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Abstract. A transformation F between protocols associates the mes-
sages sent and received by participants in a protocol Π1 with messages
sent and received in some Π2. Transformations are useful for modeling
protocol design, protocol composition, and the services that protocols
provide.

A protocol transformation determines a map from partial behaviors A1 of
Π1—which we call “skeletons”—to skeletons F (A1) ofΠ2. Good transfor-
mations should act as functors, preserving homomorphisms (information-
preserving maps) from one Π1-skeleton to another. Thus, if H : A1 7→ A2

is a homomorphism between Π1-skeletons, then there should be a homo-
morphism F (H) : F (A1) 7→ F (A2) between their images in Π2.

We illustrate protocol transformation by examples, and show that our
definition ensures that transformations act as functors.

1 Introduction

A protocol transformation F from a protocol Π1 to a protocol Π2 maps message
transmissions and receptions of roles of Π1 to transmissions and receptions of
roles of Π2. F may be used to show how Π1 and Π2 exhibit one of a number of
relations, among them:

– Π1 may be a choreography—typically defined without cryptography—which
the cryptography protocol Π2 is intended to implement faithfully, despite
the presence of malicious parties;

– Π1 may be a stage in designing the fuller protocol Π2;
– Π1 may be a simplification of an implemented protocol Π2 [12]; or
– Π2 may be a composition of Π1 with other protocols [10, 2, 8].

In this paper, our goals are to give:

1. a definition of transformations flexible enough for these purposes, which
requires us to avoid giving an excessively syntactic criterion;

2. examples to show how it accommodates these purposes; and
3. three key results ensuring that protocol transformations are well-behaved.

? Supported by the MITRE-Sponsored Research program.
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Skeletons and the homomorphisms between skeletons are central to our ap-
proach. We have previously used them to develop an algorithm for protocol
analysis [6]; to prove this algorithm covers all the possibilities [5]; and to give
a criterion ensuring that a protocol composition will respect the security goals
achieved by the protocols being combined [8].

A skeleton A describes the behavior of the regular (non-adversarial) partici-
pants in some set of executions. It contains some regular behavior; the executions
A describes must also contain this behavior. Transmission and reception events
are related by a partial order expressing causal precedence. The skeleton may
stipulate that some keys are assumed uncompromised, and that some keys or
other (nonce-like) values are freshly generated. Some skeletons are realized in the
sense that they contain all the regular behavior needed for a complete execution.
This means that for every message that the skeleton says was delivered, either
this message should itself have been previously transmitted, or else the adversary
can synthesize it using its own creations and messages that were previously sent.
Naturally, adversary behavior must respect the freshness and noncompromise
assumptions of the skeleton. A protocol transformation F determines a map
lifting skeletons A of Π1 to skeletons F (A) of Π2.

A homomorphism is an information-preserving map H : A0 7→ A1 between
skeletons of one protocol. The executions that a skeleton A0 describes are all
the realized skeletons Ar such that, for some homomorphism H, H : A0 7→ Ar.
An information-preserving map H : A0 7→ A1 cannot increase (loosen) the set
of executions described; instead, H’s target A1 should describe a subset of the
executions described by its source A0. This follows from the fact that the com-
position of homomorphisms is a homomorphism.

The three theorems of this paper state:

1. A transformation acts as a functor (Thm. 1). If H is a homomorphism
H : A0 7→ A1 on skeletons of Π1, F should determine a (unique) homo-
morphism between their images in Π2, i.e. F (H) : F (A0) 7→ F (A1).

2. F , regarded as a functor on homomorphisms, does not introduce new ones
(Thm. 2). If G : F (A0) 7→ F (A1) is a homomorphism on Π2 skeletons that
are the images ofΠ1 skeletons A0,A1, thenG = F (H) for someH : A0 7→ A1.

3. If B is any Π2 skeleton, then there is a (unique) maximum A1 such that
F (A1) may be mapped injectively into B (Thm. 3). A1 defines the maximum
Π1 content that is contained in B.

In all of these results, uniqueness is to within isomorphism.
Our criterion on transformations F involves, besides a few bookkeeping con-

straints, three main requirements. First, suppose a parameter of a role ρ1 of
Π1 originates on its image F (ρ1). This means that it is transmitted without
having previously been received. Then this parameter should also have origi-
nated on ρ1. Second, is an analogous condition on parameters of a role ρ1 of Π1

that are simply transmitted on its image F (ρ1), rather than being used only as
keys for encryption or decryption. Finally, suppose that two roles ρ0, ρ1 of Π1

have a substitution instance s in common. Then their images F (ρ0), F (ρ1) in Π2

should have in common the image F (s). This condition is necessary to ensure
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that F (ρi) does not commit to one branch of a branching behavior while ρ0 and
ρ1 are uncommitted.

