

Edinburgh Research Explorer

Equivalence of Deterministic Nested Word to Word Transducers

Citation for published version:
Staworko, S, Laurence, G, Lemay, A & Niehren, J 2009, Equivalence of Deterministic Nested Word to Word
Transducers. in Fundamentals of Computation Theory: 17th International Symposium, FCT 2009, Wroclaw,
Poland, September 2-4, 2009. Proceedings. vol. 5699, Springer Berlin Heidelberg, pp. 310-322.
https://doi.org/10.1007/978-3-642-03409-1_28

Digital Object Identifier (DOI):
10.1007/978-3-642-03409-1_28

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Fundamentals of Computation Theory

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-642-03409-1_28
https://doi.org/10.1007/978-3-642-03409-1_28
https://www.research.ed.ac.uk/en/publications/acb07285-4e5f-4089-8ad6-2b7511c07901

Equivalence of Deterministic
Nested Word to Word Transducers

S lawomir Staworko13 and Grégoire Laurence23 and Aurélien Lemay23 and
Joachim Niehren13

1 INRIA, Lille
2 University of Lille

3 Mostrare project, INRIA & LIFL (CNRS UMR8022)

Abstract. We study the equivalence problem of deterministic nested
word to word transducers and show it to be surprisingly robust. Modulo
polynomial time reductions, it can be identified with 4 equivalence prob-
lems for diverse classes of deterministic non-copying order-preserving
transducers. In particular, we present polynomial time back and fourth
reductions to the morphism equivalence problem on context free lan-
guages, which is known to be solvable in polynomial time.

Keywords: trees, transducers, automata, context-free grammars, XML.

1 Introduction

Nested word automata (nas) [1] are tree automata, that operate on linearizations
of unranked trees in streaming manner. All nodes of the tree are visited twice,
as usual in preorder traversals. At the first visit (opening event), a symbol is to
be pushed onto a stack that is popped at the second visit (closing event). nas

were introduced as a reformulation of visibly pushdown automata [2] and proved
equivalent to pushdown forest automata [11] and streaming tree automata [6].

More formally, a nested word over Σ is a word of parenthesis in Σ̂ =
{op, cl}×Σ, such that all opening parenthesis are properly closed. We consider
nested words as linearizations of unranked trees. For instance, the linearization
of a(b(c), d) is the nested word (op, a) · (op, b) · (op, c) · (cl, c) · (cl, b) · (op, d) ·
(cl, d) · (cl, a), or in XML notation <a><c></c><d></d>. nas pro-
cess nested words from left to right, while passing finite state information from
opening to matching closing parenthesis.

In this paper, we study nested word to word transducers (n2ws). These
process input nested words such as nas, while producing output letters in par-
allel, both from left to right. n2ws are pushdown transducers that must push
at opening and pop at closing parenthesis (see Fig. 2 for an example of a n2w-
transduction). n2ws were first introduced in [15], where they were called visibly
pushdown transducers. Our notion is slightly more general in that we do not
impose any well-nesting conditions on output words. Furthermore, we do not as-
sume synchronization, i.e., that deletion and renaming operations on matching

opening and closing parenthesis are in sync (see Fig. 3). Synchronization is a
sufficient restriction to make type checking decidable.

n2ws T with input alphabet Σ and output alphabet ∆ define relations JT K :
TΣ ×∆∗ mapping unranked trees with labels in Σ to words with letters in ∆.
They have rules of the following two forms:

q
op a/w:γ−−−−−→ q′ or q

cl a/w:γ−−−−−→ q′

where q, q′ are states, γ a stack symbol, a ∈ Σ an input label, and w ∈ ∆∗ a word
of output letters. An opening rule applies in state q, consumes an opening paren-
thesis (op, a) from the input, pushes a symbol γ onto the stack, concatenates w
to the output word, and goes into state q′. Closing rules are applied similarly,
except that they pop symbol γ from the stack. Note that we do not permit rules
with ε input (blind insertion) as they are incompatible with determinism.

We call an n2w deterministic or a dn2w, if 1. it has a unique initial state,
2. opening rules are determined by the current state q and input label a, and
3. closing rules are determined by q, a, and the current stack symbol γ. Ev-
ery dn2w T with input alphabet Σ and output alphabet ∆ defines a partial
function JT K : TΣ → ∆∗. Since dn2ws can be identified with deterministic push-
down transducer, it follows from the very general result of Szenergues [16] that
equivalence of dn2ws is decidable.

We call an n2w top-down, if it is top-down as an na, i.e., if all its closing

rules have the form q
cl a/w:q′−−−−−−→ q′, so that the closing state is already determined

by the stack symbol pushed at opening time. A top-down deterministic n2w
or a dn2w↓ is a deterministic n2w that is top-down. Similarly to top-down
deterministic tree automata, dn2w↓ are less expressive than dn2ws.

