Skip to main content

Formal Analysis of Optical Waveguides in HOL

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5674))

Abstract

Optical systems are becoming increasingly important as they tend to resolve many bottlenecks in the present age communications and electronics. Some common examples include their usage to meet high capacity link demands in communication systems and to overcome the performance limitations of metal interconnect in silicon chips. Though, the inability to efficiently analyze optical systems using traditional analysis approaches, due to the continuous nature of optics, somewhat limits their application, specially in safety-critical applications. In order to overcome this limitation, we propose to formally analyze optical systems using a higher-order-logic theorem prover (HOL). As a first step in this endeavor, we formally analyze eigenvalues for planar optical waveguides, which are some of the most fundamental components in optical devices. For the formalization, we have utilized the mathematical concepts of differentiation of piecewise functions and one-sided limits of functions. In order to illustrate the practical effectiveness of our results, we present the formal analysis of a planar asymmetric waveguide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  2. Anderson, J.A.: Real Analysis. Gordon and Breach Science Publishers, Reading (1969)

    Google Scholar 

  3. Costa, J., Pereira, D., Giarola, A.J.: Analysis of Optical Waveguides using Mathematica. In: Microwave and Optoelectronics Conference, pp. 91–95 (1997)

    Google Scholar 

  4. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge Press, Cambridge (1993)

    MATH  Google Scholar 

  5. Hafner, C.: The Generalized Multipole Technique for Computational Electromagnetics. Artech House, Boston (1990)

    Google Scholar 

  6. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  7. Harrison, J.: Formalizing Basic Complex Analysis. In: From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, vol. 10, pp. 151–165. University of Białystok (2007)

    Google Scholar 

  8. Haus, H., Huang, W., Kawakami, S., Whitaker, N.: Coupled-mode Theory of Optical Waveguides. Lightwave Technology 5(1), 16–23 (1987)

    Article  Google Scholar 

  9. Hayes, P.R., O’Keefe, M.T., Woodward, P.R., Gopinath, A.: Higher-order-compact Time Domain Numerical Simulation of Optical Waveguides. Optical and Quantum Electronics 31(9-10), 813–826 (1999)

    Article  Google Scholar 

  10. Heinbockel, J.H.: Numerical Methods For Scientific Computing. Trafford (2004)

    Google Scholar 

  11. Jackson, J.D.: Classical Electrodynamics. John Wiley & Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  12. Johnson, S.G., Joannopoulos, J.D.: Block-iterative Frequency Domain Methods for Maxwell’s Equations in a Planewave Basis. Optics Express 8(3), 173–190 (2001)

    Article  Google Scholar 

  13. Liu, Y., Sarris, C.D.: Fast Time-Domain Simulation of Optical Waveguide Structures with a Multilevel Dynamically Adaptive Mesh Refinement FDTD Approach. Journal of Lightwave Technology 24(8), 3235–3247 (2006)

    Article  Google Scholar 

  14. Mathematica (2009), http://www.wolfram.com

  15. Moore, E.D., Sullivan, A.C., McLeod, R.: Three-dimensional Waveguide Arrays via Projection Lithography into a Moving Photopolymer. Organic 3D Photonics Materials and Devices II 7053, 309–316 (2008)

    Google Scholar 

  16. Ntogari, G., Tsipouridou, D., Kriezis, E.E.: A Numerical Study of Optical Switches and Modulators based on Ferroelectric Liquid Crystals. Journal of Optics A: Pure and Applied Optics 7(1), 82–87 (2005)

    Article  Google Scholar 

  17. Optica (2009), http://www.opticasoftware.com/

  18. Pollock, C.R.: Fundamentals of Optoelectronics. Tom Casson (1995)

    Google Scholar 

  19. Rumpf, R.C.: Design and Optimization of Nano-Optical Elements by Coupling Fabrication to Optical Behavior. PhD thesis, University of Central Florida, Orlando, Florida (2006)

    Google Scholar 

  20. Schmidt, F., Zschiedrich, L.: Adaptive Numerical Methods for Problems of Integrated Optics. In: Integrated Optics: Devices, Materials, and Technologies VII, vol. 4987, pp. 83–94 (2003)

    Google Scholar 

  21. Yee, K.: Numerical Solution of Inital Boundary Value Problems involving Maxwell Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  22. Yin, L., Hong, W.: Domain Decomposition Method: A Direct Solution of Maxwell Equations. In: Antennas and Propagation, pp. 1290–1293 (1999)

    Google Scholar 

  23. Zhian, L., Wang, Y., Allbritton, N., Li, G.P., Bachman, M.: Labelfree Biosensor by Protein Grating Coupler on Planar Optical Waveguides. Optics Letters 33(15), 1735–1737 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hasan, O., Khan Afshar, S., Tahar, S. (2009). Formal Analysis of Optical Waveguides in HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2009. Lecture Notes in Computer Science, vol 5674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03359-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03359-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03358-2

  • Online ISBN: 978-3-642-03359-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics