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Noise-Resilient Group Testing:
Limitations and Constructions

Mahdi Cheraghchi*

Abstract

We study combinatorial group testing schemes for learning d-sparse Boolean vectors using
highly unreliable disjunctive measurements. We consider an adversarial noise model that only
limits the number of false observations, and show that any noise-resilient scheme in this model
can only approximately reconstruct the sparse vector. On the positive side, we take this barrier
to our advantage and show that approximate reconstruction (within a satisfactory degree of
approximation) allows us to break the information theoretic lower bound of Q(d?logn) that is
known for exact reconstruction of d-sparse vectors of length n via non-adaptive measurements,
by a multiplicative factor Q(d).

Specifically, we give simple randomized constructions of non-adaptive measurement schemes,
with m = O(dlogn) measurements, that allow efficient reconstruction of d-sparse vectors up to
O(d) false positives even in the presence of dm false positives and O(m/d) false negatives within
the measurement outcomes, for any constant § < 1. We show that, information theoretically,
none of these parameters can be substantially improved without dramatically affecting the
others. Furthermore, we obtain several explicit constructions, in particular one matching the
randomized trade-off but using m = O(d'*t°") logn) measurements. We also obtain explicit
constructions that allow fast reconstruction in time poly(m), which would be sublinear in n for
sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of
randomness condensers and extractors.

An immediate consequence of our result is an adaptive scheme that runs in only two non-
adaptive rounds and exactly reconstructs any d-sparse vector using a total O(dlogn) measure-
ments, a task that would be impossible in one round and fairly easy in O(log(n/d)) rounds.
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1 Introduction

Group testing is an area in applied combinatorics that deals with the following problem: Suppose
that in a large population of individuals, it is suspected that a small number of the individuals
(known as defectives, or positives) are affected by a condition that can be detected by carrying out
a particular test (for example, a disease that can be diagnosed by testing blood samples). Moreover
suppose that a pooling strategy is permissible, namely, that it is possible to perform a test on a
chosen group of individuals, in which case the outcome of the test would be positive if at least one
of the individuals in the group possesses the condition (for example, performing a test on a mixture
of blood samples results in positive if at least one of the samples is positive). The trivial strategy
would be to test each individual separately, which takes as many tests as the population size. The
basic question in group testing is: how can we do better?

This question is believed to be first posed by Dorfman [14] during the screening process of
draftees in World War II. In this scenario, blood samples are drawn from a large number of people
which are tested for a particular disease. If a number of samples are pooled in a group, on which
the test is applied, the outcome would be positive if at least one of the samples in the group carries
a particular antigen that certifies the disease. Since then, group testing has been applied for a
wide range of purposes, from testing for defective items (e.g., defective light bulbs or resistors) as
a part of industrial quality assurance [43] to DNA sequencing [36] and DNA library screening in
molecular biology (see, e.g., [7,32-34,|41] and the references therein), and less obvious applications
such as multiaccess communication [49], data compression [25], pattern matching [10], streaming
algorithms [11], software testing [3], and compressed sensing [12], to name a few. Moreover, over
the decades, a vast amount of tools and techniques has been developed for various settings of the
problem. We refer the interested reader to the books by Du and Hwang [15,/16] for a detailed
account of the major developments in this area.

More formally, the basic goal in group testing is to reconstruct a d—sparseﬂ Boolean vector
x € {0,1}", for a known integer parameter d > 0, from a set of observations. Each observation is
the outcome of a measurement that outputs the bitwise “or” (disjunction) of a prescribed subset
of the coordinates in z. Hence, a measurement can be seen as a binary vector in {0,1}" which is
the characteristic vector of the subset of the coordinates being combined together. More generally,
a set of m measurements can be seen as an m x n binary matrix (that we call the measurement
matriz) whose rows define the individual measurements.

In this work we study group testing in presence of highly unreliable measurements that can
produce false outcomes. We will mainly focus on situations where up to a constant fraction of
the measurement outcomes can be incorrect. Moreover, we will mainly restrict our attention to
non-adaptive measurements; the case in which the measurement matrix is fully determined before
the observation outcomes are known. Non-adaptive measurements are particularly important for
applications as they allow the tests to be performed independently and in parallel, which saves
significant time and cost.

On the negative side, we show that when the measurements are allowed to be highly noisy, the
original vector  cannot be uniquely reconstructed. Thus in this case it would be inevitable to resort
to approximate reconstructions, i.e., producing a sparse vector & that is close to the original vector
in Hamming distance. The reconstruction can err by producing false positives (i.e., a position at
which # is 1 but z is 0), or false negatives (where & is 0 but = is 1). In particular, our result
shows that if a constant fraction of the measurements can go wrong, the reconstruction might be
different from the original vector in €2(d) positions, irrespective of the number of measurements.

'We define a d-sparse vector as a vector whose number of nonzero coefficients is at most d.



Det/ | Rec.

m €o el ey | Rnd | Time
O(dlogn) am Q(m/d) | O(d) | Rnd | O(mn)
O(dlogn) Q(m) Q(m/d) | dd | Rnd | O(mn)

O(d"t°M log n) am Q(m/d) | O(d) | Det | O(mn)
d - quasipoly(logn) Q(m) Q(m/d) | dd | Det | O(mn)
d - quasipoly(log n) am Q(m/d) | O(d) | Det | poly(m)
poly(d)poly(logn) | poly(d)poly(logn) | Q(eo/d) | dd | Det | poly(m)

Table 1: A summary of constructions in this paper. The parameters a € [0,1) and § € (0, 1]
are arbitrary constants, m is the number of measurements, ey (resp., e;) the number of tolerable
false positives (resp., negatives) in the measurements, and e, is the number of false positives in
the reconstruction. The fifth column shows whether the construction is deterministic (Det) or
randomized (Rnd), and the last column shows the running time of the reconstruction algorithm.

For most applications this might be an unsatisfactory situation, as even a close estimate of the set
of positives might not reveal whether any particular individual is defective or not, and in certain
scenarios (such as an epidemic disease or industrial quality assurance) it is unacceptable to miss
any affected individuals. This motivates us to focus on approximate reconstructions with one-sided
error. Namely, we will require that the support of & contains the support of z and be possibly larger
by up to O(d) positions. It can be argued that, for most applications, such a scheme is as good
as exact reconstruction, as it allows one to significantly narrow-down the set of defectives to up to
O(d) candidate positives. In particular, as observed in [29], one can use a second stage if necessary
and individually test the resulting set of candidates to identify the exact set of positives, hence
resulting in a so-called trivial two-stage group testing algorithm. Next, we will show that in any
scheme that produces no or few false negatives in the reconstruction, only up to O(1/d) fraction of
false negatives (i.e., observation of a 0 instead of 1) in the measurements can be tolerated, while
there is no such restriction on the amount of tolerable false positives. Thus, one-sided approximate
reconstruction breaks down the symmetry between false positives and false negatives in our error
model.