We consider two kinds of standard transducers on ranked trees [8, 4], ranked
tree to word transducers (r2ws) which may either be top-down deterministic
(dr2w↓s) or bottom-up deterministic (dr2w↑s). Our main results are polynomial
time reductions between all of the following problems:

1. equivalence of dn2ws,
2. equivalence of dn2ws↓,
3. equivalence of dr2w↓s that are non-copying and order-preserving,
4. equivalence of dr2w↑s that are non-copying and order-preserving,
5. equivalence of morphisms on context free languages.

Plandowski [13, 14] has shown that the last problem is decidable in polynomial
time. Since all of our reductions are in polynomial time, all of the above problems
are decidable in polynomial time too. This result has not been stated before for
any of the first 4 problems. It should be noticed, that equivalence of tree-to-
tree transducers can be reduced to equivalence of tree-to-word transducers that
linearize output trees. As a consequence, we obtain polynomial time algorithms
for deciding equivalence of top-down and bottom-up deterministic tree-to-tree
transducers that are non-copying and order-preserving.

Our main motivation is to define XML document transformation in a deter-
ministic manner, as for instance by the W3C standard XSLT. Various classes

of tree transducers have been proposed to this end before [10, 9]. Also the
class of dn2ws↓ does neither allow tree copying nor tree permutation opera-
tions. However, we believe this is a good compromise between complexity results
and expressive power. For instance, it can express more than non-copying and
order-preserving transducers from [10]. In particular, it can express most usual
“stylesheet-like” XML to HTML transformations (e.g. Fig. 2). Also, it is suitable
to model streamed-like processing.

Related work. As shown by [5], the equivalence of top-down deterministic tree-
to-tree transducers (dr2rs↓) can be decided in polynomial time. This result is
orthogonal to ours. It is more general in that copying and permutations are
permitted, but cannot capture word output of dr2w↓s, since lacking the word
concatenation operation. Every tree-to-tree transducer can be transformed into
a tree-to-word transducer by composition with the yield function. This has been
done for instance in order to measure the generating capacities of tree trans-
ducers [8]. However, since different trees may have the same yield, one cannot
reduce the equivalence problem of tree-to-tree transducers to that of tree-to-word
transducers this way (if not adding concatenation operations or macros).

The methods used in this paper are reminiscent of those used by Culik and
Karhumäki to show decidability of equivalence of synchronized deterministic
pushdown automata and transducers, e.g. see [7]. Intuitively, two deterministic
pushdown automata are synchronized if their stacks have almost the same height
throughout every computation. Then, their execution can be simulated with
a single pushdown automaton, very much in the spirit of Lemma 3. In this
setting the complexity of this approach is exponential. We take advantage of the
observation that two n2ws can be viewed as synchronized pushdown transducers,
and moreover, the stacks always have exactly the same height.

2 Nested Word to Word Transducers

Let Σ be a finite set of labels. We define the set of unranked trees TΣ to be
the least set that contains all pairs a(t1, . . . , tn) consisting of a label a ∈ Σ and
a tuple of unranked trees (t1, . . . , tn) ∈ (TΣ)n for some n ≥ 0, i.e. TΣ = Σ ×
∪n≥0(TΣ)n. When writing XML documents into files, unranked trees are usually
linearized in a preorder traversal to words lin(t) ∈ Σ̂∗ where Σ̂ = {op, cl} ×Σ.

lin(a(t1, . . . , tn)) = (op, a) · lin(t1) · . . . · lin(tn) · (cl, a)

Linearizations of unranked trees are words in Σ̂∗ that are well-nested in that all
opening parenthesis are properly closed. See Fig. 1 for an example. We define
the set of all nested words over Σ by NΣ = {lin(t) | t ∈ TΣ}. More general
definitions can be found in the literature. We impose 4 restrictions, of which
only the first matters technically, while the others simplify presentation: (1) No
dangling opening or closing parenthesis. As a consequence, segments of nested
words between two positions do not need to be nested words. (2) No internal
letters, which are neither opening nor closing. (3) No corresponding parenthesis

a b c c b d d a

(op, a)·(op, b)·(op, c)·(cl, c)·(cl, b)·(op, d)·(cl, d)· (cl, a)

a

b

c

d

Fig. 1. Example of a tree and its linearization into a nested word.

with different labels (for instance, (op a)(cl b) is not well nested). (4) No hedges,
i.e. sequences of unranked trees: these can be represented by unranked trees by
adding artificial roots.

