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Abstract. We introduce the weak gap property for directed graphs
whose vertex set S is a metric space of size n. We prove that, if the dou-
bling dimension of S is a constant, any directed graph satisfying the weak
gap property has O(n) edges and total weight O(log n) · wt(MST (S)),
where wt(MST (S)) denotes the weight of a minimum spanning tree of
S. We show that 2-optimal TSP tours and greedy spanners satisfy the
weak gap property.

1 Introduction

Consider a directed graph G = (S, E), where S is a set of n points in Rd, and
each edge (p, q) in E has a weight (or length) which is equal to the Euclidean
distance |pq| between the points p and q. We consider the problem of estimating
the weight wt(E) of the edge set E, which is defined to be the sum of the weights
of the edges in E. Clearly, in order to obtain a non-trivial estimate, we need to
make some assumptions about the edge set E.

Using geometric properties of Rd, Chandra et al. [5] showed that the directed
edge set of the greedy spanner algorithm (to be introduced later) can be parti-
tioned into O(1) subsets, such that each subset satisfies the gap property : For
any two distinct edges (p, q) and (r, s) that are in the same subset, the distance
|pr| is at least proportional to the weight of the shorter of (p, q) and (r, s). They
proved that the gap property implies that the weight of the subset is O(log n)
times the weight wt(MST (S)) of a minimum spanning tree of the point set S.
As a result, the weight of the greedy spanner is O(log n) ·wt(MST (S)). (A much
more complicated analysis shows that, in fact, the weight of the greedy spanner
is O(wt(MST (S))).)

Later, Chandra et al. [6] showed that any tour T that is computed by the
2-opt heuristic (to be introduced later) for the traveling salesperson problem
can be analyzed by the same approach: By again using geometric properties
of Rd, the directed edge set of T can be partitioned into O(1) subsets, each
of which satisfies the gap property. Thus, by the result in [5], the weight of T
is O(log n) · wt(MST (S)). Since wt(MST (S)) is less than the minimum weight
wt(TSP(S)) of any tour of S, it follows that wt(T ) = O(log n) · wt(TSP(S)).
Chandra et al. also showed that, for the case when d ≥ 2, there exists a 2-opt
tour having weight Ω(log n/ log log n) · wt(TSP(S)).
? This work was supported by NSERC.
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Both results mentioned above use the fact that the input points are in Eu-
clidean space Rd, for some constant d ≥ 1. This leads to the natural question
whether these results hold in an arbitrary metric space. Recall that a set S,
together with a distance function |pq| for any two points p and q in S, is called
a metric space, if for all p, q, and r in S,

1. |pp| = 0,
2. |pq| > 0 if p 6= q,
3. |pq| = |qp|, and
4. |pq| ≤ |pr|+ |rq|.

The fourth property is called the triangle inequality.
The proof of Chandra et al. [5] of the fact that any directed edge set satisfying

the gap property has weight O(log n) · wt(MST (S)) holds in any metric space.
Narasimhan and Smid [13, Section 6.2] showed that this upper bound is tight,
even in the one-dimensional Euclidean metric. On the other hand, in the metric
space in which |pq| = 1 for all distinct points p and q, the weight of the greedy
spanner is Θ(n)·wt(MST (S)). Chandra et al. [6] proved that, in any metric space,
any tour that is computed by the 2-opt heuristic has weight O(

√
n)·wt(TSP(S));

they also showed that this upper bound is tight. Thus, the weights of the outputs
of the greedy spanner algorithm and the 2-opt heuristic behave very differently
in Euclidean space Rd than they do in a general metric space.

The analyses in [5, 6] for the Euclidean metric use the notion of angles. In
particular, they use the fact that any set of vectors in Rd, in which any two
elements make an angle of at least θ, contains O(1/θd−1) elements. This is basi-
cally a packing argument : The number of “large” objects that can be packed in
another slightly “larger” object is bounded from above by a constant (which de-
pends on the dimension d). In Euclidean space, the validity of such an argument
follows from the fact that a “large” object has a “large” volume. In a general
metric space, however, a packing argument cannot be applied.

In this paper, we consider the weights of the greedy spanner and 2-opt tours in
metric spaces in which a packing argument is valid. Such metric spaces are called
metric spaces of bounded doubling dimension. We will prove that, in such spaces,
the weights of the greedy spanner and 2-opt tours are O(log n) · wt(MST (S)).
We obtain these results by generalizing the gap property to the so-called weak
gap property. We then show that any edge set satisfying the weak gap property
has weight O(log n) · wt(MST (S)). Since both the greedy spanner and 2-opt
tours satisfy the weak gap property, we obtain the same upper bounds on their
weights.

Thus, the contributions of this paper are twofold: First, by introducing the
weak gap property, we obtain alternative proofs of known results for the Eu-
clidean metric. Second, our analysis shows that these results in fact hold for any
metric space whose doubling dimension is a constant.
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2 The Doubling Dimension of Metric Spaces

Let S be a finite metric space. For any two points p and q in S, we denote their
distance by |pq|. If p is a point in S and R > 0 is a real number, then the ball
with center p and radius R is defined to be the set {q ∈ S : |pq| ≤ R}.

We now define the notion of doubling dimension, which is due to Assouad [2];
see also Heinonen [11]:

Definition 1. Let S be a finite metric space and let λ be the smallest integer
such that the following is true: For each real number R > 0, every ball in S of
radius R can be covered by at most λ balls of radius R/2. The doubling dimension
of the metric space S is defined to be log λ.

It is not difficult to show that the doubling dimension of any finite set of
points in the Euclidean metric space Rd is Θ(d).

2.1 Non-Euclidean Spaces of Doubling Dimension 1

In this section, we give an example of a family of metric spaces having doubling
dimension 1. As we will see, this family contains metric spaces whose properties
are very different from Euclidean space Rd for any constant d.

Let S = {p1, p2, . . . , pn} and let 0 < ε < 1 be a real number. For each i and
j with 1 ≤ i ≤ j ≤ n, we define

|pipj | = |pjpi| =
{

0 if i = j,
4j or 4j + ε if i < j.

This family of metric spaces occurs in Har-Peled and Mendel [10] (they use
powers of 2 instead of powers of 4). For any three pairwise distinct indices i, j,
and k with i < j, we have

|pipj | ≤ 4j + ε ≤ 4max(i,k) + 4max(k,j) ≤ |pipk|+ |pkpj |,

implying that this distance function satisfies the triangle inequality. It follows
that S is a metric space.

Lemma 1. The doubling dimension of the metric space S is equal to one.

Proof. Let R > 0 be a real number and let B be a ball with radius R. We have
to show that B can be covered by at most two balls of radius R/2.

First assume that R < 4ε. Then R < 4. Since the minimum distance between
any two distinct points of S is at least 16, the ball B contains only its center.
Therefore, B can be covered by one ball of radius R/2.

Now assume that R ≥ 4ε. Let j be the largest index such that pj ∈ B. If
j = 1, then B contains only one point, so that this ball can be covered by one
ball of radius R/2. Assume that j ≥ 2. We define B1 to be the ball with center
pj and radius R/2, and define B2 to be the ball with center pj−1 and radius
R/2. We claim that B ⊆ B1 ∪B2.
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We may assume that B contains more than one point, because otherwise,
B = B1. Let pk be the center of B. Observe that k ≤ j. First assume that k < j.
Since pj ∈ B, we have |pkpj | ≤ R. On the other hand, we have |pkpj | ≥ 4j .
Thus, 4j ≤ R. If k = j, then let ` be any index less than k for which p` ∈ B. In
this case, we have |pkp`| ≤ R and |pkp`| ≥ 4k = 4j . Thus, also in this case, we
have 4j ≤ R.

We are now ready to complete the proof of the claim that B ⊆ B1 ∪B2. Let
pi be any point in B. If i ∈ {j − 1, j}, then obviously pi ∈ B1 ∪B2. If i ≤ j − 2,
then

|pj−1pi| ≤ 4j−1 + ε ≤ R/4 + ε ≤ R/2

and, therefore, pi ∈ B2. ut
As Har-Peled and Mendel [10] show, this family of metric spaces can be used

to show that the time complexity for solving the all-nearest-neighbors problem
is Θ(n2). Indeed, consider a metric space in the family such that, for each j with
2 ≤ j ≤ n, there is exactly one index ij with ij < j such that |pij pj | = 4j ,
whereas for all indices i′ with i′ < j and i′ 6= ij , we have |pi′pj | = 4j + ε. Then,
the (unique) nearest neighbor of pj is the point pij

. Thus, any algorithm that
solves the all-nearest-neighbors problem must find all indices ij . By an adversial
argument, it is easy to show that this takes Ω(n2) time in the worst case.