On the positive side, we give a general construction for noise-resilient measurement matrices
that guarantees approximate reconstruction up to O(d) false positives. Our main result is a general
reduction from the noise-resilient group testing problem to construction of well-studied combinato-
rial objects known as randomness condensers that play an important role in theoretical computer
science. Different qualities of the underlying condenser correspond to different qualities of the
resulting group testing scheme, as we describe later. Using the state of the art constructions of
randomness condensers, we obtain different instantiations of our framework with incomparable
properties, as summarized in Table . In particular, the resulting randomized constructions (ob-
tained from optimal lossless condensers and extractors) can be set to tolerate (with overwhelming
probability) any constant fraction (< 1) of false positives and an ©(1/d) fraction of false negatives,
and they are able to produce an accurate reconstruction up to O(d) false positives (where the pos-
itive constant behind O(-) can be made arbitrarily small), which is the best trade-off one can hope
for, all using only O(dlogn) measurements. This almost matches the information-theoretic lower
bound Q(dlog(n/d)) shown by simple counting. We will also show explicit (deterministic) con-
structions that can approach the optimal trade-off, and finally, those that are equipped with fully
efficient reconstruction algorithms with running time polynomial in the number of measurements.



Related Work. There is a large body of work in the group testing literature that is related to
the present work; here we briefly discuss a few with the highest relevance. The exact group testing
problem in the noiseless scenario is handled by what is known as superimposed coding (see [18,30])
or the closely related concepts of cover-free families or disjunct matrice

A d-superimposed code is a collection of binary vectors with the property that from the bitwise
“or” of up to d words in the family one can uniquely identify the comprising vectors. A d-cover-
free family is a collection of subsets of a universe, none of which is contained in any union of up
to d of the other subsets. A d-disjunct matrix is a binary matrix whose columns correspond to
characteristic vectors of a d-cover-free family. These notions turn out to precisely characterize the
combinatorial structure needed for (worst-case) noiseless group testing.

It is known that, even for the noiseless case, exact reconstruction of d-sparse vectors (when d
is not too large) requires at least Q(d?logn/logd) measurements (several proofs of this fact are
known, e.g., [17,20,40]). An important class of superimposed codes is constructed from combi-
natorial designs, among which we mention the construction based on MDS codes given by Kautz
and Singleton [28], which, in the group testing notation, achieves O(d?log?n) measurementsﬂ A
nearly optimal construction of d-disjunct matrices with O(d?logn) rows (using a derandomized
construction of codes on the Gilbert-Varshamov bound) was obtained by Porat and Rothschild
[37]. They also use combinatorial designs based on error-correcting codes with large distance as
their main technical tooﬁ More recently (independently of the initial publication of our work [8]),
Indyk, Ngo, and Rudra gave a randomized construction of d-disjunct matrices that also achieves
the optimal O(d?logn) number of measurements [27] for noiseless group testing. Similar to the
present work, their technique is based on list-decodable codes and their construction is equipped
with an efficient reconstruction algorithm (with polynomial running time in the number of measure-
ments). They also obtain an explicit construction when the sparsity parameter d is small (namely,
d = O(logn/loglogn)).

Approximate reconstruction of sparse vectors up to a small number of false positives (that
is one focus of this work) has been studied as a major ingredient of trivial two-stage schemes
[2,7,13,/19,129,132]. In particular, a generalization of superimposed codes, known as selectors, was
introduced in [13] which, roughly speaking, allows for identification of the sparse vector up to a
prescribed number of false positives. The authors of [13] give a non-constructive result showing
that there are such (non-adaptive) schemes that keep the number of false positives at O(d) using
O(dlog(n/d)) measurements, matching the optimal “counting bound”. A probabilistic construction
of asymptotically optimal selectors (resp., a related notion of resolvable matrices) is given in [7]
(resp., |19]), and [9,26] give slightly sub-optimal “explicit” constructions based on certain expander
graphs obtained from disperser

To give a concise comparison of the present work with those listed above, we mention some of
the qualities of the group testing schemes that we will aim to attain:

“These notions are naturally extended to the noisy setting, e.g., in [31].

3Interestingly, this classical construction can be regarded as a special instantiation of our framework where a
“bounded degree univariate polynomial” is used in place of the underlying randomness condenser. However, the
analysis and the properties of the resulting group testing schemes substantially differ for the two cases, and in
particular, the MDS-based construction owes its properties essentially to the large distance of the underlying code.
In Section @, we will elaborate in more detail on this correspondence as well as a connection with the bit-probe
model in data structures.

4This construction is weakly explicit, in the sense that we later define in Definition

5 The notion of selectors is useful in a noiseless setting. However, as remarked in [7], it can be naturally extended
to include a “noise” parameter, and the probabilistic constructions of selectors can be naturally extended to this
case. Nonetheless, this generalization does not distinguish between false positives and negatives and the explicit
constructions of selectors [9,26] cannot be used in a (highly) noisy setting.



1. Low number of measurements.
2. Arbitrarily good degree of approximation.
3. Maximum possible noise tolerance.

4. Efficient, deterministic construction: As typically the sparsity d is very small compared to
n, a measurement matrix must be ideally fully explicitly constructible in the sense that each
entry of the matrix should be computable in deterministic time poly(d,logn) (e.g., while the
constructions in [7,/9,[13,/19,[26] are all polynomial-time computable in n, they are not fully
explicit in this sense).

5. Fully efficient reconstruction algorithm: For a similar reason, the length of the observation
vector is typically far smaller than n; thus, it is desirable to have a reconstruction algo-
rithm that identifies the support of the sparse vector in time polynomial in the number of
measurements (which might be exponentially smaller than n).

While the works that we mentioned focus on few of the criteria listed above (e.g., none of the above-
mentioned schemes for approximate group testing are equipped with a fully efficient reconstruction
algorithm), our approach can potentially attain all at the same time. As we will see later, using
the best known constructions of condensers we will have to settle to sub-optimal results in one
or more of the aspects above. Nevertheless, the fact that any improvement in the construction of
condensers would readily translate to improved group testing schemes (and also the rapid growth
of derandomization theory) justifies the significance of the construction given in this work.

The remainder of the paper is organized as follows. We will continue in Section [2] with some
preliminaries on the basic notions that we will use. In Section [3| we show our negative results on
the possible trade-offs between the amount of tolerable measurement error and the proximity of
the reconstruction. We introduce our general construction of measurement matrices in Section 4.1
and in Section show several possible instantiations that achieve the trade-offs listed in Table
Finally, in sections and we discuss several notions related to our construction, namely, list-
recoverable codes, combinatorial designs, and the bit-probe model for the set membership problem.