A nested word to word transducer (n2w) T is a tuple of finite sets T =
(Σ,∆,Q, Γ, rul , init ,fin) such that init ,fin ⊆ Q and rul ⊆ Q2×Σ̂×∆∗×Γ . There
are labels a ∈ Σ of input trees, an alphabet for output words u ∈ ∆∗, states
q ∈ Q, and stack symbols γ ∈ Γ . We denote rules r equal to ((q, q′), (α, a), u, γ)

as q
αa/u:γ−−−−−→ q′. We denote lhs(r) = q (for left hand side), rhs(r) = q′ (for

right hand side), act(r) = (α, a) (for action), output(r) = u and ssy(r) = γ (for
stack symbol). Note that our definition of n2ws excludes rules with ε-input. A
nested word automaton (na) is a n2w which always outputs the empty word, so

that all rules are of the form q
αa/ε:γ−−−−→ q′. The main interest of nas compared

to tree automata [1] is that they combine top-down and bottom-up processing
by operating on preorder linearizations of unranked trees (nested words). n2w
is a suitable choice to model transformations that do not require copying or
reordering, for instance simple XML to HTML transformations (Fig. 2).

address-book

person person

name email office name email office

Adam a@a.com 101 Eve e@b.org 202

<HTML><BODY><TABLE>

<TR><TH>Name</TH>

<TH>Email</TH></TR>

<TR><TD>Adam</TD>

<TD>a@a.com</TD></TR>

<TR><TD>Eve</TD>

<TD>e@b.org</TD></TR>

</TABLE></BODY></HTML>

Fig. 2. An example of XML to HTML transformation.

An n2w defines a relation JT K ⊆ TΣ × ∆∗. We will present two equivalent
definitions of JT K. The first interprets T as a pushdown transducer, which inputs
nested words in NΣ and outputs words in ∆∗. The pushdown is “visible” in that
it pushes (resp. pops) when reading opening (resp. closing) parenthesis. We define
the set of configurations of an n2w by Σ̂∗ ×Q× Γ ∗ ×∆∗. Every configuration

C = (w, q, S, u) has an input word w, a state q, a stack S and an output word
u. We call C initial for t ∈ TΣ if w = lin(t), q ∈ init , S = ε, and u = ε. We
call C a final configuration for u if w = ε, q ∈ fin, and S = ε. An opening rule

q
op a/u′:γ−−−−−−→ q′ applies in state q ∈ Q, reads an opening parenthesis (op, a) where

a ∈ Σ pushes γ ∈ Γ to the stack, concatenates u′ to the end of the current

output word, and goes to state q′ ∈ Q. A closing rule q
cl a/u′:γ−−−−−−→ q′ applies in

state q ∈ Q, reads a closing parenthesis (cl, a) under the condition that the
top-most symbol on the stack is γ. It then pops γ from the stack, concatenates
u′ to the end of the current output word, and goes to state q′. The transitions
between configurations is defined as follow:

q
op a/u′:γ−−−−−−→ q′ ∈ rul

((op, a) · w, q, S, u)→ (w, q′, γ · S, u · u′)
q

cl a/u′:γ−−−−−−→ q′ ∈ rul

((cl, a) · w, q, γ · S, u)→ (w, q′, S, u · u′)

We say that a n2w T transforms unranked tree t to word u if T licences
a transition sequence C →∗ C ′ where C is initial for t and C ′ final for u, and
define the relation JT K = {(t, u) ∈ TΣ ×∆∗ | T transforms t to u}. Also, an na
A recognizes the tree language L(A) = {t ∈ TΣ | (t, ε) ∈ JAK}.

The second characterization of JT K is based on runs, which annotate opening
and closing events of nodes of unranked trees by rules. As usual, a single run of
an automata on a tree is supposed to capture all information of all intermediate
configurations leading to acceptance. We define the set of nodes of an unranked
trees by nod(a(t1, . . . , tn)) = {ε} ∪ {i · π | π ∈ nod(ti)}. An event is a member
of the set n̂od(t), i.e. an element of a preorder traversal of t. The set n̂od(t) is
totally ordered: the first event is the opening of the root (op, ε), the last event is
the closing of the root (cl, ε), etc. We write (α, π) < (α′, π′) if (α, π) is properly
before (α′, π′) in this order and define pr(α, π) ∈ n̂od(t) to be the immediate
predecessor of (α, π) ∈ n̂od(t) in that order.

A run of an n2w on a tree t ∈ TΣ is a function R : n̂od(t) → rul such that
lhs(R(op, ε)) ∈ init , and for any (α, π) ∈ n̂od(t), ssy(R(op, π)) = ssy(R(cl, π)),
rhs(R(pr(α, π))) = lhs(R(α, π)), and act(R(α, π)) = (α, a), where a is the label
of the node π in t. We call R successful if rhs(R(cl, ε)) ∈ fin.

See Fig. 3 for an example of a successful run.

Lemma 1. JT K = {(t, output(R(e1)) · . . . · output(R(en))) | t ∈ TΣ , R successful
run of T on t, the events of t are e1 < . . . < en}.

An n2w T is deterministic or an dn2w if it satisfies (1) for all q ∈ Q and

a ∈ Σ there exists at most one γ ∈ Γ , u ∈ ∆∗, and q′ ∈ Q such that q
op a/u:γ−−−−−→ q′

belongs to rul ; (2) for all q ∈ Q, a ∈ Σ, and γ ∈ Γ there is at most one u ∈ ∆∗

and q′ ∈ Q such that q
cl a/u:γ−−−−−→ q′ belongs to rul ; (3) there exists at most one

state in init .
An n2w is top-down ifQ = Γ and all closing rules have the form q

cl a/u:q′−−−−−→ q′.
An n2w is top-down deterministic (dn2w↓) if it is top-down and deterministic.
A dna is a dn2w and an na, and a dna↓ is a dn2w↓ and an na.