Section 2 presents a variety of examples. In Section 3, we pause to summa-
rize the current strand space treatment of the algebra of messages, skeletons,
and homomorphisms, following [6, 8]. Section 4 presents the main definition and
shows that F (A) is well determined, and Section 5 shows that homomorphisms
are preserved. Section 6 mentions some key related work and concludes.

2 Some Examples

We discuss here several variants of a transaction in which a principal A answers a
question asked by another principal B. First, in the choreography description [1],

A
rdy //

��

B

��
•

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII •
qry Qoo

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII

•

yes

66•

no

55• •

Fig. 1. A Question-Answering Choreography

Fig. 1, A starts by sending a message saying that he is ready; B responds with a
query message containing the parameter Q, representing the question; and then
A branches. Either A decides to answer the question affirmatively, and sends the
constant yes, or else A decides to answer the question negatively, and sends the
constant no.

The local behaviors of the individual parties are of four kinds. Two of them,
the answerer A’s behaviors C1, C2, are shown in Fig. 2. We refer to the lo-
cal sequence of actions of one principal in one run of the protocol—possibly
incomplete—as a strand. The questioner B’s strands C3, C4 are dual, interchang-
ing message sends and receives. In C1, the final message transmission is the af-

C1 : A +3

��
• +3 •

��

C2 : A +3

��
• +3 •

��
rdy qry Q

OO

yes rdy qry Q

OO

no

Fig. 2. Question-Answering Choreography: A’s Parametric Strands
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firmative form yes while in C2, it is no. In either case, the query can carry any
value of the parameter Q. A strand which is only partly complete—because only
the first step or the first two steps have occurred—is the same whether it is a C1

behavior or a C2 behavior. The execution has not yet committed to one branch
or the other if it has not yet performed the last step. When one observes only
the first two nodes of any of these behaviors, one cannot distinguish whether the
last node will be affirmative or negative.

The matching behaviors C3, C4 are not shown since they are simply the duals.
A may later bill B a fee for this service. With so valuable a service, there are

of course security considerations. A may not want to disclose to an adversary
sniffing the network the answer to B’s question; B may not want to disclose what
question he is asking; and both parties may wish to ensure that the adversary
cannot alter B’s question Q to a different question Q′, or alter A’s answer from
affirmative to negative or the reverse. To defeat these (standard) attacks, we may
implement our choreography using a cryptographic protocol (Fig 3). Here, each
principal is assumed to know a public (asymmetric) encryption key to which
only the partner holds the matching decryption key; we write t encrypted in a
form that only principal P can read as {|t|}P . The parameters R, Y,N are nonces,

A
{|RˆA|}B //

��

B

��
•

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII •
{|RˆQˆY ˆN ˆB|}Aoo

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII

•

Y

66•

N

55• •

Fig. 3. Question-Answering Cryptoprotocol

i.e. randomly chosen bitstrings that are extremely unlikely to be used more than
once. The last message is unencrypted. A transmits the first of the two nonces
Y and N created by B to indicate the answer yes, and the second to indicate
the answer no. This conveys the answer to B, while conveying nothing whatever
to any principal that did not prepare {|RˆQˆY ˆN ˆB|}A and cannot decrypt
it. The nonces themselves are perfectly arbitrary.

Each local behavior of the principal A is summarized in one of the strands in
Fig. 4. Each one has the parameters A,B,R,Q, Y,N , and the instances of each
strand are generated by substituting each possible name, nonce, or question for
these parameters, respecting types. Again, the strands P3, P4 of B are dual.

Looking at the strands of Figs. 2, 4, we can see that we could perform a map-
ping in either direction. One could map the transmission and reception events of
the cryptoprotocol strands to send and receive events in the choreography, dis-
carding superfluous parameters. In this scheme, each jth node of Pi would map to
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P1 : A +3

��
• +3 •

��
P2 : A +3

��
• +3 •

��
t1 t2

OO

Y t1 t2

OO

N

t1 = {|RˆA|}B t2 = {|RˆQˆY ˆN ˆB|}A

Fig. 4. Question-Answering Cryptoprotocol: Parametric Strands

the jth node of Ci. Alternatively, one could map the events of the choreography
to events on strands of the cryptoprotocol, allowing the additional parameters
to be freely chosen. In this scheme, each jth node of Ci would map to the jth

node of Pi.

In either case, we will map nodes on answerer strands at one level to nodes
on answerer strands at the other level, and questioner nodes to questioner nodes
at the other level. We will map affirmative nodes at one level to affirmative
nodes at the other, and likewise for negative nodes. Along each strand, each
successive transmission or reception must be associated with the corresponding
transmission or reception of the strand at the other level. Thus, our only choice
is whether to map from Pi to the Ci, or vice versa.