2 Preliminaries

For non-negative integers eg and ej, we say that an ordered pair of binary vectors (z,y), each in
{0,1}", are (eq, e1)-close (or x is (e, e1)-close to y) if y can be obtained from x by flipping at most
eo bits from 0 to 1 and at most e; bits from 1 to 0. Hence, such z and y will be (eg + e1)-close
in Hamming-distance. Further, (z,y) are called (e, e)-far if they are not (eg, e1)-close. Note that
if © and y are seen as characteristic vectors of subsets X and Y of [n], respectivelyﬂ they are
(IY'\ X|,|X \ Y|)-close. Furthermore, (z,y) are (eq, e1)-close iff (y,z) are (eq, ep)-close.

A group of m non-adaptive measurements for binary vectors of length n can be seen as an
m x n matrix (that we call the measurement matriz) whose (i,7)th entry is 1 if and only if the
jth coordinate of the vector is present in the disjunction defining the ith measurement. For a
measurement matrix M, we denote by M|[z] the outcome of the measurements defined by M on a
binary vector x, that is, the bitwise “or” of those columns of M chosen by the support of x. For

5 We use the shorthand [n] for the set {1,2,...,n}.



example, for the measurement matrix

0 01 10110
1 01 0 0101
M:=]1]01 01 01 00
0 00 O1O0T11
1 01 01 110
and Boolean vector z := (1,1,0,1,0,0,0,0), we have M[z] = (1,1,1,0, 1), which is the bit-wise

“or” of the columns shown in boldface.

As motivated by our negative results, for the specific setting of the group testing problem that
we are considering in this work, it is necessary to give an asymmetric treatment that distinguishes
between inaccuracies due to false positives and false negatives. Thus, we will work with a notion
of error-tolerating measurement matrices that directly and conveniently captures this requirement,
as given below:

Definition 1. Let m,n,d, eg, e1, e, €} be integers. An m X n measurement matrix A is called
(eo, €1, €p, €} )-correcting for d-sparse vectors if, for every y € {0,1}™ there exists z € {0,1}" (called
a valid decoding of y) such that for every x € {0,1}", whenever (z, z) are (ef, €})-far, (A[z],y) are
(ep, e1)-far. The matrix A is called fully explicit (or simply explicit) if each entry of the matrix can
be computed in timeﬂ poly(m,logn), and weakly explicit if it can be computed in time poly(m,n).

Intuitively, the definition states that two measurements are allowed to be confused only if they
are produced from close vectors. In particular, an (e, ey, ef), €})-correcting matrix gives a group
testing scheme that reconstructs the sparse vector up to e false positives and €] false negatives
even in the presence of ey false positives and e; false negatives in the measurement outcome.

Under this notation, unique decoding would be possible using an (eg, e1,0, 0)-correcting matrix
if the amount of measurement errors is bounded by at most eg false positives and e; false negatives.
However, when e, + €] is positive, decoding may result in a bounded amount of ambiguity, namely,
up to e false positives and €] false negatives in the decoded sequence.

The special case of (0,0,0,0)-correcting matrices is equivalent to what known in the combi-
natorics literature as d-superimposed codes or d-separable matrices and is closely related (in fact,
equivalent up to an additive constant in the parameter d) to the notions of d-cover-free families
and d-disjunct matrices (as discussed in the introduction; cf. [15] for precise definitions). Also,
(0,0, ef, 0)-correcting matrices are related to the notion of selectors in [13] and resolvable matrices
in [19].

The basic combinatorial tools that we use in this work are the notions of randomness condensers
and extractors. Here we briefly review the essential definitions related to these objects. A detailed
treatment of these notions can be found in the standard theoretical computer science literature,
and in particular, the book by Arora and Barak [1].

The min-entropy of a distribution X over a finite support S is given by

Hoo(X) := min{~logPr(z)},

where Pry(x) is the probability that X assigns to x, and the logarithm is to base 2.
The statistical distance of two distributions X and Y defined over the same finite space S is
given by

1
52 | Br(s) = Pr(s)],

sES

"We will use this convention since typically m < n. In particular, when the sparsity parameter d is small, n can
be exponentially larger than m.



which is half the ¢; distance of the two distributions when regarded as vectors of probabilities over
S. Two distributions X and Y are said to be e-close if their statistical distance is at most €.

We will use the shorthand U, for the uniform distribution on {0,1}", and X ~ X for a random
variable X drawn from a distribution X. The notions of randomness condenser and extractor are
defined as follows.

Definition 2. A function f: {0,1}" x {0,1}* — {0,1}" is a strong k —¢ k' condenser (or simply
a k —¢ k' condenser) if for every distribution X on {0,1}" with min-entropy at least k, random
variable X ~ X and a seed Y ~ Uy, the distribution of (Y, f(X,Y)) is e-close to a distribution
(Up, Z) with min-entropy at least ¢ + k’. The parameters k, €, k — k/, and £ — k/ are called the
entropy requirement, the error, the entropy loss and the overhead of the condenser, respectively.
A condenser with zero entropy loss is called a (k,€)-lossless condenser, and a condenser with
zero overhead is called a (strong) (k,€)-extractor. A condenser is explicit if it is polynomial-time
computable.

3 Negative Results

In coding theory, it is possible to construct codes that can tolerate up to a constant fraction of
adversarially chosen errors and still guarantee unique decoding. Hence it is natural to ask whether
a similar possibility exists in group testing, namely, whether there is a measurement matrix that
is robust against a constant fraction of adversarial errors and still recovers the measured vector
exactly. Below we show that this is not possibld®

Lemma 3. Suppose that an m x n measurement matriz M is (eq, e1, €, €} )-resilient for d-sparse
vectors. Then (max{eg,e1} +1)/(ef,+ €} +1) <m/d.

Proof. We use similar arguments as those used in [5,22] in the context of black-box hardness
amplification in NP: Define a partial ordering < between binary vectors using bit-wise comparisons
(with 0 < 1). Let t := d/(e(, + €} + 1) be an integelﬂ7 and consider any monotonically increasing
sequence of vectors g < -+ < xy in {0, 1}"™ where z; has weight i(e, + €} + 1). Thus, z¢ and x;
will have weights zero and d, respectively. Note that we must also have M[zg] < - -+ < M|xy| due
to monotonicity of the “or” function.

A fact that is directly deduced from Definition[1]is that, for every z, 2" € {0, 1}", if (M [z], M [2'])
are (e, e1)-close, then x and x’ must be (e,+¢€}, ej+€})-close. This can be seen by setting y := M [z']
in the definition, for which there exists a valid decoding z € {0,1}". As (M|z],y) are (e, e1)-close,
the definition implies that (x,z) must be (e, €})-close. Moreover, (M[2],y) are (0,0)-close and
thus, (eq, e1)-close, which implies that (z, ') must be (€], f)-close. Thus by the triangle inequality,
(x,2") must be (e, + €], e + € )-close.