0 1

23

x1
a , x

1
b

x2
a , x

2
b

x4
a , x

4
bx3

a , x
3
b

x4
a , x

4
b

x3
a , x

3
b

such that ∀d ∈ {a, b}:
x1
d = op d/(op, c) : 3
x2
d = op d/ε : 2
x3
d = cl d/(op, d) · (cl, d)

·(cl, c) : 3
x4
d = cl d/(op, d) · (cl, d) : 2

3

a

2

b

2

b

(op, c) (op, a) · (cl, a) · (cl, c)

ε (op, b) · (cl, b)

ε (op, b) · (cl, b)

0

1

1

1

3

2

2

Fig. 3. An example dn2w↓ with a successful run on a(b(b)). For a node α of the
input tree, we put output(R(op, α)) and rhs(R(op, α)) on its left, rhs(R(cl, α)) and
output(R(cl, α)) on its right, and ssy(R(, α)) above it.

It is known that dnas can recognize all regular languages of unranked trees,
while dna↓s are properly less expressive. This is similar to the case of ranked
trees, where bottom-up deterministic tree automata can recognize all regular
languages, while top-down deterministic tree automata capture only path closed
languages. Emptiness of nas can be checked in quadratic time. Intersection and
complementation for dnas can be performed in polynomial time. We can thus
check inclusion and equivalence of dnas in polynomial time too. We also remark
that the set of all possible outputs of a n2w can be defined by a context-free
grammar of size polynomial in the size of the n2w. Using the results of [17] we
show that verifying that a n2w outputs only well-balanced words is in PTIME.

As an example, we consider a transformation τ : TΣ → ∆̂ where Σ = {a, b}
and ∆ = Σ ∪ {c}. τ “turns 90 degree clockwise” the input tree: a(b(b(a(b))) is
mapped to (the linearization of) c(b, a, b, b, a)). More generally, transformation
τ maps tree a1(a2(...(an) . . .)) to lin(c(an, . . . , a1)) where a1, . . . , an ∈ Σ and
n ≥ 0. We define τ with a dn2w↓ in Fig. 3 with Q = Γ = {0, 1, 2, 3}, init = {0}
and fin = {3}. Except for the opening c parenthesis, all output is produced at
closing time. A run of T on the input tree a(b(b)) is shown in Fig. 3 too. The
inverse transformation modulo linearization τ ′ : T∆ → Σ̂ cannot be expressed by
any n2w since we would have to read a horizontal word from the right to the left.
This is impossible, similarly to word inversion by one-way string transducers.

For every class C of transducers, we define the C-equivalence problem. Its
input are two transducers T1, T2 ∈ C with the same alphabets, and its output is
yes if JT1K = JT2K and no otherwise.

3 Morphism Equivalence on CFGs

We relate dn2ws and dn2ws↓-equivalence to word morphism equivalence on cfgs

[14, 13]. A (word) morphism is a total function M : Σ∗ → ∆∗ such that M(v ·
u) = M(v) · M(u). It is uniquely specified by the values taken on letters of
Σ. We use the set {(a,M(a)) | a ∈ Σ} as the representation of M with size
|M | =

∑
a∈Σ |M(a)|.

A context-free grammar (cfg) over Σ is a tuple G = (Σ,Q, init , rul), where
Σ is the set of terminals, Q is the set of nonterminals or states, init ⊆ Q the set

of start states, rul ⊆ Q × (Σ ∪ Q∗) a set of rules. We denote rules r as q → ω
where q ∈ Q is its left-hand side (lhs(r)) and ω ∈ Σ ∪ Q∗ its right-hand side
(rhs(r)). The size of a rule |r| is the length of its rhs. The size of a grammar G
is |G| = |Σ|+ |Q|+Σr∈rul |r|. The set L(G) of words recognized by G is defined
in the standard way.

Morphism equivalence on cfgs is the decision problem, which inputs two
finite sets Σ and ∆, two morphisms M1,M2 : Σ∗ → ∆∗, and a cfg G with
alphabet Σ, and outputs yes iff M1(w) = M2(w) for all w ∈ L(G).

We need extended parse trees, whose inner nodes are labeled by rules instead
of nonterminals. Formally, an extended parse tree of a grammar G is a tree
t ∈ Trul∪Σ , such that for all nodes π ∈ nod(t): 1. inner nodes are labeled by
rules and leafs in Σ, 2. if the label of π is a rule q → q1 · · · qn then π has exactly
n children, and for all 1 ≤ i ≤ n child π · i is labeled by a rule with lhs qi, and
3. if the label of π is a rule q → a then π has exactly one child which is a leaf
labeled a. Extended parse trees are ranked trees, when using the size of a rule
as its arity. As usually, given a tree t we define yield(t) to be the concatenation
of the labels of all leaves in left-to-right order. Clearly, w ∈ L(G) if and only if
there exists an extended parse tree t of G with w = yield(t).