Recall that the all-nearest-neighbors problem in Euclidean space Rd, for a
constant dimension d, can be solved in O(n log n) time; see Vaidya [16]. Thus,
even though the metric space defined above has doubling dimension one, its
behavior with respect to the all-nearest-neighbors problem is very different from
the Euclidean metric in Rd.

Now consider the case when

|pipj | = |pjpi| =




0 if i = j,
4j if i = 1 and j > 1,
4j + ε otherwise.

For each j with 2 ≤ j ≤ n, p1 is the nearest neighbor in S of the point pj .
Therefore, the all-nearest-neighbors graph of S is the star-graph consisting of all
edges {p1, pj}, 2 ≤ j ≤ n. In fact, the minimum spanning tree is also equal to this
star-graph. Thus, in this metric space, both the all-nearest-neighbors graph and
the minimum spanning tree have maximum degree n− 1. It is well known that
in Euclidean space Rd, the maximum degree of both these graphs is bounded by
a constant that depends only on d.

Since the minimum spanning tree contains the all-nearest-neighbors graph,
the time complexity for computing the minimum spanning tree in a metric space
of constant doubling dimension is Θ(n2). On the other hand, in Euclidean space
Rd, the minimum spanning tree can be computed in O(n log n) time if d = 2 (see
Preparata and Shamos [14, Section 6.1]) and o(n2) time if d > 2 (see Yao [17]).

2.2 The Packing Lemma

We now show that a packing argument can be applied in any metric space of
constant doubling dimension. The following lemma states that a ball of radius R
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cannot contain many points whose pairwise distances are at least proportional
to R.

Lemma 2 (Packing Lemma). Let S be a finite metric space with doubling
dimension d, let R > 0 and α > 0 be real numbers, let B be a ball in S of radius
R, and let X be a subset of S, such that

1. X ⊆ B and
2. the distance between any two distinct points of X is at least αR.

Then, the number of points in the set X is at most

2d·max(0,2+blog(1/α)c).

Proof. If α > 2, then the lemma holds because X contains at most one point.
Assume that 0 < α ≤ 2. Let m = 2 + blog(1/α)c. Then m ≥ 1 and m >
1+log(1/α), implying that R/2m−1 < αR. By repeatedly applying the definition
of doubling dimension, the ball B can be covered by 2md balls Bi (1 ≤ i ≤ 2md)
of radius R/2m. Any two points in the same ball Bi have distance at most
2R/2m < αR. Therefore, each ball Bi can contain only one point of X. Thus, X
contains at most 2md points. ut

3 The Weak Gap Property

We mentioned the gap property in Section 1. Here, we give a formal definition
of this property, as well as a weaker version of it. The weak gap property will be
the main focus of the rest of this paper.

Definition 2. Let S be a finite metric space and let E be a set of directed edges
whose endpoints are in S.

1. For a real constant w > 0, we say that E satisfies the w-gap property, if for
any two distinct edges (p, q) and (r, s) in E,

|pr| ≥ w ·min(|pq|, |rs|).
2. For a real constant w > 0, we say that E satisfies the weak w-gap property,

if for any two distinct edges (p, q) and (r, s) in E,

|pr| ≥ w ·min(|pq|, |rs|)
or

|qs| ≥ w ·min(|pq|, |rs|).
Chandra et al. [5] proved that, in any metric space S and for any constant w >

0, any set of directed edges satisfying the w-gap property has weight O(log n) ·
wt(TSP(S)), where n is the number of points in S. The example in Narasimhan
and Smid [13, Section 6.2] shows that this upper bound is tight, even in one-
dimensional Euclidean space.
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In general, there is no non-trivial upper bound on the weight of an edge
set satisfying the weak gap property. Indeed, consider the metric space S on n
points in which |pq| = 1 for all p 6= q, and take for E the edge set of the complete
graph, by giving each edge an arbitrary direction. Then E satisfies the weak 1-
gap property, wt(E) = Θ(n) · wt(TSP(S)), and E contains Θ(n2) edges. The
main result of this paper is a proof of the claims that, if the doubling dimension
of the metric space is a constant, (i) the upper bound of O(log n) · wt(TSP(S))
does hold, and (ii) E contains O(n) edges.