This example is, however, peculiar in that the two protocols have correspond-
ing strands of the same length. Consider next the choreography of Fig. 5. It is
more natural than the choreography of Fig. 1, since the questioner acts as client
and the answerer acts as server; the rdy message at the beginning of Fig. 1 in-
verts the client-server roles. However, in Fig. 5, we can no longer map the jth

node of C ′
i to the jth node of Pi. Instead, it corresponds to the j + 1st node

of Pi. For this same reason, we cannot speak of a transformation in the other
direction; since the Ci 7→ Pi mapping is not surjective, the Pi 7→ Ci mapping
would not be total.

A

v~ vv
vvv

v
vvv

vvv

 (HHH
HHH

HHH
HHH

B
qry Qoo

v~ vv
vvv

v
vvv

vvv

 (III
III

III
III

•

yes

66•

no

55• •

C′
1 : A +3 •

��

C′
2 : A +3 •

��
qry Q

OO

yes qry Q

OO

no

Fig. 5. A Question-Answering Service and Its Strands
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Moreover, we can also think of protocol transformations where both source
and target protocols involve cryptography. For instance, we can regard the cryp-
toprotocol of Fig. 3 as derived from the choreography of Fig. 5 by a succession
of steps that progressively introduce suitable cryptography. As a first step, we
may introduce the first readying message of Fig. 3, with the nonce R returned
piggybacked with the question Q. We include these two elements within an en-
cryption so that an adversary cannot reassociate the nonce R with a different
question Q′. Thus, we obtain the intermediate form given in Fig. 6. The first

A
{|RˆA|}B //

��

B

��
•

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII •
{|RˆQˆB|}Aoo

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII

•

yes

66•

no

55• •

Fig. 6. From Choreography to Cryptoprotocol, Step 1

two messages provide an “outgoing test” [6] that allows A to authenticate this
question Q as having been submitted by B. If the private decryption keys of A,B
are uncompromised, then only B could liberate R from {|RˆA|}B , and moreover
no third party could liberate R from any other message {|RˆQ′ˆB|}A. Thus, no
third party could have repackaged R with the Q that A actually received.

Using the outgoing test idea again, B can supply a new nonce Y within
the second message {|RˆQˆY ˆB|}A; A may liberate this nonce to indicate an
affirmative answer to Q (Fig 7). Repeating this idea with another nonce N for

A
{|RˆA|}B //

��

B

��
•

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII •
{|RˆQˆY ˆB|}Aoo

v~ uuuuuu
uuuuuu

 (IIIIII

IIIIII

•

Y

66•

no

55• •

Fig. 7. From Choreography to Cryptoprotocol, Step 2

the negative case completes the protocol design process for Fig. 3.
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Indeed, we can express the abstract schema of an “outgoing test” [6], in
which a nonce is transmitted in encrypted form and received back later outside
of that encryption, as a sort of germ protocol (Fig. 8). It allows the sender to
infer that either the decryption key is compromised, or else a regular participant
has received the encrypted unit and transformed its content. If we perform a

•

��

{|N|}K // {|N|}K // •

��
• Noo •Noo

Fig. 8. The Outgoing (Nonce) Authentication Test

renaming here, mapping N to R and K to pubk(B), then we can map the left
strand to the first two nodes on the left of Fig. 6 and the right strand to the
first two nodes on the right. This appears to show Fig. 6 as a sort of “join” of
the choreography of Fig. 5 with an instance of the outgoing test protocol. We
can now repeat this process with a different renaming of Fig. 8 to produce Fig. 7
as a successive join, producing the final cryptoprotocol in a similar third step.
These maps appear to characterize how the protocol of Fig. 4 achieves its goals.

3 Messages, Protocols, Skeletons

In this section, we provide an overview of the current strand space framework;
cf. [8] or the extended version of [6] for more detail. Let A0 be an algebra equipped
with some operators and a set of homomorphisms η : A0 → A0. We call members
of A0 atoms.

For the sake of definiteness, we will assume here that A0 is the disjoint union
of infinite sets of nonces, atomic keys, names, and texts. The operator sk(a) maps
names to (atomic) signature keys, and K−1 maps an asymmetric atomic key to
its inverse, and a symmetric atomic key to itself. Homomorphisms η are maps
that respect sorts, and act homomorphically on sk(a) and K−1.

Let X be an infinite set disjoint from A0; its members—called indetermi-
nates—act like unsorted variables. A is freely generated from A0 ∪ X by two
operations: encryption {|t0|}t1 and tagged concatenation tag t0ˆt1, where the
tags tag are drawn from some set TAG . For a distinguished tag nil , we write
nil t0ˆt1 as t0ˆt1 with no tag. In {|t0|}t1 , a non-atomic key t1 is a symmetric
key. Members of A are called messages.