Lemma 2. For every morphism M : Σ∗ → ∆∗ and cfg G with alphabet Σ, we
can construct in time O(|M | + |G|2) a dn2w↓ T with alphabet Σ and ∆ such
that JT K = {(t,M(yield(t))) | t extended parse tree of G}.

Proof (sketch). We take the grammar G = (Σ,QG, initG, rulG) and construct
an dn2w↓ T = (Σ′, ∆,QT , ΓT , initT , rulT ,finT) that takes as an input extended
parse tree of G t and outputs M(yield(t)). This can be done top-down deter-
ministically since extended parse trees contain all necessary information. Let
Σ′ = QG∪Σ, QT = ΓT = {(r, j) | r ∈ rulG, 0 ≤ j ≤ |r|}∪{o, d, f}, initT = {o},
finT = {f}, and rulT consists of the following transitions:

r ∈ rulG lhs(r) ∈ initG

o
op r/ε:f−−−−−→ (r, 0)

(r, |r|) cl r/ε:f−−−−−→ f

r ∈ rulG rhs(r) = a

(r, 0)
op a/M(a):(r,1)−−−−−−−−−−→ d

d
cl a/ε:(r,1)−−−−−−−→ (r, 1)

r, r′ ∈ rulG rhs(r) = q1 · · · qk 1 ≤ j ≤ |r| lhs(r′) = qj

(r, j−1)
op r′/ε:(r,j)−−−−−−−→ (r′, 0)

(r′, |r′|) cl r′/ε:(r,j)−−−−−−−→ (r, j)

�

Proposition 1. Morphism equivalence on cfgs can be reduced in quadratic time
to dn2w↓-equivalence.

Proof. Take two morphisms M1,M2 : Σ∗ → ∆∗ and a cfg G, and let T1 and T2

be obtained with the construction described in Lemma 2 for M1 with G and M2

with G respectively, in O(|G|2 + |M1| + |M2|). Since T1 and T2 have the same
domain, it should be clear that T1 and T2 are equivalent if and only if M1 and
M2 are equivalent on G. ut

We next reduce dn2w-equivalence to morphism equivalence on cfgs. Let T1

and T2 be two n2ws with input alphabet Σ and output alphabet ∆. Let t ∈ TΣ
be a tree whose events are e1 < . . . < en. A successful parallel run of T1 and
T2 on tree t is a word s with alphabet R = rulT1 × rulT2 such that there exist
two successful runs R1 of T1 and R2 of T2 on t with s = (R1(e1), R2(e1)) · . . . ·
(R1(en), R2(en)). We use two morphisms M1 and M2 from R to ∆ such that:

Mi((r1, r2)) = u if ri = q
αa/u:γ
−−−−−→ q′

If s is a successful parallel run of T1 and T2 on t, then (t,Mi(s)) ∈ JTiK.

Lemma 3. For any two n2ws T1 and T2 with the same alphabets there exists a
cfg G such that L(G) is the set of all successful parallel runs of T1 and T2.

Proof (sketch). We construct the grammar G = (R, QG, initG, rulG) as follows.
The set of nonterminals isQG = {o}∪Q2

T1
×Q2

T2
. A nonterminal ((p1, q1), (p2, q2))

is supposed to produce a parallel run of T1 from p1 to q1 and T2 from p2 to q2
(on the same input). There is only one start symbol initG = {o} and the rules
in rulG are defined follows:

r1, r
′
1 ∈ rulT1 r1 = p1

op a/u1:γ1−−−−−−→ q1 r′1 = p′1
cl a/u′

1:γ1−−−−−−→ q′1 p1 ∈ initT1 q′1 ∈ finT1

r2, r
′
2 ∈ rulT2 r2 = p2

op a/u2:γ2−−−−−−→ q2 r′2 = p′2
cl a/u′

2:γ2−−−−−−→ q′2 p2 ∈ initT2 q′2 ∈ finT2

o→ (r1, r2) · ((q1, p′1), (q2, p
′
2)) · (r′1, r′2)

r1, r
′
1 ∈ rulT1 r1 = p1

op a/u1:γ1−−−−−−→ q1 r′1 = p′1
cl a/u′

1:γ1−−−−−−→ q′1,

r2, r
′
2 ∈ rulT2 r2 = p2

op a/u2:γ2−−−−−−→ q2 r′2 = p′2
cl a/u′

2:γ2−−−−−−→ q′2
((p1, q

′
1), (p2, q

′
2))→ (r1, r2) · ((q1, p′1), (q2, p

′
2)) · (r′1, r′2)

p1, p
′
1, q1 ∈ QT1 p2, p

′
2, q2 ∈ QT2

((p1, q1), (p2, q2))→ ((p1, p
′
1), (p2, p

′
2)) · ((p′1, q1), (p′2, q2))

q1 ∈ QT1 , q2 ∈ QT2

((q1, q1), (q2, q2))→ ε
�

Proposition 2. dn2w-equivalence can be reduced in polynomial time to mor-
phism equivalence on cfgs.