Theorem 1 (Gap Theorem). Let S be a metric space with n points, let the
doubling dimension of S be a constant, let w > 0 be a real constant, and let E
be a set of directed edges whose endpoints are in S. If E satisfies the weak w-gap
property, then

1. the total weight wt(E) of all edges in E satisfies

wt(E) = O(log n) · wt(TSP(S)),

2. E contains O(n) edges.

Recall that wt(TSP(S)) and wt(MST (S)) differ by a factor of at most 2.
Therefore, the Gap Theorem is still valid if we replace TSP(S) by MST (S).

Before we turn to the proof of the Gap Theorem, we consider two algorithms
whose outputs satisfy the weak gap property.

3.1 The 2-Opt Heuristic for the Traveling Salesperson Problem

Let S be an arbitrary finite metric space. The 2-opt heuristic is a well-known
approach for heuristically solving the traveling salesperson problem; it was in-
troduced by Lin [12]. The algorithm starts with an arbitrary initial tour along
the points of S. Then it repeatedly tries to improve the current tour by making
small local changes.

Let T be the current (directed) tour, and assume that T contains two distinct
edges (p, q) and (r, s) such that

|pr|+ |qs| < |pq|+ |rs|.

Then the algorithm replaces (p, q) and (r, s) by the edges (p, r) and (q, s), and
reverses the direction of the edges on the path from q to r. These replacements
result in a shorter (directed) tour. The algorithm continues making these re-
placements until the current tour T has the property that

|pq|+ |rs| ≤ |pr|+ |qs| (1)

for any two distinct edges (p, q) and (r, s) of T . A tour having this property is
called a 2-optimal tour.

If S is an arbitrary metric space, then the weight of any 2-optimal tour is
O(
√

n) · wt(TSP(S)); see Chandra et al. [6]. These authors also showed that
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this upper bound is tight. On the other hand, Chandra et al. [6] used the gap
property to show that, in the Euclidean metric Rd, any 2-optimal tour has weight
O(log n) · wt(TSP(S)).

We will use the Gap Theorem to prove that, if the doubling dimension of the
metric space is constant, any 2-optimal tour has weight O(log n) · wt(TSP(S)).

Lemma 3. Let T be a (directed) 2-optimal tour of the points in S. Then the
edge set of T satisfies the weak 1-gap property.

Proof. Let (p, q) and (r, s) be two distinct edges of T . We may assume without
loss of generality that |pq| ≤ |rs|. Thus, we have to show that |pr| ≥ |pq| or
|qs| ≥ |pq|. If |pr| ≥ |pq|, then we are done. Assume that |pr| < |pq|. By (1), we
have |pq|+|rs| ≤ |pr|+|qs|. Combining this with our assumption that |pr| < |pq|,
we obtain

|pq|+ |rs| ≤ |pr|+ |qs| ≤ |pq|+ |qs|,
which implies that |qs| ≥ |rs| ≥ |pq|. ut

Lemma 3 and the Gap Theorem imply the following result.

Theorem 2. Let S be a metric space with n points and constant doubling di-
mension. The 2-opt heuristic computes a tour along the points of S, whose weight
is O(log n) · wt(TSP(S)).

3.2 The Greedy Spanner Algorithm

Given a metric space S consisting of n points and a real constant t > 1, an
undirected graph G = (S, E) is called a t-spanner for S, if the following is true:
For any two points p and q in S, there exists a path in G between p and q whose
weight is at most t|pq|. Any such path is called a t-spanner path between p and q.

Althöfer et al. [1] introduced the following simple greedy algorithm for com-
puting such a spanner (according to them, this algorithm was discovered inde-
pendently by Bern in 1989):

Algorithm GreedySpanner(S, t):
sort the

(
n
2

)
pairs of distinct points in non-decreasing order of their

distances and store them in a list L;
E = ∅;
G = (S, E);
for each {p, q} ∈ L (∗ in sorted order ∗)
do δ = weight of a shortest path in G between p and q;

if δ > t|pq|
then E = E ∪ {{p, q}};

G = (S, E)
endif

endfor;
output the graph G
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It is obvious that this algorithm computes a t-spanner for S. If t < 2 and
the metric space S has the property that |pq| = 1 for all distinct points p
and q, then the greedy spanner contains

(
n
2

)
edges and its total edge weight is

Θ(n)·wt(MST (S)). On the other hand, Soares [15] proved that, in the Euclidean
metric Rd, the greedy spanner has bounded degree and, thus, contains only O(n)
edges. Again in Rd, Chandra et al. [5] used the gap property to show that the
weight of the greedy spanner is O(log n) ·wt(MST (S)). In fact, the latter bound
was improved to O(wt(MST (S))) by Das et al. [7, 8]. (Chapter 14 in [13] contains
a complete proof of this claim.)