Now, observe that for all i, (z;,x;+1) are (e[, + €}, e(, + €} )-far, and hence, their encodings must
be (e, e1)-far, by the fact we just mentioned. In particular this implies that M |[x;] must have
weight at least ¢(eg + 1), which must be trivially upper bounded by m. Hence it follows that
(eo +1)/(ey + €y +1) < m/d. Similarly we can also show that (e; +1)/(ef + ¢} +1) <m/d. O

The above lemma gives a trade-off between the tolerable error in the measurements versus the
reconstruction error. In particular, for unique decoding to be possible (i.e., e, = €] = 0) one can
only guarantee resiliency against up to O(1/d) fraction of errors in the measurement. On the other

8 We remark that the negative results in this section hold for both adaptive and non-adaptive measurements.
9For the sake of simplicity in this presentation we ignore the fact that certain fractions might in general give
non-integer values. However, it should be clear that this will cause no loss of generality.



hand, tolerance against a constant fraction of errors (i.e., eg = Q(m) or e; = Q(m)) would make an
ambiguity of order ©(d) in the decoding inevitable, irrespective of the number of measurements.

As discussed in the introduction, for most applications it is desirable to have a one-sided error
in reconstruction, in which case the support of the reconstruction outcome % is required to contain
the support of the original vector x being measured, and be possibly larger by up to O(d) positions.
Moreover, such schemes can be used in trivial two-stage schemes as defined in [29].

The trade-off given by the following lemma only focuses on false negatives and is thus useful
for trivial two-stage schemes:

Lemma 4. Suppose that an m x n measurement matriz M is (eq, e1, €, €} )-resilient for d-sparse
vectors. Then for every e > 0, either

(el +1)m

er < od
or

(1—¢e)(n—d+1)

() + 172

662

Proof. Let x € {0,1}" be chosen uniformly at random among vectors of weight d. Randomly flip
e} + 1 of the bits on the support of z to 0, and denote the resulting vector by z’. Using the partial
ordering < in the proof of the last lemma, it is obvious that 2’ < z, and hence, M[z'] < M|z]. Let
b denote any disjunction of a number of coordinates in z and b’ the same disjunction in z/. We
must have

/
1
Pr[t = 0fp = 1] < 61; ,

as for b to be 1 at least one of the variables on the support of x must be present in the disjunction
and one particular such variable must necessarily be flipped to bring the value of ¥' down to zero.
Using this, the expected Hamming distance between M|[z] and M [2'] can be bounded as follows:

ef+1
d

E(dist(M([x], M[z')] = > 1(M[z]; = 1 A M[2']; = 0) <

i€[m]

.m,

where the expectation is over the randomness of = and the bit flips, dist(-,-) denotes the Hamming
distance between two vectors, and 1(-) denotes an indicator predicate.

Fix a particular choice of 2’ that keeps the expectation at most (e} 41)m/d. Now the randomness
is over the possibilities of x, that is, flipping up to €} + 1 zero coordinates of 2’ randomly. Denote

by X the set of possibilities of x for which M[z] and M|[z'] are (elljdl)m—close, and by S the set of
all vectors that are monotonically larger than z’ and are (€} + 1)-close to it. Obviously, X C S,
and, by Markov’s inequality, we know that |X'| > (1 — ¢€)|S].

Let z be any valid decoding of M(z'], Thus, (2/,z) must be (e, €))-close. Now assume that
el > (ellzr% and consider any z € X. Hence, (M|[z], M[z']) are (eg, e1)-close and (z, z) must be
(ep, €} )-close by Definition I} Regard z,z’, z as the characteristic vectors of sets X, X', Z C [n],
respectively, where X’ C X. We know that | X \ Z| < ¢} and |X \ X'| = €] + 1. Therefore,

(X\X)NZ| = X\ X=X\ Z]+[X"\ Z| >0, (1)

and z must take at least one nonzero coordinate from supp(x) \ supp(z’).
Now we construct an (e} + 1)—hypergrapkﬂ H as follows: The vertex set is [n] \ supp(2’), and
for every x € X, we put a hyperedge containing supp(z) \ supp(z’). The density of this hypergraph

10See Appendix |A| for definitions.



is at least 1 — €, by the fact that |X| > (1 — €)S. Now Lemma 22| implies that H has a matching

of size at least
(1—¢e)(n—d+1)

t:=
() + 1)°
As by , supp(z) must contain at least one element from the vertices in each hyperedge of this
matching, we conclude that [supp(z) \ supp(z’)| > ¢, and that ef, > t. O

The lemma above shows that if one is willing to keep the number €] of false negatives in the
reconstruction at the zero level (or bounded by a constant), only an up to O(1/d) fraction of false
negatives in the measurements can be tolerated (regardless of the number of measurements), unless
the number ¢f, of false positives in the reconstruction grows to an enormous amount (namely, £2(n)
when n — d = (n)) which is certainly undesirable.

Recall that, as mentioned in the introduction, exact reconstruction of d-sparse vectors of length
n, even in a noise-free setting, requires at least (d? log;n) non-adaptive measurements. However,
it turns out that there is no such restriction when an approximate reconstruction is sought for,
except for the following bound which can be shown using simple counting and holds for adaptive
noiseless schemes as well:

Lemma 5. Let M be an mxn measurement matriz that is (0,0, ), €} ) -resilient for d-sparse vectors.
Then
m > dlog(n/d) —d — ey — O(¢; log((n — d — ) /e}),

where the last term is defined to be zero for €} = 0.

Proof. The proof is a simple counting argument. For integers a > b > 0, we use the notation V'(a, b)
for the volume of a Hamming ball of radius b in {0,1}%. It is given by

b
a
v _ ah(b/a)
(a,b) Z(Z) < 2oh0/e),
=0
where h(-) is the binary entropy function defined as
h(z) := —zlogy(x) — (1 — x)logy(1 — ),

and thus

a a
< — —
logV(a,b)_blogb+(a b)loga_b

Also, denote by V'(a,b,ep,e1) the number of vectors in {0,1}* that are (eq,e1)-close to a fixed
b-sparse vector. Obviously, V'(a,b,ep,e1) < V(b,eq)V(a — b,e1). Now consider any (without loss
of generality, deterministic) reconstruction algorithm D and let X denote the set of all vectors in
{0,1}" that it returns for some noiseless encoding; that is,

= O(blog(a/b)).

X :={zec{0,1}" |y € B,z = D(A[y))},

where B is the set of d-sparse vectors in {0, 1}". Notice that all vectors in X must be (d+ej)-sparse,
as they have to be close to the corresponding “correct” decoding. For each vector x € X and y € B,
we say that x is matching to y if (y,z) are (e, €])-close. A vector z € X can be matching to at
most v := V'(n,d + €, €, €]) vectors in B, and we upper bound logv as follows:

logv <logV(n —d —ep,e}) +1logV(d+ e, ef) = O(e) log((n — d — e)/e})) + d + e,



where the term inside O(-) is interpreted as zero when ¢} = 0. Moreover, every y € B must have
at least one matching vector in X, namely, D(My]). This means that |X| > |B|/v, and that

log | X| > log |B| — logv > dlog(n/d) —d — ey — O(e} log((n — d — €j) /€})).