Proof. Let T1 and T2 be two dn2ws with the input alphabet Σ and the output
alphabet ∆. First, we need to verify that the domains of T1 and T2 coincide. To
do that, we test equivalence of the dnas that define the domains of T1 and T2

(obtained by removing the output components from transitions). We recall that
this can be done in polynomial time due to determinism.

If the domains of T1 and T2 are equal, let G be the grammar constructed
in Lemma 3, and M1 and M2 the two morphisms defined above. Clearly, T1 is
equivalent to T2 if and only if M1 is equivalent to M2 on G. ut

Interestingly, composing Proposition 2 with Proposition 1 allows us to reduce
dn2w-equivalence to dn2w↓-equivalence, the latter dealing with a weaker model
than the former. The converse reduction is trivial.

Corollary 1. dn2w-equivalence can be reduced in polynomial time to dn2w↓-
equivalence, and vice versa.

fcns(a(t1, . . . , tn)) = a(fcns ′(t1, . . . , tn),#)
fcns ′(a(t11, . . . , t

m
1), t2, . . . , tn) =
a(fcns ′(t11, . . . , t

m
1), fcns ′(t2, . . . , tn))

fcns ′(()) = #

d

a b

c

d

a #

c b

#

Fig. 4. First-child next-sibling encoding

4 Top-Down Ranked Tree to Word Transducers

We now relate dn2ws↓ to standard top-down deterministic transducers on ranked
trees, based on binary encoding of unranked trees.

A ranked alphabet consists of a set Σ and a arity function ar : Σ → N. The
set T rΣ of ranked trees over Σ is the least subset of TΣ that contains all trees
a(t1, . . . , tar(a)) with ti ∈ T rΣ .

We fix an infinite sequence of pairwise distinct tree variables (xi)i∈N. A top-
down ranked-tree to word transducer (r2w↓) is a tuple S = (Σ, ∆, Q, init , rul),
where Σ is a ranked alphabet, ∆ a finite set, init ⊆ Q, and rul a finite set of rules
of the form q(a(x1, . . . , xar(a)))→ w where q ∈ Q and w is a word over alphabet
∆] {p(xi) | p ∈ Q, 1 ≤ i ≤ ar(a)}. An r2w↓ S is top-down deterministic or
a dr2w↓s if for every a ∈ Σ there exists at most one state q ∈ init such that
q(a(x1, . . . , xar(a)))→ w ∈ rul for some w, and if there exist no two rules in rul
with the same left hand side.

The semantics of S is defined in terms of the relations JSKq ⊆ T rΣ×∆∗, where
q ∈ Q, intuitively representing the transformation performed by S in state q.
Formally, (a(t1, . . . , tk), u) ∈ JSKq if and only if there exists q(a(x1, . . . , xk))→ w
in rul such that u is obtained by replacing in w every occurrence of p(xi) by
ui for some (ti, ui) ∈ JSKp (if some p(xi) occurs more than once in w, then
different pairs (ti, ui), (ti, u′i) ∈ JSKp can be used for replacement). Finally, the
transformation defined by S is JSK =

⋃
q∈initJSKq.

From now, we will restrict ourselves to noncopying and order-preserving
dr2w↓s. These are dr2w↓s with rules of the form:

q(a(x1, . . . , xk))→ u0 · q1(x1) · u1 · . . . · uk−1 · qk(xk) · uk,

where ui ∈ ∆∗ for all i ∈ {1, . . . , k}. Given this restriction, we can drop variables
from the rules, and simply denote them as q(a)→ u0 · q1 · . . . · qk · uk.

Our first result, shows that any transformation definable with a dn2w↓ can be
expressed by a noncopying order-preserving dr2w↓s, modulo a binary encoding
of input trees. Here we use Rabin’s encoding of unranked trees as usual, often
called first-child next-sibling encoding. An unranked tree over Σ is represented
using a binary tree whose inner nodes are labeled with Σ (binary symbol) and
leaves with # (constant symbol not belonging to Σ). Formally, the encoding is
defined and illustrated by an example in Fig. 4.

Proposition 3. For any dn2w↓ T we can construct in time O(|Σ|2 ∗ |QT |2) a
noncopying order-preserving dr2w↓s S with JSK = {(fcns(t), u) | (t, u) ∈ JT K}.