It is not difficult to show that the greedy spanner contains the all-nearest-
neighbors graph. Therefore, by the results in Section 2.1, the maximum degree
of the greedy spanner can be as large as n−1, even when the doubling dimension
is equal to one.

We will use the Gap Theorem to prove that, if the doubling dimension of the
metric space is constant, the greedy spanner has weight O(log n) · wt(MST (S))
and contains O(n) edges.

Consider the t-spanner G that is computed by the greedy algorithm. Let G∗

be the directed graph obtained by giving each edge of G an arbitrary direction.
Thus, each edge {p, q} of G appears in G∗ either as (p, q) or as (q, p).

Lemma 4. Let w be a real number with 0 < w < 1−1/t and let w′ = min(w, 1−
w−1/t). Then the set of directed edges of G∗ satisfies the weak w′-gap property.

Proof. Let (p, q) and (r, s) be two distinct edges of G∗. We may assume without
loss of generality that algorithm GreedySpanner(S, t) considers the pair {p, q}
before {r, s}. Thus, we have |pq| ≤ |rs|. The lemma will follow from the claim
that |pr| ≥ w|pq| or |qs| ≥ (1− w − 1/t)|rs|.

Assume that |pr| < w|pq| and |qs| < (1 − w − 1/t)|rs|. Then both |pr| and
|qs| are less than |rs|. Consider the iteration in which the algorithm adds the
edge {r, s} to the graph G. Assuming that p 6= r and q 6= s, the algorithm has
already considered the pairs {p, r}, {p, q}, and {q, s}. Thus, at the start of this
iteration, the graph G contains (i) a t-spanner path between p and r, (ii) the
edge {p, q}, and (iii) a t-spanner path between q and s. Obviously, (i) also holds
if p = r and (iii) also holds if q = s. Since

t|pr|+ |pq|+ t|qs| ≤ tw|pq|+ |pq|+ t(1− w − 1/t)|rs|
≤ (tw + 1 + t(1− w − 1/t))|rs|
= t|rs|,

the graph G contains a t-spanner path between r and s and, therefore, the
algorithm does not add the edge {r, s} to G. This is a contradiction. ut

If we choose w = 1
2 (1− 1/t) in Lemma 4, then the Gap Theorem implies the

following result.

Theorem 3. Let S be a metric space with n points and constant doubling di-
mension, and let t > 1 be a real constant. Algorithm GreedySpanner(S, t)
computes a t-spanner for S having O(n) edges and total edge weight O(log n) ·
wt(MST (S)).
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4 Proof of the Gap Theorem

In this section, we present a proof of the Gap Theorem. This proof will consist
of the following four steps:

1. We start by showing that, in any metric space, if a directed edge set E with
vertex set S satisfies the gap property and all edges in E have approximately
the same weight, then the total weight of E is O(wt(TSP(S))).

2. We then show that, again in any metric space, the total weight of any
set E of edges with vertex set S, such that all edges in E are “short”, is
O(wt(TSP(S))).

3. Next, we show that, in any metric space of constant doubling dimension, and
for any directed edge set E with vertex set S, such that E satisfies the weak
gap property and all edges in E are “long”, the following holds: First, the
edge set E can be partitioned into O(log n) subsets, such that within each
subset, edges have approximately the same weight. Then, we show how to
further partition each subset into O(1) subsets, each one satisfying the gap
property. The analysis in the first step then shows that the total weight of
E is O(log n) · wt(TSP(S)).

4. In the final step, we use the well-separated pair decomposition to show that,
in any metric space of constant doubling dimension, any directed edge set
satisfying the weak gap property contains O(n) edges.

4.1 Edges of Similar Weights Satisfying the Gap Property

We start by considering directed edges having approximately the same weights
and that satisfy the gap property (as opposed to the weak gap property). The
proof of the following lemma is a simple modification of a proof technique intro-
duced in Chandra et al. [5].

