Computing Systems Workshops - W7: EC (Icdcsw 2004), vol. 7. IEEE Computer Society, Washington (2004)

    Google Scholar 

  10. Younis, M., Youssef, M., Arisha, K.: Energy-Aware management in Cluster-Based Sensor Networks. Computer Networks 43(5), 649–668 (2003)

    Article  Google Scholar 

  11. Shah, R., Rabaey, J.: Energy Aware Routing for Low Energy Ad Hoc Sensor Networks. In: IEEE Wireless Communications and Networking Conference (WCNC 2002). IEEE Press, New York (2002)

    Google Scholar 

  12. Ma, C., Yang, Y.: Battery-aware Routing for Streaming Data Transmissions in Wireless Sensor Networks. Mobile Networks and Applications 11(5), 757–767 (2006)

    Article  Google Scholar 

  13. Akkaya, K., Younis, M., Bangad, M.: Sink Repositioning for Enhanced Performance in Wireless Sensor Networks. Computer Networks 49, 434–512 (2005)

    Article  Google Scholar 

  14. Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., Wang, Z.M.: Protocols and Model for Sink Mobility in Wireless Sensor Networks. SIGMOBILE Mobile Computer Communications Reviews 10(4), 28–30 (2006)

    Article  Google Scholar 

  15. Younis, M., Pan, Q.: On Handling Weakened Topologies of Wireless Sensor Networks. In: 8th IEEE International Workshop on Wireless Local Networks (WLN 2008). IEEE Press, New York (2008)

    Google Scholar 

  16. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Sink Mobility Protocols for Data Collection in Wireless Sensor Networks. In: 4th ACM International Workshop on Mobility Management and Wireless Access (MobiWac 2006), pp. 52–59. ACM, New York (2006)

    Chapter  Google Scholar 

  17. Wang, Z.M., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting Sink Mobility for Maximizing Sensor Networks Lifetime. In: 38th Annual Hawaii international Conference on System Sciences (HICSS 2005) - Track 9, vol. 9. IEEE Computer Society, Washington (2005)

    Google Scholar 

  18. Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless sensor networks. In: IEEE INFOCOM 2005. IEEE Press, New York (2005)

    Google Scholar 

  19. Gandham, S.R., Dawande, M., Prakash, R., Venkatesan, S.: Energy Efficient Schemes for Wireless Sensor Networks with Multiple Mobile Base Stations. In: IEEE GLOBECOM, pp. 377–381. IEEE Press, New York (2003)

    Google Scholar 

  20. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using predictable Observer Mobility for Power Efficient Design of Sensor Networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 129–145. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Shi, G., Liao, M., Ma, M., Shu, Y.: Exploiting Sink Movement for Energy-Efficient Load-Balancing in Wireless Sensor Networks. In: 1st ACM international Workshop on Foundations of Wireless Ad Hoc and Sensor Networking and Computing (FOWANC 2008), pp. 39–44. ACM, New York (2008)

    Google Scholar 

  22. Somasundara, A., et al.: Controllably Mobile Infrastructure for Low Energy Embedded Networks. IEEE Transactions on Mobile Computing 8(8), 958–972 (2006)

    Article  Google Scholar 

  23. Kariv, O., Hakimi, S.L.: An Algorithmic Approach to Network Location Problems. I: The p-Centers. SIAM Journal of Applied Mathematics 37(3), 513–538 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Andresen, J.B., et al.: Propagation Measurements and Models for Wireless Communications Channels. IEEE Communications Magazine 33(1), 42–49 (1995)

    Article  Google Scholar 

  25. Bhardwaj, M., Garnett, T., Chandrakasan, A.: Upper Bounds on the Lifetime of Sensor Networks. In: IEEE International Conference on Communications (ICC 2001). IEEE Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Donepudi, V., Younis, M. (2009). Employing Sink Mobility to Extend the Lifetime of Wireless Sensor Networks. In: Bertino, E., Joshi, J.B.D. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03354-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03354-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03353-7

  • Online ISBN: 978-3-642-03354-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics