
Supporting Agile Development of
Authorization Rules for SME Applications

Steffen Bartsch, Karsten Sohr, and Carsten Bormann

Technologie-Zentrum Informatik TZI,
Universität Bremen, Bibliothekstr. 1, 28359 Bremen, Germany

{sbartsch,sohr,cabo}@tzi.org

Abstract. Custom SME applications for collaboration and workflow
have become affordable when implemented as Web applications employ-
ing Agile methodologies. Security engineering is still difficult with Agile
development, though: heavy-weight processes put the improvements of
Agile development at risk. We propose Agile security engineering and in-
creased end-user involvement to improve Agile development with respect
to authorization policy development. To support the authorization pol-
icy development, we introduce a simple and readable authorization rules
language implemented in a Ruby on Rails authorization plugin that is
employed in a real-world SME collaboration and workflow application.
Also, we report on early findings of the language’s use in authorization
policy development with domain experts.

Key words: Authorization Policy, Agile Security Engineering, End-
User Development, DSL, SME Applications

1 Introduction

When Small and Medium Enterprises (SME) deploy collaboration and workflow
applications, the applications need to measure up to the established workflows
in terms of efficiency and flexibility. SMEs are often incapable of investing the
required resources into tailoring commercial off-the-shelf software to match the
established workflows. This is further backed by the observation that it is often
the unique selling point of SMEs to implement unconventional processes when
compared to competing larger companies. With the advent of recent technolog-
ical developments in the Web sector, small and focussed custom applications
have become affordable for implementing SMEs’ specific needs in collaboration
and workflow management in SME applications.

One aspect of the development of custom SME applications is implementing
authorization. A large amount of research has been invested into the authoriza-
tion realm resulting e.g. in Role-based Access Control (RBAC, [9, 15, 2]). Specific
solutions have been proposed for collaboration and workflow [4, 14, 18, 16] as well
as high flexibility [19]. Still, with respect to SME applications, the established
approaches are not easily implemented in practice.

Typically, SMEs are organisations of limited complexity, but may still de-
pend on task management and collaboration software. When developing custom

2 Steffen Bartsch et al.

software for these domains, a few aspects are different from the task in larger
companies. First of all, most employed processes are informal and may be modi-
fied on a day-to-day basis. Only a fraction of the processes are formally defined.
Instead, the process descriptions are present in form of the employees’ implicit
knowledge. When the processes are captured for requirements engineering, em-
ployees will likely fall prey to process confabulation. Process confabulation causes
domain experts to recount processes not in the way they occur, which is difficult
with daily variations, but idealized versions. Thus, if authorization is employed,
many restrictions are based on the idealized processes and may be hindering in
the execution of day-to-day business. One reason is that employees of SMEs are
often unaccustomed to authorization. Typically, most documents are available to
a large part of the employees before the implementation of an SME application.
On the other hand, with a large amount of data centralized in one application,
management will insist on the implementation of fairly strict authorization rules.

One current trend in application development to overcome the problem of
fuzzy requirements is employing Agile development principles [7]. Agile develop-
ment focuses on customer needs, implementing in short iterations and allowing
modifications of the plan on a regular basis. In Agile development, working
applications are preferred over documentation and domain experts are tightly
integrated into the process. The focus on constant modification and refinement
of requirements makes Agile development suitable for the development of SME
applications.

With continuously changing requirements, development environments need
to provide an adequate amount of flexibility as well as small development and de-
ployment overhead, as provided by Web applications. Ruby on Rails1 is a current
Web development framework that supports Agile development and draws from
the meta-programming features of the programming language Ruby. Through
a plugin architecture, a large community of developers provide other common
features, such as authentication, in Rails plugins.

Even with Agile development using Ruby on Rails, implementing security
in SME applications remains a challenge, in particular the process-dependent
parts of authorization. Flaws in authorization may lead to a loss of efficiency
and a lack of acceptance by the end-users, which might even lead to a premature
end of the application development. In this paper, we describe Agile security
engineering methods to overcome these obstacles. One aspect of our approach
is supporting the end-user development of authorization policies. In particular,
we introduce an authorization rules Domain-specific Language (DSL) for im-
proving authorization policy development. The language is implemented in the
declarative_authorization Rails plugin. We report on the early feedback of
employing the authorization language in a real-world SME application to im-
prove its authorization policy.
1 http://rubyonrails.org/

http://rubyonrails.org/

Agile Development of Authorization Rules 3

2 Agile Security Engineering

Security engineering in traditional software development is a heavy-weight pro-
cess. For example, the ISO 27001 standard structures security engineering into
the well-known four phases of Plan–Do–Check–Act which are iteratively applied
[1]. The planning phase includes systematic approaches to threat analysis and
risk assessment. Also, the security architecture is to be designed before any im-
plementation takes place. Such a security engineering process does not fit well
into Agile development processes, resulting in several conflicts.

– Security is difficult to retrofit [5], so that security ideally needs to be considered
from the beginning. In Agile development, where having modifications of the
plan is common, the functional requirements are by definition not clear at the
beginning. Thus, security measures cannot be developed initially in sufficient
detail.

– With an anticipated shift in functional requirements, security architectures de-
signed at one point will become obsolete in the course of the project. Redoing
security engineering as proposed by the classical iterative models before im-
plementing additional functional requirements is no option, either. The heavy-
weight nature of the process makes it impossible to fit into the common 2 to
4 week iteration cycle of Agile development.

– Traditional security engineering implies a good measure of security documen-
tation and specification. In Agile development, this is counter-productive with
the application being a moving target, causing a mismatch of documentation
and code to an even larger extent than in traditional software projects.

– Security objectives are non-functional requirements and thus hard to test. In
Agile development, refactoring is an important aspect to constantly adapt
to changing plans. Refactoring relies heavily on testing to ensure that deep
changes do not break the application. Missing tests of the security require-
ments could thus lead to the introduction of vulnerabilities through refactor-
ing.

Reviewing the published work on security in Agile development, a few solu-
tions to the above-outlined problems are proposed. A very general proposal is to
increase overall security skills of development teams. Ge et al. argue that in Agile
development even more than in other development processes, security awareness
is necessary for all team members [10]. To comply with formal requirements
of security reviews, a security expert might rotate through programming pairs,
thus implicitly reviewing the code. Aydal et al. report on a case study of secu-
rity through refactoring with good results [3]. Tappenden et al. describe security
tests which could be employed to secure refactoring [17]. Instead of the usual user
stories that provide requirements in many Agile methodologies, abuser or mis-
user stories may be employed [13], describing unwanted situations which may be
tested. This approach might lack the proper completeness, though, as systematic
approaches are needed to capture the wealth of attack vectors. An alternative
but less concrete approach is imposing constraints on every user story.

4 Steffen Bartsch et al.

For security up front, before any development, Ge et al. propose to have
experts agree on overall security principles and a high-level security architecture
[10]. Still, as indicated above, this might prove either quite complex when a
suitable security architecture is to be found or might arrive in rather useless too
general principles. It is a good idea, though, to begin with system hardening and
penetration tests early in the iteration cycles even if the system is not yet set up
in the target environment. Thus, security issues may be tackled early [11]. Lastly,
Chivers et al. argue that in Agile development, the team should concentrate on
providing good-enough security as, in practice, security is not absolute [5]. It
is arguably correct that even the systematic approaches of traditional security
engineering do not guarantee completeness.

While the listed approaches may not serve as a one-size-fits-all solution, a
few points may be worth stressing. At one point during development, a system-
atic threat analysis and risk assessment should be undertaken to provide a good
understanding of security aspects to focus on. With the addition of further fea-
tures in later iterations, the findings certainly need to be adapted with changes
in assets and additions of attack vectors. Thus, key to effective Agile security
engineering remains the flexibility in implementing changes in the security archi-
tecture. A second aspect is that it is hard to capture security requirements for
processes in a single iteration. Because of process confabulation, authorization
particularly needs adjustment by domain experts later on. Documents derived
directly from the code may come to help in discussions with domain experts
while preventing additional overhead and the risk of outdated documents. In the
next section we describe ways of tightly integrating domain experts into security
engineering and authorization policy development, taking the aforementioned
aspects into account.

3 End-User Development of Authorization Policies

In the development of custom SME applications, it is even more important to
tightly integrate end users into the development process than in software de-
velopment for large enterprises. Usually, there are no current documents on the
company’s processes but only implicit knowledge of the employees. Even if there
has been an ISO 9001 certification, those documents often do not reflect the
actual processes. In Human-Computer Interaction (HCI) research, the growing
field of End-User Development [12] pushes the barrier even further; not only
should end users be integrated into the development process, but in addition
end users should take part in the development, adapting the application to their
needs [6, 20].

In the domain of security engineering and authorization policy development,
there are three potential actors to design and implement authorization: end
users, system administrators and developers. One might argue that authoriza-
tion configuration should be carried out by administrators. On the other hand,
domain knowledge is very important for applying the appropriate measure of
restrictions. This means that end users are better suited for the task, at least

Agile Development of Authorization Rules 5

supporting the administrator. Developers also play an important role in the pro-
cess by having intimate knowledge of the application. With many authorization
decisions being based on the application’s underlying data model, which may
have to be modified to allow specific authorization rules, it is very important to
have the developers take active part in the development. Thus, ideally, an au-
thorization policy development would offer the appropriate level of abstraction
to each of these actors [8]. Therefore, the following mechanisms are needed:

– An authorization language and data model primarily for developers to imple-
ment authorization policies. The language and data model should be simple
enough to help end users to discuss and validate the current policy. It might
even be possible for them to correct and develop authorization rules using the
language.

– Alternative, e.g. graphical, representations of the effective authorization policy
concerning specific objects and users to mitigate the complexity of authoriza-
tion by offering transparency.

– A UI for overcoming barriers posed by textual specifications to some end users.

4 The Declarative Authorization Plugin

For supporting Agile security engineering and end-user integration in authoriza-
tion rules development, we developed an authorization rules DSL and support-
ing development tools. We implemented the DSL and the tools as the Ruby
on Rails declarative_authorization plugin2, made available under the MIT
Open Source license. Currently, we use the plugin in a real-world collaboration
and task management Web application that relies on Ruby on Rails as the un-
derlying Web application framework.

The plugin design was guided by the goal of providing the maximum
simplicity and readability of the authorization rules DSL and efficient usage
of the plugin in Web application development. Other available Rails autho-
rization plugins usually are based on in-line Access Control Lists (ACL) of
roles, causing redundant authorization rules in program code. In contrast, the
declarative_authorization plugin separates program and authorization logic,
thus offering a declarative approach to authorization. The DSL describes the pol-
icy for authorization while the application just defines required permissions for
specific actions.

4.1 Authorization Rules DSL

The authorization rules DSL was designed for readability and flexibility. The syn-
tax is derived from natural language that can be read in form of sentences, e.g.,
role “admin” has permissions on “employees” to “manage.” Symbols beginning
with :, block delimiters do, end and hash associations through => remain visible
2 Available at Github: http://github.com/stffn/declarative authorization

http://github.com/stffn/declarative_authorization

6 Steffen Bartsch et al.

Fig. 1. Role-based access control model

indications that the DSL employs Ruby syntax. We decided to implement the
language in Ruby because of Ruby’s metaprogramming features, which allow a
simple, readable DSL while making use of the benefit of the robust Ruby parser.
Also, in the target market of SME applications, applications are increasingly
based on Ruby on Rails. A simple example of an authorization rule assigning
the permission “manage” on objects of type “employee” to role “admin” is given
in the following listing:

authorization do

role :admin do

has permission on :employees , :to => :manage

end

end

The authorization data model behind the DSL is similar to RBAC’s. One
of many extant variations of the RBAC model is shown in figure 1. The model
defines users, which are assigned to roles in an n:m relation. On the other hand,
permissions are assigned to roles in an n:m relation as well. Permissions are
often described as a combination of activities on objects. Thus, to evaluate the
authorization of a user with respect to a specific object, permissions assigned to
the user’s roles need to be checked.

Fig. 2. Authorization rules DSL data model

Instead of defining permissions as activities on objects, the declarative
authorization data model (figure 2) uses activities on types of objects, such
as “employees”, to increase maintainability. Permissions on individual objects
are realized through context authorization constraints [4]. E.g., for restricting

Agile Development of Authorization Rules 7

Listing 1. Example authorization rules

1 authorization do

2 role :admin do

3 has permission on :employees , :to => :manage

4 end

5

6 role :branch_admin do

7 includes :employee

8 has permission on :employees , :to => :manage do

9 i f a t tr ibute :branch => is {user.branch}
10 end

11 end

12

13 role :employee do

14 # ...

15 end

16 end

“branch admins” to only manage employees of their branch, the statement shown
in listing 1 in line 9 is employed. Constraints may be nested for more complex
cases. A custom language is used for specifying the constraints so that the same
conditions may be used not only to restrict access but also to derive the resulting
constraints on database queries. Role hierarchies are realized using the “includes”
statement as demonstrated in listing 1 in line 7.

To further improve the usability of the authorization rules language in Ag-
ile security engineering, development tools have been implemented. Inside the
application, the syntax-highlighted textual representation of the current rules
is provided to authorized users. Also, graphical representations have been de-
veloped for domain experts to be able to drill down on specific aspects of the
authorization rules, as shown in figure 3, while keeping an overview at hand. In
the diagram, filled arrows indicate the assignment of permissions to roles, with
circles on arrows symbolizing constraints on the assignment. The role hierar-
chy of “branch admin” including the permissions of “employees” is shown by
an unfilled arrow, demonstrating the efficiency of graphical representation for
analyzing hierarchical structures.

4.2 Usage in Application Code

In order to support Agile development, ease of implementation in the application
is important. Early in the development process, authorization rarely is of high
priority. Thus, imposing minimal overhead allows for authorization infrastruc-
ture to be integrated early-on, resulting in less refactoring being required later.
In Rails, so-called controllers are responsible for responding to HTTP requests.
Each URI is routed to a controller’s action. Thus, for a first line of defense,
restrictions may be imposed on each action. To enable this with the plugin, only

8 Steffen Bartsch et al.

Fig. 3. Graphical representation of authorization rules

a filter_access_to statement in a controller is required to cause all requests
to that controller to be checked for authorization.

class EmployeesController

filter_access_to :all

def index

...

end

end

When the “index” action in the EmployeesController is called by an HTTP
request, the authorization rules are consulted. The declarative_authorization
plugin considers the roles of the user, which is bound to the current request
through separate authentication measures, to decide on allowing the request. If
the permissions for “index” have not been assigned to any of the user’s roles,
the request is denied. If the permission is assigned with additional authorization
constraints, objects might be examined to evaluate the constraints.

The “index” action in the EmployeesController will provide a list of em-
ployees, causing a check of “read” permissions according to a preconfigured map-
ping. To only display those employees that the current user may read, constraints
need to be imposed on a database query for some roles, according to the autho-
rization policy. To enable these automatic constraints, the developer only has to
use a with_permissions_to call instead of manually constructing the database
query conditions, as shown in the following example.

class EmployeesController

filter_access_to :all

def index

@employees = Employee.find(:all , :conditions => ...)

@employees = Employee.with_permissions_to (:read)

end

end

Thus, with the authorization rules shown in listing 1, users of role “branch
admin” would only see the intended list of employees in their branch while
minimal extra effort is needed in application development. More importantly,

Agile Development of Authorization Rules 9

the code does not need to be changed when authorization conditions change,
allowing developers to focus on functional and security requirements at different
points in time.

5 Early Feedback

In order to evaluate the authorization rules language with respect to its use
in Agile security engineering, we employed the declarative_authorization
plugin in a real-world SME application. The application currently has nine roles
and permissions on objects of 35 types. It is a collaboration and task management
application that is employed in quality management of automotive parts.

We used the applications authorization rules in discussions with two domain
experts. The domain experts use the application regularly as end-users but have
not taken part in the programming of the application. In addition to the dis-
cussions, we conducted interviews with the domain experts to capture their
subjective views on the viability of using textual authorization rules and graph-
ical representations for helping in discussion, finding policy flaws, and allowing
end-user modifications.

In both discussions, the textual representation of the authorization rules
proved very helpful in improving the current rules. Two flaws within the au-
thorization rules were identified. E.g., an overly narrow restriction on the role
of quality inspectors would have prevented their flexible operation for different
branches of the SME. The flaws might have hindered the workflow in specific
situations by being overly restrictive. In the interviews, the domain experts ac-
knowledged the helpfulness of the textual and graphical representation of the
actual authorization rules that are being enforced. Still, for modifications or
additions by themselves, both would prefer a user interface.

6 Conclusion and Future Work

When considering custom-built applications for task management and collabora-
tion, Agile development of Web applications helps in efficiently fulfilling SMEs’
requirements. To design appropriate security mechanisms, traditional security
engineering does not fit well with its heavy-weight processes, though. Agile secu-
rity engineering processes, as described in this paper, provide an alternative ap-
proach by integrating domain experts more tightly into the security engineering
process. One important aspect of Agile security engineering is the development of
authorization policies. We introduced a tool to support the Agile authorization
policy development through a simple and readable authorization rules language
and its implementation in the Rails declarative_authorization plugin. While
certainly not applicable to every kind of application, authorization policies may
gain in precision through more intense integration of domain experts and thus

10 Steffen Bartsch et al.

improve the effectiveness of the application with only minimal development over-
head. Early positive feedback from the evaluation of the authorization language
on a real-world SME project demonstrated the potential of our approach.

In addition to broader empirical work, future work will include the develop-
ment of user interfaces to complement the existing tools. Following the domain
experts’ suggestions, the UIs should work on a high layer of abstraction, e.g. only
allowing the assignment of permissions to existing roles. In another attempt to
improve end-user involvement, we will provide measures for test-driven develop-
ment of authorization rules and an authorization policy development workflow,
thus increasing the reliability of authorization policy development.

Taking into account the required flexibility in SME applications’ task man-
agement, even improved authorization policy development may not prevent oc-
casional missing permissions that degrade efficiency, though. In order to follow
the practice of informal processes in SMEs, we will look into a self-regulatory
authorization approach that we call Self-service Authorization. This mechanism
allows end-users to increase their permissions according to certain restrictions
on their own while actions are then appropriately audited.

References

1. ISO/IEC 27001:2005. Information technology – Security techniques – Information
security management systems – Requirements. ISO, Geneva, Switzerland.

2. ANSI INCITS 359-2004. Role-Based Access Control. American Nat’l Standard for
Information Technology, 2004.

3. Emine G. Aydal, Richard F. Paige, Howard Chivers, and Phillip J. Brooke. Se-
curity planning and refactoring in extreme programming. In Pekka Abrahamsson,
Michele Marchesi, and Giancarlo Succi, editors, XP, volume 4044 of Lecture Notes
in Computer Science, pages 154–163. Springer, 2006.

4. Elisa Bertino, Elena Ferrari, and Vijay Atluri. The specification and enforcement
of authorization constraints in workflow management systems. ACM Trans. Inf.
Syst. Secur., 2(1):65–104, 1999.

5. Howard Chivers, Richard F. Paige, and Xiaocheng Ge. Agile security using an
incremental security architecture. In Hubert Baumeister, Michele Marchesi, and
Mike Holcombe, editors, XP, volume 3556 of Lecture Notes in Computer Science,
pages 57–65. Springer, 2005.

6. Luke Church. End user security: The democratisation of security usability. In
Security and Human Behaviour, 2008.

7. Alistair Cockburn. Agile Software Development. Addison-Wesley Professional,
December 2001.

8. Jie Dai and Jim Alves-Foss. Logic based authorization policy engineering. In The
6th World Multiconference on Systemics, Cybernetics and Informatics, 2002.

9. David Ferraiolo and Richard Kuhn. Role-based access controls. In 15th NIST-
NCSC National Computer Security Conference, pages 554–563, 1992.

10. Xiaocheng Ge, Richard F. Paige, Fiona Polack, and Phillip J. Brooke. Extreme
programming security practices. In Giulio Concas, Ernesto Damiani, Marco Scotto,
and Giancarlo Succi, editors, XP, volume 4536 of Lecture Notes in Computer Sci-
ence, pages 226–230. Springer, 2007.

Agile Development of Authorization Rules 11

11. Vidar Kongsli. Towards agile security in web applications. In OOPSLA ’06: Com-
panion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 805–808, New York, NY, USA, 2006.
ACM.

12. Henry Lieberman. End user development. Springer, 2006.
13. John McDermott and Chris Fox. Using abuse case models for security require-

ments analysis. In ACSAC ’99: Proceedings of the 15th Annual Computer Security
Applications Conference, page 55, Washington, DC, USA, 1999. IEEE Computer
Society.

14. Sejong Oh and Seog Park. Task-role-based access control model. Inf. Syst.,
28(6):533–562, 2003.

15. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

16. Yuqing Sun, Xiangxu Meng, Shijun Liu, and Peng Pan. Flexible workflow incorpo-
rated with RBAC. In Weiming Shen, Kuo-Ming Chao, Zongkai Lin, Jean-Paul A.
Barthès, and Anne E. James, editors, CSCWD (Selected papers), volume 3865 of
Lecture Notes in Computer Science, pages 525–534. Springer, 2005.

17. Andrew Tappenden, Patricia Beatty, and James Miller. Agile security testing of
web-based systems via httpunit. In AGILE, pages 29–38. IEEE Computer Society,
2005.

18. Roshan K. Thomas and Ravi S. Sandhu. Task-based authorization controls
(TBAC): A family of models for active and enterprise-oriented autorization man-
agement. In Proceedings of the IFIP TC11 WG11.3 Eleventh International Con-
ference on Database Securty XI, pages 166–181, London, UK, UK, 1998. Chapman
& Hall, Ltd.

19. Jacques Wainer, Paulo Barthelmess, and Akhil Kumar. W-RBAC - a workflow se-
curity model incorporating controlled overriding of constraints. Int. J. Cooperative
Inf. Syst., 12(4):455–485, 2003.

20. Mary Ellen Zurko and Richard T. Simon. User-centered security. In NSPW ’96:
Proceedings of the 1996 workshop on New security paradigms, pages 27–33, New
York, NY, USA, 1996. ACM.

	Supporting Agile Development of Authorization Rules for SME Applications
	Steffen Bartsch, Karsten Sohr, Carsten Bormann
	Introduction
	Agile Security Engineering
	End-User Development of Authorization Policies
	The Declarative Authorization Plugin
	Authorization Rules DSL
	Usage in Application Code

	Early Feedback
	Conclusion and Future Work
	References