Proof (sketch). Let T = (Σ,∆,QT , ΓT , initT , rulT ,finT) and recall that ΓT =
QT because T is a dn2w↓. We defined S = (Σ ∪ {#}, ∆,QS , initS , rulS) such
that QS = initT ∪ {q#} ∪QT ×Σ × ΓT , initS = initT , and rulS consists of the
following rules:

q0 ∈ initT q2 ∈ finT q0
op a/u:q2−−−−−−→ q1 ∈ rulT

q0(a)→ u · (q1, a, q2) · q#
q

cl a/u:q′−−−−−→ q′ ∈ rulT
(q, a, q′)(#)→ u

b ∈ Σ p ∈ QT q
op a/u:q2−−−−−−→ q1 ∈ rulT

(q, b, p)(a)→ u · (q1, a, q2) · (q2, b, p)
true

q#(#)→ ε

Intuitively, the state (q, a, γ) corresponds to T being in state q, having γ on the
top of the stack, and a being the label of the parent of the current node. The
introduction of the state q# makes sure that S accepts on the input only trees
that are result of the first-child next-sibling encoding of some unranked tree.
One can then prove inductively that JSK = {(fcns(t), u) | (t, u) ∈ JT K}. ut

Next, we show the converse, i.e. that every transformation defined with a
dr2w↓s can be expressed by dn2w↓. This time no encoding is necessary since
unranked trees comprise a subset of ranked trees.

Proposition 4. noncopying order-preserving dr2w↓s S can be converted to
dn2ws↓ T with JSK = JT K in time O(|S| ∗ n) where n = max({ar(x) | x ∈ Σ}).

Proof (sketch). Let S = (Σ,∆, statesS , initS , rulS). We extend the arity func-
tion ar to rulS in the following way: ar(q(a)→ w) = ar(a).

The constructed dn2w↓ is T = (Σ,∆,QT , ΓT , initT , rulT ,finT) , where QT =
ΓT = {(r, j) | r ∈ rulS , 0 ≤ j ≤ ar(r)} ∪ {o, f}, initT = {o}, finT = {f}, and
rulS consists of the following rules

q0 ∈ initS
r = q0(a)→ u0 · q1 . . . qk · uk ∈ rulS

o
op a/uo:f−−−−−−→ (r, 0)

(r, k)
cl a/ε:f−−−−−→ f

r = q(a)→ u0 · q1 . . . qj · uj . . . qk · uk ∈ rulS
r′ = qj(b)→ v0 · p1 . . . pm · vm 1 ≤ j ≤ k

(r, j − 1)
op b/vo:(r,j)−−−−−−−−→ (r′, 0)

(r′,m)
cl b/uj :(r,j)
−−−−−−−−→ (r, j)

Intuitively, when the transducer is in the state (r, j), it processes the rule
r = q0(a)→ u0 · q1 . . . qk ·uk, has just written out uj , and is about to handle the
state qj+1 (or to close the parenthesis a if j = k). JSK = JT K is proved with an
inductive proof. ut

Corollary 2. Equivalence of noncopying order-preserving dr2w↓s can be re-
duced in polynomial time to dn2w↓-equivalence, and vice versa.

5 Bottom-Up Ranked Tree to Word Transducers

Even though the expressive power of bottom-up and top-down deterministic tree
transducers are uncomparable, we can show their equivalence problems are the

same. Here we use direct reductions, that are inspired from the reduction of
dn2w-equivalence to dn2w↓-equivalence.

We fix an infinite sequence of pairwise distinct variables (Xi)i∈N for out-
put words. A bottom-up ranked-tree to word transducer (r2w↑) is a tuple S =
(Σ,∆,Q,fin, rul) with rules in rul of the form: a(q1(X1), . . . , qk(Xk)) → q(w)
where k = ar(a) q, qi ∈ Q, and w is a word with alphabet ∆] {X1, . . . , Xk}. The
semantics JSK ⊆ T rΣ ×∆∗ can be defined as follows:

a(q1(X1), . . . , qk(Xk))→ q(w) ∈ rul
(t1, u1) ∈ JSKq1 . . . (tk, uk) ∈ JSKqk

(a(t1, . . . , tk), w[u1/X1, . . . , un/Xn]) ∈ JSKq

true

JSK = ∪q∈finJSKq

An r2w↑ S is bottom-up deterministic (or a dr2w↑) if no two rules of S have
the same left-hand side. In this case, JSK defines a partial function.

From now on, we will only consider noncopying and order-preserving r2w↑s,
i.e., r2w↑s with rules restricted to the form a(q1(X1), . . . , qk(Xk)) → q(u0 · X1 ·
u1 · · · Xk ·uk). Since noncopying, such r2w↑s can be translated to r2w↓s defining
the same relation, and vice versa. A rule as above is transformed to q(a) →
u0 ·q1 ·u1 · · · qk ·uk, while final states of the bottom-up transducer become initial
states of its top-down version. We can thus talk of r2ws in the noncopying case,
rather than distinguishing r2w↑s and r2w↓s artificially.