Finally, we observe that the number of measurements has to be at least |X| to enable D to output
all the vectors in X. O

According to the lemma, even in the noiseless scenario, any reconstruction method that returns
an approximation of the sparse vector up to e = O(d) false positives and without false negatives
will require ©(dlog(n/d)) measurements. As we will show in the next section, an upper bound of
O(dlogn) is in fact attainable even in a highly noisy setting using only non-adaptive measurements.
This in particular implies an asymptotically optimal trivial two-stage group testing scheme.

4 A Noise-Resilient Construction

In this section we introduce our general construction and design measurement matrices for testing
d-sparse vectors in {0,1}". The matrices can be seen as adjacency matrices of certain unbalanced
bipartite graphs constructed from good randomness condensers. The main technique that we use
to show the desired properties is the list-decoding view of randomness condensers, extractors, and
expanders, developed over the recent years starting from the work of Ta-Shma and Zuckerman on
extractor codes [46] and followed by Guruswami, Umans, Vadhan [24] and Vadhan [4§].

4.1 Construction from Condensers
We start by introducing the terms and tools that we will use in our construction and its analysis.

Definition 6. (mixtures, agreement, and agreement list) Let X be a finite set. A mizture over X"
is an n-tuple S := (S1,...,S,) such that every S;, i € [n], is a nonempty subset of X.
The agreement of w := (w1, ... w,) € X" with S, denoted by Agr(w, S), is the quantity

%Hi € [n]: wi € Si}].

Moreover, we define the quantities

wgt(S) = 3 |5

i€(n]
and
p(S) := wet(S5)/(n|3]),
where the latter is the expected agreement of a random vector with S.

For example, consider a mixture S := (Si,...,Ss) over [4]® where Sy := (), Sy := {1,3}, 53 :=
{1,2}, 84 :={1,4}, S5 := {1}, Sg := {3}, S7 := {4}, Ss := {1, 2,3,4}. For this example, we have

Agr((1,3,2,3,4,3,4,4),5) =5/8,

and p(S) = 13/32.
For a code C C X" and « € (0,1], the a-agreement list of C with respect to S, denoted by
LISTc(S, @), is defined as the set!]

LIST¢ (S, o) := {c € C: Agr(c, S) > a}.

"When a = 1, we consider codewords with full agreement with the mixture.
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Figure 1: A function f: {0,1}* x [3] — {0,1} with its truth table (top left), codeword graph of
the induced code (right), and the adjacency matrix of the graph (bottom left). Solid, dashed and
dotted edges in the graph respectively correspond to the choices y = 1, y = 2, and y = 3 of the
second argument.

Definition 7. (induced code) Let f: I' x Q — ¥ be a function mapping a finite set I" x  to a finite
set ¥. For x € T', we use the shorthand f(x) to denote the vector y := (v:)icq, vi := f(x,7), whose
coordinates are indexed by the elements of €2 in a fixed order. The code induced by f, denoted by
C(f) is the set

{f(z): z €T}

The induced code has a natural encoding function given by = — f(x).

Definition 8. (codeword graph) Let C C X", |X| = ¢, be a g-ary code. The codeword graph
of C is a bipartite graph with left vertex set C and right vertex set n x 3, such that for every
x = (x1,...,2y) € C, there is an edge between = on the left and (1,z1),...,(n,z,) on the right.
The adjacency matriz of the codeword graph is an n|X| x |C| binary matrix whose (4, j)th entry
is 1 if and only if there is an edge between the ith right vertex and the jth left vertex.

A simple example of a function with its truth table, codeword graph of the induced code along
with its adjacency matrix is given in Figure

The following theorem is a straightforward generalization of a result in [46] that is also shown
in [24] (we have included a proof for completeness):

Theorem 9. Let f: {0,1}" x {0,1}" — {0, 1}‘7 be a strong k —s k' condenser, and C C %" be its
induced code, where ¥ := {0,1}¢. Then for any mizture S over %2 we have

ILISTe(S, p(S)2 + )] < 2%,
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Proof. Index the coordinates of S by the elements of {0,1}* and denote the ith coordinate by S;.
Let Y be any random variable with min-entropy at least ¢ 4+ &’ distributed on {0,1}***. Define an
information-theoretic test T': {0,1}¢ x {0,1}* — {0, 1} as follows: T'(x,i) = 1 if and only if z € S;.
Observe that y

PHT(Y) = 1] < wgt(5)2- ) = p(5)2*

and that for every vector w € ({0,1}%)%,

Pr [T(w;, i) = 1] = Agr(w, 5).
Now, let the random variable X = (X1,...,Xot) be uniformly distributed on the codewords in
LISTc(S, p(S)2°F + €) and Z ~ U;. Thus, from Definition |§| we know that

_ -k
)E,E[T(XZ’Z) =1]>p(9)27" +e

As the choice of Y was arbitrary, this implies that 7" is able to distinguish between the distribution
of (Z, X) and any distribution on {0, 1}*** with min-entropy at least ¢ + k', with bias greater than
€, which by the definition of condensers implies that the min-entropy of X must be less than k, or

ILISTc(S, p(S)25 + ¢)] < 2%,
O

Now using the above tools, we are ready to describe and analyze our construction of error-
resilient measurement matrices. We first state a general result without specifying the parameters
of the condenser, and then instantiate the construction with various choices of the condenser,
resulting in matrices with different properties.

Theorem 10. Let f: {0,1}" x {0, 1}t — {0, 1}‘7 be a strong k —. k' condenser, and C be its induced
code. Suppose that the parameters p,v,~v > 0 are chosen so that

(p+ 7)2‘7*’“/ +r/y<1l-—e,

and d := 722. Then the adjacency matriz of the codeword graph of C (which has m := 2+ rows and
n = 2% columns) is a (pm, (v/d)m,2% — d,0)-resilient measurement matriz for d-sparse vectors.
Moreover, it allows for a reconstruction algorithm with running time O(mn).

Proof. Define L := 2¢ and T := 2. Let M be the adjacency matrix of the codeword graph of C. It
immediately follows from the construction that the number of rows of M (denoted by m) is equal
to T'L. Moreover, notice that the Hamming weight of each column of M is exactly T

Let x € {0,1}" and denote by y € {0,1}™ its encoding, i.e., y := M|z|, and by ¢ € {0,1}"™ a
recetved word, or a noisy version of y.

The encoding of x can be schematically viewed as follows: The coefficients of x are assigned to
the left vertices of the codeword graph and the encoded bit on each right vertex is the bitwise “or”
of the values of its neighbors.