A homomorphism α = (η, χ) : A → A consists of a homomorphism η on
atoms and a function χ : X → A. It is defined for all t ∈ A by the conditions:

α(a) = η(a), if a ∈ A0 α({|t0|}t1) = {|α(t0)|}α(t1)

α(x) = χ(x), if x ∈ X α(tag t0ˆt1) = tag α(t0)ˆα(t1)
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Thus, atoms serve as typed variables, replaceable only by other values of the same
sort, while indeterminates x are untyped. Indeterminates x serve as blank slots,
to be filled by any χ(x) ∈ A. Indeterminates and atoms are jointly parameters.

This A has the most general unifier property, which we will rely on. That is,
suppose that for v, w ∈ A, there exist α, β such that α(v) = β(w). Then there
are α0, β0, such that α0(v) = β0(w), and whenever α(v) = β(w), then α and β
are of the forms γ ◦ α0 and γ ◦ β0.

Messages are abstract syntax trees in the usual way:

1. Let ` and r be the partial functions such that for t = {|t1|}t2 or t = tag t1ˆt2,
`(t) = t1 and r(t) = t2; and for t ∈ A0, ` and r are undefined.

2. A path p is a sequence in {`, r}∗. We regard p as a partial function, where
〈〉 = Id and cons(f, p) = p ◦ f . When the rhs is defined, we have: 1. 〈〉(t) = t;
2. cons(`, p)(t) = p(`(t)); and 3. cons(r, p)(t) = p(r(t)).

3. p traverses a key edge in t if p1(t) is an encryption, where p = p1
_〈r〉_p2.

4. p traverses a member of S if p1(t) ∈ S, where p = p1
_p2 and p2 6= 〈〉.

5. t0 is an ingredient of t, written t0 v t, if t0 = p(t) for some p that does not
traverse a key edge in t.

6. t0 appears in t, written t0 � t, if t0 = p(t) for some p.

Strands and origination. A single local session of a protocol at a single
principal is a strand, containing a linearly ordered sequence of transmissions and
receptions that we call nodes. In Figs. 2, 4, and 5, the vertical columns of nodes
connected by double arrows ⇒ are strands.

We write s ↓ i for the ith node on strand s, using 1-based indexing. We write
n ⇒ m when n,m are successive nodes on the same strand, i.e. when for some
s, i, n = s ↓ i and m = s ↓ i+ 1. We write msg(n) for the message sent or
received on the node n.

A message t0 originates at a node n1 if (1) n1 is a transmission node; (2)
t0 v msg(n1); and (3) whenever n0 ⇒+ n1, t0 6v msg(n0).

Thus, t0 originates when it was transmitted without having been either re-
ceived or transmitted previously on the same strand. Values assumed to originate
only on one node in an execution—uniquely originating values—formalize the
idea of freshly chosen, unguessable values. Values assumed to originate nowhere
may be used to encrypt or decrypt, but are never sent as message ingredients.
They are called non-originating values. For a non-originating value K, K 6v t
for any transmitted message t. However, K � {|t0|}K v t possibly, which is why
we distinguish v from �. See [11, 6] for more details.

In the tree model of messages, to apply a homomorphism, we walk through,
copying the tree, but inserting α(a) every time an atom a is encountered, and
inserting α(x) every time that an indeterminate x is encountered.

Protocols. A protocol Π is a finite set of strands, representing the roles of the
protocol. Four of the roles of the yes-no cryptoprotocol are the strands shown in
Fig. 4. Their instances result by replacing A,B,R,Q, Y,N , etc., by any names,
nonce, question, etc. The fifth role is the listener role Lsn[y] with a single recep-
tion node in which y is received. The instances of Lsn[y] are used to document
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that values are available without cryptographic protection. For instance, Lsn[K]
would document that K is compromised. Every protocol contains the role Lsn[y].

Indeterminates represent syntactically unconstrained messages received from
protocol peers, or passed down as parameters from higher-level protocols. Thus,
we require an indeterminate to be received as an ingredient before appearing in
any other way:

If n1 is a node on ρ ∈ Π, with an indeterminate x� msg(n1),
then ∃n0, n0 ⇒∗ n1, where n0 is a reception node and x v msg(n0).

A principal executing a role such as P3 in Fig. 4 may be partway through its run;
for instance, it may have executed the first reception event and first transmission,
without “yet” having executed the final reception event. Thus, it can not yet be
distinguished from the first two nodes of an instance of role P4. When n1 ⇒ n2

is the beginning of a strand α(P3), we also regard it as an instance of the role
P4, since nothing that has happened shows that it is not:

Definition 1. Node n is a role node of Π if n = ρ ↓ j lies on some ρ ∈ Π.
Let ρ ↓ j be a role node of Π. Node mj is an instance of ρ ↓ j if, for some

homomorphism α, the strand of mj, up to mj, takes the form: α(ρ ↓ 1) ⇒ . . .⇒
α(ρ ↓ j) = mj. ut

That is, messages and their directions—transmission or reception—must agree
up to node j. However, any remainders of the two strands beyond node j are
unconstrained. They need not be compatible. When a protocol allows a principal
to decide between different behaviors after step j, based on the message contents
of their run, then this definition represents branching [7, 9]. At step j, one doesn’t
yet know which branch will be taken.

If s is a strand, then t0 � s iff for some j, t0 � msg(s ↓ j); and similarly
t0 v s iff for some j, t0 v msg(s ↓ j).

Skeletons. A skeleton A consists of (possibly partially executed) role instances,
i.e. a finite set of nodes, nodes(A), with two additional kinds of information:

1. A partial ordering �A on nodes(A);
2. Finite sets uniqueA, nonA of atomic values assumed uniquely originating and

respectively non-originating in A.

nodes(A) and �A must respect the strand order, i.e. if n1 ∈ nodes(A) and n0 ⇒
n1, then n0 ∈ nodes(A) and n0 �A n1. If a ∈ nonA, then amust originate nowhere
in nodes(A), though a or a−1 may be the key encrypting some e � msg(n) for
n ∈ nodes(A). If a ∈ uniqueA, then a must originate at most once in nodes(A).

A is realized if it is a possible run without additional activity of regular
participants; i.e., for every reception node n, the adversary can construct msg(n)
via the Dolev-Yao adversary actions,1 using as inputs:
1 The Dolev-Yao adversary actions are: concatenating messages and separating the

pieces of a concatenation; encrypting a given plaintext using a given key; and de-
crypting a given ciphertext using the matching decryption key.
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1. all messages msg(m) where m ≺A n and m is a transmission node;
2. any atomic values a such that a 6∈ (nonA∪uniqueA), or such that a ∈ uniqueA

but a originates nowhere in A.

Two skeletons A0,A1 are shown in Fig. 9. They are skeletons of the protocol
shown in Fig. 7, i.e. the second step in the derivation of the Question-Answering
Cryptoprotocol. Of these skeletons, only A1 is realized. It is a realized skeleton

A

��

t1 // t′1 // B

��
• �

t2oo •
��

t′2oo

Y ′
// •

A0

H07−→ A

��

t1 // ≺
t1 // B

��
•

��

�
t2oo •

��

t2oo

• Y // ≺ Y // •

A1

t1 = {|RˆA|}B t′1 = {|R′ˆA|}B

t2 = {|RˆQˆY ˆB|}A t′2 = {|R′ˆQ′ˆY ′ˆB|}A

uniqueA0
= {Y ′} uniqueA1

= {Y }
nonA0 = {K−1

A } nonA1 = {K−1
A ,K−1

B }

Fig. 9. Homomorphism H0 = [ψ0, α0] : A0 7→ A1

because every message to be received may be derived by the adversary from
messages previously sent. In fact, every message received was itself previously
sent: i.e. the trivial adversary derivation suffices. However, A0 is not realized.
Y ′ is not derivable from its predecessors in A0, since the adversary can not use
K−1

A , nor re-originate Y ′.
The initiator strand in A0 is only of height 2, rather than 3, so that it has

not yet committed to branch to the affirmative or negative answer. Thus, it is a
common instance of both initiator strands of its protocol. Whether we regard the
not-yet-occurred third node as an affirmative one or a negative node makes no
difference. Indeed, the map on skeletons that replaces the first two nodes of an
affirmative strand by the first two nodes of a negative strand is an isomorphism.

Given any skeleton A0, assume that ψ : nodesA0 → nodesA1 . [ψ, α] is an equiv-
alence class of pairs ψ′, α′. A pair ψ′, α′ is in [ψ, α] if (1) ψ′ = ψ; and (2)
α(a) = α′(a), for every a such that a � msg(n) for any n ∈ nodes(A0). This
definition for [ψ, α] implies that the action of α on atoms not mentioned in A0

is irrelevant.

Definition 2. Let α be a homomorphism on messages of A, and ψ : nodesA0 →
nodesA1 , for skeletons A0,A1. H = [ψ, α] is a skeleton homomorphism, written
H : A0 7→ A1, if:



Camera ready 11

1a. For all n ∈ A0, msg(ψ(n)) = α(msg(n))
1b. ψ(n) is a transmission node iff n is a transmission node;
1c. ψ acts strand-by-strand; i.e.

∀s ∃s′ ∀j . s ↓ j ∈ nodes(A) implies ψ(s ↓ j) = s′ ↓ j;

2. n �A0 m implies ψ(n) �A1 ψ(m);
3. α(nonA0) ⊆ nonA1 ;

4a. α(uniqueA0
) ⊆ uniqueA1

;
4b. If a originates at n ∈ nodesA0 for a ∈ uniqueA0

, then α(a) originates at ψ(n).

H is an isomorphism if (as usual) for some G : A1 7→ A0, G ◦H = IdA0 .

We sometimes write H(n) for ψ(n) or H(a) for α(a), when H = [ψ, α]. As an
example of a homomorphism between skeletons, consider the map H0 between
skeletons shown in Fig. 9.

In H0, α0(R′) = R, α0(Q′) = Q, and α0(Y ′) = Y ; the remaining parameters
are unchanged. The function ψ0 on nodes maps successive nodes on the left
strand of A0 to their counterparts on the left strand of A1; it maps nodes on the
right strand of A0 to their counterparts on the right strand of A1. It also enriches
the ordering. Specifically, the topmost nodes are ordered in A1 but not in A0;
and the second node of the left strand precedes the last node of the right strand
in A1, although they are not ordered in A0. Moreover, α0(uniqueA0

) = uniqueA1
,

although α0(nonA0) ( nonA1 .
When, for a homomorphism H = [ψ, α] : A 7→ A′, ψ is an injective function

from nodes of A to nodes of A′, we call H a node-injective homomorphism.
We proved in [6] that if H : A 7→ A′ and G : A′ 7→ A are node-injective, then

A and A′ are isomorphic. Thus, we write A ≤N A′ to mean that for some node-
injective H, H : A 7→ A′. Regarding ≤N as a relation on skeletons factored by
isomorphism, it is a well-founded partial order. In fact, there are only finitely
many isomorphism classes below the isomorphism class of any skeleton A.

4 Transformations

We define our notion of transformation via five clauses. Clauses 1–3 are simple
bookkeeping requirements. Clause 4 says that a transformation respects origi-
nation and v.

Clause 5 says that a transformation respects the instances of roles in the
sense of Def. 1. Essentially, Clause 5 says that the transformed protocol does
not commit to one branch any earlier than the source, whenever the source roles
can branch.

Definition 3. Suppose that Π1 and Π2 are protocols, and F is a map from the
strands ρ1 ∈ Π1 to pairs F (ρ1) = ρ2, g, where ρ2 ∈ Π2 and g : N → N is a
function on natural numbers.

F is a protocol transformation iff, for all ρ1 ∈ Π1, letting F (ρ1) = ρ2, g:
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1. g is an increasing function, i.e. i < j implies g(i) < g(j).
2. g(length(ρ1)) ≤ length(ρ2).
3. ρ1 ↓ j is a transmission node [resp. a reception node] iff

ρ2 ↓ g(j) is a transmission node [resp. a reception node].
4. For each role node n = ρ1 ↓ i, and each parameter a such that a� msg(n):

(a) If a originates on ρ2 ↓ k, with k ≤ g(j), then a originates on some ρ1 ↓ j′
with j′ ≤ j; and

(b) If a v msg(ρ2 ↓ k), with k ≤ g(j), then a v msg(ρ1 ↓ j′) with j′ ≤ j.
5. Suppose for some ρ1, ρ

′
1 and α, α′, and all j ≤ k,

α(ρ1 ↓ j) = α′(ρ′1 ↓ j).

Let F (ρ′1) = ρ′2, g
′. For every i ≤ k, g(i) = g′(i); and for every j ≤ g(k),

α(ρ2 ↓ j) = α′(ρ′2 ↓ j).

Node n is an image of m iff for some ρ1, α, j, letting F (ρ1) = ρ2, g, we have
m = α(ρ1 ↓ j) and n = α(ρ2 ↓ g(j)). ut

We use the indefinite article, an image of m, because there are many substitu-
tions α′ such thatm = α′(ρ1 ↓ j), i.e. all those that differ only for parameters not
appearing in ρ1 ↓ j. For instance, in Fig. 5, the parameters of C ′

2 ↓ 1 are A,B,Q,
so this node is unaffected by the action of α′ on R, Y,N , and unaffected by the
choice of the encryption keys pubk(A), pubk(B). However, different instances of
P2 ↓ 2 in Fig. 4 result as these parameters vary.

According to this definition, we have numerous transformations among the
examples given in Section 2. The two-step choreography service of Fig. 5 may
be transformed into any of the other choreographies and protocols of Figs. 1–7.
Each jth node of the source is mapped to the j + 1th node of the target, so that
the functions g(j) = j + 1. The first “ready” message is not in the range of the
transformations.

Indeed, an alternate transformation maps the affirmative strands of Fig. 5
to negative strands of the targets; this represents an inversion of the conven-
tion about the meanings of the outcomes. Indeed, the definition also allows the
“nonsensical” maps that send affirmative initiator strands to negative responder
strands, and negative initiator strands to affirmative responder strands. These
nonsensical transformations, however, have the property that the image of a
well-formed choreography execution is not a realized skeleton of the crypto pro-
tocol.