Given two noncopying order-preserving r2ws S1 and S2 with the same al-
phabets Σ and ∆, a successful parallel run of S1 and S2 is a tree s over alphabet
R = rulS1 × rulS2 with nodes π ∈ nod(s) labeled by some pair of rules (rπ1 , r

π
2)

such that (1) the label of the root of s satisfies rεi = qi()→ for some qi ∈ finSi
,

and (2) for all nodes π ∈ nod(s) with rπi = qi(ai) → u0
i · q1i . . . q

ki
i · u

ki
i , it holds

that a1 = a2 and thus k1 = k2 = ar(a1) = ar(a2) and that π has exactly
k = k1 = k2 children π · j labeled by rules rπ·ji = qji ()→ where 1 ≤ j ≤ k and
1 ≤ i ≤ 2. For every successful parallel run s we define input(s) ∈ T rΣ and the
outputi(s) ∈ ∆∗ as follows, where ri = qi(a)→ u0

i · q1i . . . qki · uki :

input((r1, r2)(s1, . . . , sk)) = a(input(s1), . . . , input(sk))
outputi((r1, r2)(s1, . . . , sk)) = u0

i · outputi(s1) . . . outputi(sk) · uki

Lemma 4. Let S1 and S2 be noncopying and order-preserving r2ws over the
alphabets Σ and ∆. Then, for all t ∈ T rΣ and u1, u2 ∈ ∆∗ we have that (t, u1) ∈
JS1K and (t, u2) ∈ JS2K if and only if there exists a successful parallel run s of
S1 and S2 such that input(s) = t, output1(s) = u1, and output2(s) = u2.

Proposition 5. Equivalence of noncopying and order-preserving dr2w↑s S1

and S2 can be reduced in O(|S1| × |S2|) to equivalence of noncopying and order-
preserving dr2w↓s, and vice versa.

Indeed, taking for example two noncopying and order-preserving dr2w↑s S1

and S2 over the same domain (otherwise, it just a problem of equivalence over
tree automata that can be dealt in O(|S1| × |S2|), see [3]), one can build two
dr2w↓s S′1 and S′2 with JS′iK containing (s, outputi(s)) where s is a parallel run
of S1 and S2. Lemma 4 then finishes the reduction.

6 Conclusion and Future Work

We have shown that various classes of tree-to-word transducers have the same
equivalence problem modulo polynomial time reductions. Our results are based
on a new relationship to the morphism equivalence problem on CFGs that we
established. Our equivalences do not carry over to tree-to-tree transducers with-
out macros or concatenation operations, since these cannot express word mor-
phisms on CFGs in any obvious manner (Lemma 3). The classes of deterministic
nested word transducers that we have proposed here, open up quite a number
of questions of interest for the XML, formal language, tree automata and gram-
matical inference communities. For instance, grammatical inference algorithm
algorithms often relies on Myhill-Nerode theorem, which is closely linked with
equivalence problem (for example, see [12] for a learning algorithm for a class
of word transducers). So far, there lack results on type checking, minimization,
and learnability.

References

1. Alur, R.: Marrying words and trees. ACM SIGMOD-SIGACT-SIGART SPDS 26,
233–242 (2007)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. ACM STC 36, 202–211
(2004)

3. Champavère, J., Gilleron, R., Lemay, A., and Niehren, J.: Efficient Inclusion Check-
ing for Deterministic Tree Automata and DTDs. LATA 184–195 (2008)

4. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., and Tommas, M.: Tree Auto. Tech. and App.online, (Revised 2007).

5. Engelfriet, J., Maneth, S., and Seidl, H.: Deciding Equiv. of Top-Down XML Trans-
formations in Poly. Time. Journal of Comp. and Syst. Sci., (to appear, 2009)

6. Gauwin, 0., Niehren, J., and Roos Y.: Streaming tree automata. IPL 109(1), 13–17
(2008)

7. Culik II, K., Karhumäki, J.: Synchronizable deterministic pushdown automata and
the decidability of their equivalence. Acta Inf. 23(5), 597–605 (1986)

8. Maneth. S.: Models of Tree Translation. PhD Thesis
9. Maneth, S., Berlea, A., Perst, T., Seidl, H.: type checking with macro tree trans-

ducers. ACM SPDS 24, 283–294 (2005)
10. Martens, W., Neven, F.: Typechecking top-down uniform unranked tree transduc-

ers. ICDT, LNCS 2572, 64–78 (2003)
11. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. Found. of

Soft. Tech. and Theor. Comp. Sci., 134–145 (1998)
12. Oncina, J., Garcia, P., Vidal, E.: Learn. Subseq. Transd. for Patt. Recogn. and

Interpretation Tasks. Trans. on Patt. Anal. and Mach. Intel. 15, 448–458 (1993)
13. Plandowski, W.: Testing Equivalence of Morphisms on Context-Free Languages.

ESA, 460–470 (1994)
14. Karhumäki, J., Plandowski, W., Rytter, W.: Polynomial Size Test Sets for Context-

Free Languages. J. Comput. Syst. Sci. 50(1), 11–19 (1995)
15. Raskin, J.-F., Servais, F.: Visibly pushdown transducers. Auto., Lang. and Prog.,

LNCS 5126, 386–397 (2008)
16. Sénizergues, G.: The equivalence problem for deterministic pushdown automata is

decidable. Auto., Lang. and Prog., LNCS 1256, 671–681 (1997)
17. Tozawa, A., Minamide, Y.: Complexity results on balanced context-free languages.

FoSSaCS, LNCS 4423, 346–360 (2007)