The coordinates of x can be seen in one-to-one correspondence with the codewords of C. Let
X C C be the set of codewords corresponding to the support of . The coordinates of the noisy
encoding ¢ are indexed by the elements of [T'] x [L] and thus, § naturally defines a mixture S =
(S1,...,S7) over [L]T, where S; contains j if and only if § at position (4, ) is 1.

12



Observe that p(S) is the relative Hamming weight (denoted below by 4(-)) of y; thus, we have

p(S)=6(9) <o(y)+p<d/L+p=~+p,

where the last inequality comes from the fact that the relative weight of each column of M is exactly
1/L and that x is d-sparse.

Furthermore, from the assumption we know that the number of false negatives in the measure-
ment is at most vT'L/d = vT/v. Therefore, any codeword in X must have agreement at least
1 —v/y with S. This is because S is indeed constructed from a mixture of the elements in X,
modulo false positives (that do not decrease the agreement) and at most vT'/~ false negatives each
of which can reduce the agreement by at most 1/7.

Accordingly, we consider a decoder which simply outputs a binary vector & supported on the
coordinates corresponding to those codewords of C that have agreement larger than 1 — v/y with
S. Clearly, the running time of the decoder is linear in the size of the measurement matrix.

By the discussion above, & must include the support of x. Moreover, Theorem [J] applies for our
choice of parameters, implying that Z must have weight less than 2. O

4.2 Instantiations

Now we instantiate the general result given by Theorem [10| with various choices of the underlying
condenser and compare the obtained parameters. First, we consider two extreme cases, namely, a
non-explicit optimal condenser with zero overhead (i.e., extractor) and then a non-explicit optimal
condenser with zero loss (i.e., lossless condenser) and then consider how known explicit constructions
can approach the obtained bounds. A summary of the results is given in Table [I}

4.2.1 Optimal Extractors

Radhakrishan and Ta-Shma [38] showed that non-constructively, for every choice of the parameters
k,n, e, there is a strong (k, €)-extractor with input length 7, seed length ¢t = log(n—k)+2log(1/e)+
O(1) and output length ¢ = k — 2log(1/€) — O(1). Moreover, their proof shows that the bound
is achieved by a uniformly random function, and is essentially the best one can hope for [38] (up
to additive absolute constants). Plugging this result in Theorem we obtain a non-explicit
measurement matrix from a simple, randomized construction that achieves the desired trade-off
with high probability:

Corollary 11. For every choice of constants p € [0,1) and v € [0,1), vo := (v/5 — 4p—1)3/8, and
positive integers d and n > d, there is an m X n measurement matriz, where m = O(dlogn), that
is (pm, (v/d)m,O(d),0)-resilient for d-sparse vectors of length n and allows for a reconstruction
algorithm with running time O(mn).

Proof. For simplicity we assume that n = 2" for a positive integer 7. However, it should be clear
that this restriction will cause no loss of generality and can be eliminated with a slight change in
the constants behind the asymptotic notations.

We instantiate the parameters of Theorem [10] with an optimal strong extractor. If v = 0, we
choose v, € as small constants such that v+ ¢ < 1 —p. Otherwise, we choose v := /v, which makes
v/y = V2 ande<1—p— v — V2. (One can easily see that the right hand side of the latter
inequality is positive for v < vy). Hence, the condition p+v/y < 1 — € — 7 required by Theorem
is satisfied.

Let r = 2log(1/e) + O(1) = O(1) be the entropy loss of the extractor for error e, and set
up the extractor for min-entropy k = logd + log(1/7) + r, which means that K := 2 = O(d)
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and L := 2¢ = d/y = O(d). Now we can apply Theorem [10| and conclude that the measurement
matrix is (pm, (v/d)m, O(d),0)-resilient. The seed length required by the extractor is ¢t < logn +
2log(1/€)+O(1), which gives T := 2 = O(logn). Therefore, the number of measurements becomes
m=TL = O(dlogn). O

4.2.2 Optimal Lossless Condensers

The probabilistic construction of Radhakrishan and Ta-Shma can be extended to the case of lossless
condensers and one can show that a uniformly random function is with high probability a strong
lossless (k, €)-condenser with input length 7, seed length ¢t = logn + log(1/e) + O(1) and output
length ¢ = k + log(1/€) + O(1), and this trade-off is essentially optimal [6].

Now we instantiate Theorem [L0] with an optimal strong lossless condenser and obtain the fol-
lowing corollary.

Corollary 12. For positive integers n > d and every constant 6 > 0 there is an m Xn measurement
matriz, where m = O(dlogn), that is ((m), Q(1/d)m, dd,0)-resilient for d-sparse vectors of length
n and allows for a reconstruction algorithm with running time O(mn).

Proof. We will use the notation of Theorem and apply it using an optimal strong lossless
condenser. This time, we set up the condenser with error € := %5 /(14 9) and min-entropy k such

that K := 2¥ = d/(1 — 2¢). As the error is a constant, the overhead and hence 2% will also
be a constant. The seed length is ¢t = log(n/e) + O(1), which makes T := 2! = O(logn). As
L := 2" = O(d), the number of measurements becomes m = T'L = O(dlogn), as desired.

Moreover, note that our choice of K implies that K — d = dd. Thus we only need to choose p
and v appropriately to satisfy the condition

(p+NL/K+v/y<1l-—g, (2)

where v = d/L = K/(L(1 4 §)) is a constant, as required by the lemma. Substituting for 7 in
and after simple manipulations, we get the condition

pL/K + v(L/K)(1+0) < 2(1‘5+5)

which can be satisfied by choosing p and v to be appropriate positive constants. ]

Both results obtained in Corollaries [[1] and [[2] almost match the lower bound of Lemma [ for
the number of measurements. However, we note the following distinction between the two results:
Instantiating the general construction of Theorem [10| with an extractor gives us a sharp control
over the fraction of tolerable errors, and in particular, we can obtain a measurement matrix that
is robust against any constant fraction (bounded from 1) of false positives. However, the number
of potential false positives in the reconstruction will be bounded by some constant fraction of the
sparsity of the vector that cannot be made arbitrarily close to zero.

On the other hand, using a lossless condenser enables us to bring down the number of false
positives in the reconstruction to an arbitrarily small fraction of d (which is, in light of Lemma
the best we can hope for), though it does not give as good a control on the fraction of tolerable
errors as in the extractor case, though we still obtain resilience against the same order of errors.
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4.2.3 Applying the Guruswami-Umans-Vadhan’s Extractor

While Corollaries [11] and [I2|give probabilistic constructions of noise-resilient measurement matrices,
certain applications require a fully explicit matrix that is guaranteed to work. To that end, we
need to instantiate Theorem [L0| with an explicit condenser. First, we use a nearly-optimal explicit
extractor due to Guruswami, Umans and Vadhan [24], that currently gives the best trade-off for
the range of parameters needed for our application. The parameters achieved by this extractor is
quoted in the theorem below.