Lemma 5. Let S be a metric space, let w > 0 be a real constant, and let E
be a set of directed edges whose endpoints are in S and that satisfy the w-gap
property. Assume that 1/2 ≤ |pq|/|rs| ≤ 2 for any two edges (p, q) and (r, s) in
E. Then, the total weight wt(E) of all edges in E satisfies

wt(E) ≤ 2
w
· wt(TSP(S)).

Proof. For any (directed) edge (p, q) of E, we call p the source of this edge. First
observe that, by the definition of the w-gap property, each point of S can be the
source of only one edge in E. Consider the traveling salesperson tour of S. By
walking along this tour (starting at some arbitrary point), we visit the sources
of the edges in E in some order. We number the edges of E as e0, e1, . . . , em−1,
as given by this order. For each i with 0 ≤ i < m, we write the edge ei as
ei = (pi, qi) and define Ti to be the portion of the tour that starts at pi and ends
at pi+1 (where indices are read modulo m). By the triangle inequality, we have

|pipi+1| ≤ wt(Ti),
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whereas, by the w-gap property and our assumption that edges in E differ in
weight by a factor of at most two,

|pipi+1| ≥ w ·min(|piqi|, |pi+1qi+1|) ≥ (w/2)|piqi|.

Thus, we have
|piqi| ≤ (2/w) · wt(Ti),

which implies that

wt(E) =
m−1∑

i=0

|piqi| ≤ (2/w)
m−1∑

i=0

wt(Ti) = (2/w) · wt(TSP(S)).

ut

4.2 The Weight of Short Edges

Lemma 6. Let S be a metric space with n points, let E be a set of directed edges
whose endpoints are in S, let D be the weight of a longest edge in E, and let
E′ be the subset of E consisting of all edges having weight at most D/n2. Then
wt(E′) ≤ wt(TSP(S)).

Proof. The lemma follows from the observations that E′ contains at most
(
n
2

) ≤
n2 edges and wt(TSP(S)) ≥ D. ut

4.3 Long Edges Satisfying the Weak Gap Property

Let S be a metric space with n points and constant doubling dimension d, let
w > 0 be a real constant, and let E be a set of directed edges whose endpoints
are in S and that satisfy the weak w-gap property.

Let D be the weight of a longest edge in E, let E′ be the subset of E
consisting of all edges having weight at most D/n2, and let E′′ = E \E′. Thus,
E′′ consists of all edges in E having weight more than D/n2. For each j with
0 ≤ j ≤ b2 log nc, we define

Ej = {e ∈ E′′ : D/2j+1 < wt(e) ≤ D/2j}.

Thus, the edge sets Ej form a partition of E′′.
We fix an index j with 0 ≤ j ≤ b2 log nc and analyze the total weight of all

edges in Ej . Even though edges in Ej differ in weight by a factor of at most
two, Lemma 5 cannot be applied to Ej , because we only know that Ej satisfies
the weak gap property. Our approach will be to further partition the set Ej into
O(1) subsets, each of which satisfies the w-gap property. Then, Lemma 5 can be
applied to each of these subsets.

Let L = D/2j+1, so that

Ej = {e ∈ E′′ : L < wt(e) ≤ 2L}.
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We define an undirected graph H with vertex set Ej , in which any two distinct
vertices (p, q) and (r, s) are connected by an edge if and only if

|pr| < w ·min(|pq|, |rs|).
Lemma 7. The maximum degree of the graph H is O(1).

Proof. Consider any vertex (p, q) of H. We have to prove an upper bound on
the number of elements (r, s) in Ej for which (p, q) 6= (r, s) and |pr| < w ·
min(|pq|, |rs|).

Let B be the ball with center p and radius 2wL. For any edge (r, s) in Ej

with |pr| < w ·min(|pq|, |rs|), we have |pr| ≤ 2wL and, thus, r ∈ B.
By applying the definition of doubling dimension twice, the ball B can be

covered by 22d balls Bi (1 ≤ i ≤ 22d) of radius wL/2. For each i with 1 ≤ i ≤ 22d,
we define

Ei
j = {(r, s) ∈ Ej : (r, s) 6= (p, q), |pr| < w ·min(|pq|, |rs|), r ∈ Bi}.

Then

{(r, s) ∈ Ej : (p, q) 6= (r, s), |pr| < w ·min(|pq|, |rs|)} =
22d⋃

i=1

Ei
j . (2)

Since the degree of (p, q) in H is equal to the size of the set on the left-hand side
in (2), we need an upper bound on

∑22d

i=1 |Ei
j |.