All of the three-step protocols have transformations to all of the others, which
in some cases introduce additional parameters and cryptographic structure; in
the reverse cases, the transformation “forgets” parameters. If P1 and P1 sent
their first messages in incompatible forms, then Clause 5 would imply that the
map from the choreography in Fig. 1 to the resulting cryptoprotocol would not
be a transformation. It would force commitment to one branch too early. This
corresponds to the (pointless) service in which A allows B to ask a question to
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which the answer is yes, and then answers yes, or allows B to ask a question to
which the answer is no, and then answers no.

Clause 4 prohibits the map from Fig. 7 to a variant of Fig. 4 in which the
public or private key of A is included in one of the messages as part of its
plaintext. It is a parameter of the source, while not being an ingredient in the
plaintext of the messages, and Clause 4(b) requires that this be preserved under
transformation. Likewise, a variant of Fig. 4 in which the responder originates R
in message 2 without having received it in message 1 would violate Clause 4(a).

When a transformation introduces parameters, then nodes of the source
protocol have many possible images under the transformation. Naturally some
choices may be unnecessarily constraining, when they select values for the newly
introduced parameters that equal other parameters unnecessarily.

Suppose thatX is a set of parameters, e.g. the parameters appearing in ρ1 ↓ j.
Some parameters of ρ2 ↓ g(j) may not be in X, for instance R if ρ2 = P2 and
j = 1. Among substitutions α′ that agree with α on X, some are unnecessarily
specific, for instance those that map two parameters 6∈ X to the same value.
Selecting α′(Y ) 6= α′(N) would be more general than forcing α′(Y ) = α′(N).
Likewise, forcing a parameter not inX to agree with one inX discards generality,
e.g. forcing α′(Y ) = α′(Q).

Let α0 be a substitution that agrees with α on X, and where α0(x) = α0(x′)
implies x, x′ ∈ X or x = x′. Then α0 is maximally general among substitutions
that agree with α on X, in the following sense. If α1 is any substitution agreeing
with α on X, then any β ◦ α1 = γ ◦ α0 for exactly one γ. As a consequence, if
α1 also satisfies the same property as α0, then α0 and α1 differ by a renaming.

Thus, for any set of parameters X, α0 is universal for X if α0(x) = α0(x′)
implies x, x′ ∈ X or x = x′. Such an α is however unique only up to isomorphism,
and the same will remain true for our functions to lift skeletons A. That is, F (A)
is determined only to within isomorphism.

In some circumstances (cf. e.g. [13]), it would be desirable to relax the order
preserving requirement of Def. 3, Clause 1. In this case, letting

g+(k) = max
1≤i≤k

g(i),

we would rewrite Clause 2 as g+(length(ρ1)) ≤ length(ρ2). Similarly, the occur-
rences of g(j) in Clause 4(a) and (b) would become g+(j), and the quantification
over all i ≤ g(k) in Clause 5 becomes i ≤ g+(k). The main results of Section 5
are not substantially changed.

A strand of A is any s where n ∈ nodes(A), for at least s’s first node n = s ↓ 1.

Definition 4. Let F transform Π1 to Π2, and let A be a Π1-skeleton.

1. A Π2-skeleton B is an F -image of A iff there is a bijection ϕ between strands
of A and strands of B such that:
(a) For every strand s of A, letting s = α(ρ1) and F (ρ1) = ρ2, g:

ϕ(s) = α(ρ2) and heightB(ϕ(s)) = g(heightA(s));
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(b) If s ↓ j �A s
′ ↓ k, then (ϕ(s) ↓ g(j)) �B (ϕ(s′) ↓ g′(k)), where

s = α(ρ1) F (ρ1) = ρ2, g
s′ = α′(ρ′1) F (ρ′1) = ρ′2, g

′.

(c) Uniquely originating and non-originating values are preserved:

uniqueA ⊆ uniqueB and nonA ⊆ nonB

2. We write F (A) = B if and only if B ≤N B′, for every F -image B′ of A.

Lemma 1. Let F transform Π1 to Π2, and let A be a Π1-skeleton. There is—to
within isomorphism—a unique B such that F (A) = B.

Proof sketch. We may regard the strands that contribute nodes to A as a family
{αi(ρi

1)}i∈I , where for each a representation has been chosen, as an instance of
a particular role ρi

1 under a particular substitution αi. In some cases, more than
one choice of role ρi

1 may be compatible with the nodes that actually appear to
A, which may be only an initial segment of the whole role. Definition 3, Clause 5
ensures that this choice cannot affect the outcome. Moreover, αi may freely vary
for all parameters that do not appear in nodes of this segment of ρi

1. By the
discussion above, we may require that the αi are chosen such that:

1. for atoms or indeterminates v not appearing in ρi
1, αi(v) = αj(w) implies

w = v and i = j;
2. for atoms a not appearing in ρi

1, αi(a) 6∈ uniqueA ∪ nonA;
3. for indeterminates x not appearing in ρi

1, αi(x) is an indeterminate.