Theorem 13. [24] For all positive integers it > k and all € > 0, there is an explicit strong (k,¢)-
extractor Ext: {0,1}" x {0,1}t — {0,1}¢ with £ = k — 2log(1/€) — O(1) and t = logn + O(logk -
log(k/¢)). O

Using this extractor, we obtain a similar trade-off as in Corollary [T} except for a higher number
2
of measurements which would be bounded by O(20U°e"gd)glogn) = O(d' M) logn).

Corollary 14. For every choice of constants p € [0,1) and v € [0,19), vy := (v/5 —4p — 1)3/8,
and positive integers d and n > d, there is a fully explicit m X n measurement matriz, where

m = (200" e d) 1og n) = O(d*+°M log n),

that is (pm, (v/d)m, O(d), 0)-resilient for d-sparse vectors of length n and allows for a reconstruction
algorithm with running time O(mn). O

4.2.4 Applying “Zig-Zag” Lossless Condenser

An important explicit construction of lossless condensers that has an almost optimal output length
is due to Capalbo et al. [6]. This construction borrows the notion of “zig-zag products” that is a
combinatorial tool for construction of expander graphs as a major ingredient of the condenser. The
following theorem quotes a setting of this construction that is most useful for our application.

Theorem 15. [6] For every k <7 € IN, € > 0 there is an eaplicit lossless (7, k)—condenseﬂ with
seed length t = O(log®(n/€)) and output length { = k +log(1/¢) + O(1). O

Combining Theorem [I0] with the above condenser, we obtain a similar result as in Corollary [12]
3 .
except that the number of measurements now becomes d2'°8”(1°8™) = . quasipoly(logn).

Corollary 16. For positive integers n > d and every constant § > 0 there is a fully explicit m x n
measurement matriz, where

m = d2°8°(osn) — 4. quasipoly(logn),

that is (2(m), Q(1/d)m, éd, 0)-resilient for d-sparse vectors of length n and allows for a reconstruc-
tion algorithm with running time O(mn). O

2Though not explicitly mentioned in [6], these condensers satisfy the “strong” definition of condensers as in
Deﬁnition
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4.2.5 Measurements Allowing Sublinear Time Reconstruction

The naive reconstruction algorithm given by Theorem [10| works efficiently in linear time in the size
of the measurement matrix. However, for very sparse vectors (i.e., d < n), it might be of practical
importance to have a reconstruction algorithm that runs in sublinear time in n, the length of the
vector, and ideally, polynomial in the number of measurements, which is merely poly(logn, d) if the
number of measurements is optimal.

As shown in [46], if the code C in Theorem |§| is obtained from a strong extractor constructed from
a black-box pseudorandom generator (PRG), it is possible to compute the agreement list (which is
guaranteed by the theorem to be small) more efficiently than a simple exhaustive search over all
possible codewords. In particular, in this case they show that LIST¢(S, p(S) + €) can be computed
in time poly(2t,2¢,2% 1/¢) (where t, 0, k, € are respectively the seed length, output length, entropy
requirement, and error of the extractor), which can be much smaller than 27 (74 being the input
length of the extractor).

Currently two constructions of extractors from black-box PRGs are known: Trevisan’s extractor
[47] (as well as its improvement in [39]) and Shaltiel-Umans’ extractor [42]. However, the latter
can only extract a sub-constant fraction of the min-entropy and is not suitable for our needs, albeit
it requires a considerably shorter seed than Trevisan’s extractor. Thus, here we only consider an
improvement of Trevisan’s extractor given by Raz et al., quoted below.

Theorem 17. [39] For every n, k0 e N, (0 < k < @) and e > 0, there is an explicit strong (k, €)-
extractor Tre: {0,117 x {0, 1} — {0, 1} with t = O(log?(n/e) - log(1/a)), where a := k/(f —1) —1
must be less than 1/2. O

Using this extractor in Theorem we obtain a measurement matrix for which the reconstruc-
tion is possible in polynomial time in the number of measurements; however, as the seed length
required by this extractor is larger than that of the extractor in Theorem we now require a
higher number of measurements than before. Specifically, using Trevisan’s extractor, we get the
following result (the proof is essentially the same as Corollary but using the parameters of
Theorem (17| and the efficient list-decoding algorithm developed for this extractor in [46]).

Corollary 18. For every choice of constants p € [0,1) and v € [0,1), vo = (v/5— 4p — 1)3/8,
and positive integers d and n > d, there is a fully explicit m x n measurement matriz M that is
(pm, (v/d)m,O(d),0)-resilient for d-sparse vectors of length n, where

m = O(d21°g3 logn) — . quasipoly(logn).

Furthermore, M allows for a reconstruction algorithm with running time poly(m), which would be
sublinear in n for d = O(n®) and a suitably small constant ¢ > 0. O

On the condenser side, we observe that a family of lossless (and lossy) condensers due to
Guruswami et al. also allow efficient list-recovery. The parameters of their lossless condenser can
be set up as follows.

Theorem 19. [24] For all constants o € (0,1) and every k < n € IN, € > 0 there is an explicit
lossless (k,€)-condenser with seed length t = (1 + 1/a)log(nk/e) + O(1) and output length ¢ =
t+ (14 a)k. Moreover, the condenser admits efficient list recovery. O

The code induced by the above condenser is precisely a list-decodable code due to Parvaresh
and Vardy [35] (though with an unusual set-up of the parameters). Thus, the efficient list recovery
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algorithm of the condenser is merely the list-decoding algorithm for this codﬂ Combined with
Theorem we can show that codeword graphs of Parvaresh-Vardy codes correspond to good
measurement matrices that allow sublinear time recovery, but with incomparable parameters to
what we obtained from Trevisan’s extractor (the proof is similar to Corollary :

Corollary 20. For positive integers n > d and any constants §, « > 0 there is an mxn measurement

matrix, where
m = O(d3+a+2/a(10g n)2+2/a)’

that is (Q2(e),Q(e/d), dd, 0)-resilient for d-sparse vectors of length n, where

e — (log n)1+1/ad2+1/a.

Moreover, the matriz allows for a reconstruction algorithm with running time poly(m). 0

We remark that we could also use a lossless condenser due to Ta-Shma et al. [45] which is based
on Trevisan’s extractor and also allows efficient list recovery, but it achieves inferior parameters
compared to Corollary

4.3 Connection with List-Recoverability

Extractor codes that we used in Theorem [10] are instances of soft-decision decodable coded!] that
provide high list-decodability in “extremely noisy” scenarios. In fact it is not hard to see that good
extractors or condensers are required for our construction to carry through, as Theorem [9] can be
shown to hold, up to some loss in parameters, in the reverse direction as well (as already shown by
Ta-Shma and Zuckerman [46, Theorem 1] for the case of extractors).