Consider a fixed value of i with 1 ≤ i ≤ 22d. If (r, s) is an edge in Ei
j , then

|ps| ≤ |pr|+ |rs| ≤ w ·min(|pq|, |rs|) + |rs| ≤ 2wL + 2L = 2(1 + w)L.

If (r, s) and (r′, s′) are two distinct edges in Ei
j , then r and r′ are both in Bi

and thus
|rr′| ≤ wL < w ·min(|rs|, |r′s′|).

Therefore, by the weak w-gap property, we have

|ss′| ≥ w ·min(|rs|, |r′s′|) ≥ wL.

In particular, s 6= s′. Thus, if we define X to be the set of the sinks s of all
edges (r, s) in Ei

j , then (i) X contains the same number of elements as Ei
j , (ii)

all points of X are contained in the ball with center p and radius 2(1 + w)L,
and (iii) the distance between any two distinct points of X is at least wL. By
applying Lemma 2 with α = w/(2(1 + w)), it follows that

|Ei
j | ≤ 2d·max(0,2+log(1/α)) = 2d·max(0,3+log(1+1/w)).

Thus, we have shown that the degree of the vertex (p, q) in H is at most

22d∑

i=1

|Ei
j | ≤ 2d(2+max(0,3+log(1+1/w))).

Since d and w are constants, the proof is complete. ut
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Let m be the maximum degree of any vertex in H. We color the vertices of H
(i.e., the elements of Ej) using m+1 colors, such that any two adjacent vertices
have distinct colors. For each k with 0 ≤ k ≤ m, let

Ejk = {e ∈ Ej : e has color k}.
The subsets Ejk, 0 ≤ k ≤ m, partition the set Ej .

Lemma 8. For each k with 0 ≤ k ≤ m, the set Ejk satisfies the w-gap property.

Proof. Let (p, q) and (r, s) be two distinct edges in Ejk. Since these two edges
have the same color, they are not connected by an edge in H. Then, the definition
of H implies that |pr| ≥ w ·min(|pq|, |rs|). ut

We are now able to complete the proof of the first claim in the Gap Theorem:
We started by partitioning the edge set E into E′ and E′′. Lemma 6 gives an
upper bound on wt(E′). Then, we partitioned E′′ into O(log n) subsets Ej , and
further partitioned each Ej into m+1 = O(1) subsets Ejk. By Lemmas 5 and 8,
the total weight of all edges in each subset Ejk is O(wt(TSP(S))).

4.4 The Number of Edges

In this section, we prove the second claim in the Gap Theorem. Our proof will
use the well-separated pair decomposition of Callahan and Kosaraju [4].

Let S be a metric space with n points. For any two non-empty subsets A and
B of S, we define their distance |AB| as

|AB| = min{|pq| : p ∈ A, q ∈ B}
and the diameter diam(A) of A as

diam(A) = max{|pq| : p ∈ A, q ∈ A}.
For a real number c > 1, called the separation ratio, we say that A and B are
well-separated, if

|AB| ≥ c ·max(diam(A), diam(B)).

Thus, if c is large, then (i) all distances between points in A and points in B are
approximately equal and (ii) distances within A (or B) are much smaller than
distances between points in A and points in B.

Definition 3. A well-separated pair decomposition for S is a sequence

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
of pairs of non-empty subsets of S, for some integer m, such that

1. for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated, and
2. for any two distinct points p and q of S, there is exactly one index i such

that



13

(a) p ∈ Ai and q ∈ Bi, or
(b) p ∈ Bi and q ∈ Ai.

The integer m is called the size of the well-separated pair decomposition.

Callahan and Kosaraju [4] showed that, in the Euclidean metric Rd, a well-
separated pair decomposition of size m = O(n) exists, and can in fact be com-
puted in O(n log n) time. Har-Peled and Mendel [10] generalized this result to
metric spaces of constant doubling dimension:

Theorem 4. Let S be a metric space with n points and constant doubling di-
mension, and let c > 1 be a real constant. There exists a randomized algorithm
that constructs, in O(n log n) expected time, a well-separated pair decomposition
for S, consisting of O(n) pairs.

The following lemma completes the proof of the Gap Theorem:

Lemma 9. Let S be a metric space with n points and constant doubling dimen-
sion, let w > 0 be a real constant, and let E be a set of directed edges whose
endpoints are in S and that satisfy the weak w-gap property. Then, E contains
O(n) edges.