However, for designing measurement matrices for the noiseless (or low-noise) case, it is possible
to resort to the slightly weaker notion of list recoverable codes. Formally, a code C of block length
7 over an alphabet ¥ is called (¢, d, g)—list recoverable if for every mixture S over ¥" consisting of
sets of size at most d each, we have |LIST¢(S, )| < £. A simple argument essentially repeating the
proof of Theorem [10] shows that the adjacency matrix of the codeword graph of such a code with
rate R gives a (logn)|X|/R x n measurement matrixlﬂ for d-sparse vectors in the noiseless case with
at most ¢ — d false positives in the reconstruction.

Ideally, a list-recoverable code with o = 1, alphabet size O(d), positive constant rate, and list
size £ = O(d) would give an O(dlogn) x n matrix for d-sparse vectors, which is almost optimal
(furthermore, the recovery would be possible in sublinear time if C is equipped with efficient list
recovery). However, no explicit construction of such a code is so far known.

Two natural choices of codes with good list-recoverability properties are Reed-Solomon and
Algebraic-Geometric codes, which in fact provide soft-decision decoding with short list size (cf.
[21]). However, while the list size is polynomially bounded by n and d, it can be much larger than
O(d) that we need for our application even if the rate is polynomially small in d.

On the other hand, it is shown in [23] that folded Reed-Solomon Codes are list-recoverable with
constant rate, but again they suffer from large alphabet and list size{E

13 For similar reasons, any construction of measurement matrices based on codeword graphs of algebraic codes that
are equipped efficient soft-decision decoding (including the original Reed-Solomon based construction of Kautz and
Singleton [28]) allow sublinear time reconstruction.

14To be precise, here we are dealing with a special case of soft-decision decoding with binary weights.

5For codes over large alphabets, the factor |X| in the number of rows can be improved using concatenation with
a suitable inner measurement matrix.

5 As shown in [24], folded Reed-Solomon codes can be used to construct lossless condensers, which eliminates the
list size problem. They nevertheless give inferior parameters compared to Parvaresh-Vardy codes used in Corollary
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We also point out a construction of («,d,d) list-recoverable codes (allowing list recovery in
time O(nd)) in [23] with polynomially small rate but alphabet size exponentially large in d, from
which they obtain superimposed codes. Thus this code allows for exact recovery of sparse vectors
(and in particular, results in a disjunct matrix) but is not favorable in terms of the number of
measurements.

4.4 Connection with the Bit-Probe Model and Designs

An important problem in data structures is the static set membership problem in the bit-probe
model, which is the following: Given a set S of at most d elements from a universe of size n,
store the set as a string of length m such that any query of the type “is « in S?” can be reliably
answered by reading few bits of the encoding. The query algorithm might be probabilistic, and
be allowed to err with a small one or two-sided error. Information theoretically, it is easy to see
that m = Q(dlog(n/d)) regardless of the bit-probe complexity and even if a small constant error is
allowed.

Remarkably, it was shown in [4] that the lower bound on m can be (non-explicitly) achieved using
only one bit-probe. Moreover, a part of their work shows that any one-probe scheme with negative
one-sided error € (where the scheme only errs in case z ¢ S) reduces to a |d/e]-superimposed
code (and hence, requires m = (d*logn) by [17]). It follows that from any such scheme one
can obtain a measurement matrix for exact reconstruction of sparse vectors, which, by Lemma
cannot provide high resiliency against noise. The converse direction, i.e., using superimposed codes
to design bit-probe schemes does not necessarily hold unless the error is allowed to be very close
to 1. However, in [4] combinatorial desz’gnsﬂ based on low-degree polynomials are used to construct
one bit-probe schemes with m = O(d?log® n) and small one-sided error.

On the other hand, Kautz and Singleton [28] observed that the encoding of a combinatorial
design as a binary matrix corresponds to a superimposed code (which is in fact slightly error-
resilient). Moreover, they used Reed-Solomon codes to construct a design, which in particular gives
a d-superimposed code. This is in fact the same design that is used in [4], and in our terminology,
can be regarded as the adjacency matrix of the codeword graph of a Reed-Solomon code.

It is interesting to observe the close similarity between our framework given by Theorem |10 and
classical constructions of superimposed codes. However, some key differences are worth mentioning.
Indeed, both constructions are based on codeword graphs of error-correcting codes. However,
classical superimposed codes owe their properties to the large distance of the underlying code.
On the other hand, our construction uses extractor and condenser codes and does not give a
superimposed code simply because of the substantially low number of measurements (unless a
lossless condenser with sub-constant error is used). However, as shown in Theorem they are
good enough for a slight relaxation of the notion of superimposed codes because of their soft-
decision list decodability properties, which additionally enables us to attain high noise resilience
and a considerably smaller number of measurements.

Interestingly, Buhrman et al. [4] use randomly chosen bipartite graphs to construct storage
schemes with two-sided error requiring nearly optimal space O(dlogn), and Ta-Shma [44] later
shows that expander graphs from lossless condensers would be sufficient for this purpose. How-
ever, unlike schemes with negative one-sided error, these schemes use encoders that cannot be
implemented by the “or” function and thus do not translate to group testing schemes.

17 A design is a collection of subsets of a universe, all of the same size, such that the pairwise intersection of any
two subset is upper bounded by a prespecified parameter.
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A Technical Details of the Proof of Lemma {4

For a positive integer ¢ > 1, define a c-hypergraph as a tuple (V, E'), where V is the set of vertices
and F is the set of hyperedges such that every e € E is a subset of V of size c¢. The degree of
a vertex v € V, denoted by deg(v), is the size of the set {e € E: v € E}. Note that |F| < ("g')
and deg(v) < ((ﬂ) The density of the hypergraph is given by ]E\/(l‘c/‘) A wvertex cover on
the hypergraph is a subset of vertices that contains at least one vertex from every hyperedge. A
matching is a set of pairwise disjoint hyperedges. It is well known that any dense hypergraph must
have a large matching. Below we reconstruct a proof of this claim.

Proposition 21. Let H be a c-hypergraph such that every vertex cover of H has size at least k.
Then H has a matching of size at least k/c.

Proof. Let M be a maximal matching of H, i.e., a matching that cannot be extended by adding
further hyperedges. Let C' be the set of all vertices that participate in hyperedges of M. Then C
has to be a vertex cover, as otherwise one could add an uncovered hyperedge to M and violate
maximality of M. Hence, ¢|M| = |C| > k, and the claim follows. O

Lemma 22. Let H = (V, E) be a c-hypergraph with density at least € > 0. Then H has a matching
of size at least S(|V|—c+1).

Proof. For every subset S C V of size ¢, denote by 1(S) the indicator value of S being in E. Let
C be any vertex cover of H. Denote by S the set of all subsets of V' of size ¢. Then we have

(") < S 1 <« S aegty <1 )

SeS vel

Hence, |C| > €(n — ¢+ 1) /¢, and the claim follows using Proposition O
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