Proof. Choose the separation ratio c to be larger than 1/w. Consider a well-
separated pair decomposition {Ai, Bi}, 1 ≤ i ≤ m, where m = O(n).

We will prove below that for each i with 1 ≤ i ≤ m, the set E contains (i)
at most one edge (p, q) with p ∈ Ai and q ∈ Bi, and (ii) at most one edge (p, q)
with p ∈ Bi and q ∈ Ai. Therefore, E contains at most 2m = O(n) edges.

Assume that (i) is not true. Then, E contains two distinct edges (p, q) and
(r, s) with p, r ∈ Ai and q, s ∈ Bi. We may assume without loss of generality
that |pq| ≤ |rs|. Since Ai and Bi are well-separated, we have

|pr| ≤ diam(Ai) ≤ 1
c
· |AiBi| ≤ 1

c
· |pq| < w|pq|

and, by a symmetric argument,

|qs| < w|pq|.

This contradicts the fact that (p, q) and (r, s) satisfy the weak w-gap property.
ut

5 Final Remarks

5.1 Open Problems

We have introduced the weak gap property as an alternative to the gap property
of Chandra et al. [5]. We have shown that, in any metric space whose doubling
dimension is constant, any set of edges satisfying the weak gap property has
O(n) elements and total weight O(log n) ·wt(TSP(S)) or, equivalently, O(log n) ·
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wt(MST (S)). The example in Narasimhan and Smid [13, Section 6.2] shows that
this upper bound is tight, even in the one-dimensional Euclidean metric.

We have shown that both 2-optimal tours and greedy spanners satisfy the
weak gap property. Thus, in case the doubling dimension is constant, their total
weight is within a factor of O(log n) of the minimum possible weight. These
results lead to the following open problems:

Problem 1. Chandra et al. [6] showed that, in the Euclidean plane R2, there
exists a 2-optimal tour whose length is Ω(log n/ log log n) · wt(TSP(S)).

– Is it true that, in the Euclidean metric in Rd, the weight of any 2-optimal
tour is O(log n/ log log n) · wt(TSP(S))?

– Does there exist a metric space S of constant doubling dimension, such that
S contains a 2-optimal tour whose length is Ω(log n) · wt(TSP(S))?

Problem 2. Das et al. [7, 8] showed that, in the Euclidean metric in Rd, the
weight of the greedy spanner is O(wt(MST (S))); see Chapter 14 in [13] for a
complete proof.

– Is it true that, in any metric space whose doubling dimension is constant,
the weight of the greedy spanner is O(wt(MST (S)))?

It follows from the proofs of Lemmas 3 and 4 that the (directed) edges of
any 2-optimal tour and the greedy spanner satisfy the following slightly stronger
property: For any two distinct edges (p, q) and (r, s),

|pr| ≥ w ·min(|pq|, |rs|)

or
|qs| ≥ w ·max(|pq|, |rs|).

It is not clear, however, whether this is of any help to solve Problems 1 and 2.

Problem 3. As we have seen in this paper, edge sets in metric spaces of bounded
doubling dimension can be analyzed using a packing argument.

– Find other classes of metric spaces, in which non-trivial upper bounds on
the weight of 2-optimal tours, greedy spanners, or other interesting graphs,
can be obtained.

5.2 Further Reading

A detailed analysis of tours produced by the 2-opt heuristic, both for general
metric spaces and Euclidean spaces, can be found in Chandra et al. [6].

Althöfer et al. [1] contains an analysis of the greedy spanner for general
metric spaces. Recently, Bose et al. [3] have shown that, in case the doubling
dimension is constant, the greedy spanner can be computed in O(n2 log n) time.
Observe that, since the greedy spanner contains the all-nearest-neighbors graph,
the results in Section 2.1 imply that the greedy spanner cannot be computed in
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subquadratic time. We remark, however, that, in the Euclidean metric in Rd,
an approximation of the greedy spanner can be computed in O(n log n) time;
see Gudmundsson et al. [9]. A detailed description of their algorithm, as well as
many other algorithms for constructing spanners, can be found in Narasimhan
and Smid [13].

Acknowledgements: The author thanks Hubert Chan, Anupam Gupta, and Giri
Narasimhan for helpful discussions during the workshop Geometric Networks and
Metric Space Embeddings, which was held in Dagstuhl (Germany) in November
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