We now construct B by (a) taking images of each strand αi(ρi
1) using αi(ρi

2)
up to height g(k), where k is the height of αi(ρi

1) in A and F (ρi
1) = ρi

2, g; (b)
selecting �B to be a minimal extension of ϕ(�A) compatible with the strand
ordering in B; and (c,d) letting nonB = nonA and uniqueB = uniqueA.

B is a Π2 skeleton: The conditions on the nodes and ordering are immediate
from the definitions. Moreover, Definition 3, Clause 4 ensures that any node in B
in which a ∈ nonB appears as an ingredient is an image of a node in A in which
it already appeared as an ingredient. Thus, the condition on non-origination
is satisfied in B because it was satisfied in A. Similarly, Definition 3, Clause 4
ensures that any node in B in which a ∈ uniqueB originates is an image of a node
in A in which it already originated. Thus, the condition on unique origination is
satisfied in B because it was satisfied in A.

Moreover, by the choice of the substitutions αi, B has a nodewise injective
homomorphism to any other image of A. ut

As an example, in Fig. 10, we provide the images of the skeletons A0,A1 from
Fig. 9. The new parameters N,N ′ have been chosen to be different from each
other, and different from any other value appearing in the skeletons. Despite the
fact that the other primed parameters disappear from A1, N ′ remains; generality
would have been lost if it were forced to agree with N . Hence, F (A1) is not
realized, although the result of the substitution N ′ 7→ N would yield a realized
skeleton.
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A

��

t3 // t′3 // B

��
• �

t4oo •
��

t′4oo

Y ′
// •

F (A0)

F (H0)7−→ A

��

t3 // ≺
t3 // B

��
•

��

�
t4oo •

��

t′′4oo

• Y // ≺ Y // •

F (A1)

t3 = {|RˆA|}B t′3 = {|R′ˆA|}B

t4 = {|RˆQˆY ˆN ˆB|}A t′4 = {|R′ˆQ′ˆY ′ˆN ′ˆB|}A

t′′4 = {|RˆQˆY ˆN ′ˆB|}A

uniqueF (A0) = {Y ′} uniqueF (A1) = {Y }
nonF (A0) = {K−1

A } nonF (A1) = {K−1
A ,K−1

B }

Fig. 10. Lifted Homomorphism F (H0) : F (A0) 7→ F (A1)

5 Transformations and Homomorphisms

There are three main facts that show that our notion of transformation is reason-
able, and these concern the way that transformations relate the homomorphisms
among Π1-skeletons with those among Π2-skeletons. The first shows that trans-
formations lift each Π1-homomorphism to a Π2-homomorphism which is unique
to within isomorphism. We write this G subsequently as F (H). See Fig. 11. An
example appears in Fig. 10.

Theorem 1 Let F transform Π1 to Π2, and suppose H : A0 7→ A1 is a ho-
momorphism on Π1-skeletons. There is a homomorphism G on Π2-skeletons
G : F (A0) 7→ F (A1) such that (letting ϕi satisfy the conditions of Def. 4 for Ai):

1. ϕ1(H(n)) = G(ϕ0(n)) for every n ∈ nodes(A0); and
2. G(v) = H(v) for every atom or indeterminate v appearing in A0.

Moreover, if G and G′ both satisfy this property, then they differ by an isomor-
phism I, i.e. G′ = I ◦G. G is node-injective iff H is.

Proof sketch. Suppose that the homomorphism H = [ψ1, β]. We may regard the
strands contributing nodes to A0 as a family αi(ρi

1) in such as way that the
strands of A1 in the image of A0 under ψ are all of the form (β ◦ αi)(ρi

1). A1

may restrict which roles are chosen more tightly than A0, since they may have
greater height in A1. Let β be general for parameters not appearing in A0.

Thus, we define G = [ψ2, β], where ψ2 = φ1 ◦ψ1 ◦φ−1
0 . G is a homomorphism

because each strand αi(ρi
2) in F (A0) is mapped by ψ2 to β ◦ αi(ρi

2) as desired,
and the origination constraints follow as in Lemma 1.
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A0
� H //

ϕ0

��

A1

ϕ1

��
F (A0)

� G // F (A1)

Fig. 11. Homomorphisms H,G

If G′ = [ψ′2, β
′] also satisfies the conditions, then let φ′1 a function such

that, for n ∈ nodesA1 , φ
′
1(n) is (1) φ1(n) if n is not in the range of ψ1; and

(2) ψ′2(φ0(m)) for any m such that ψ1(m) = n, otherwise. By the uniqueness
condition on φ1, φ′1 ◦ (φ1)−1 is the desired isomorphism on F (A1).

The node-injectiveness property is immediate from the definition of ψ2 using
the bijections φ1, φ

−1
0 . ut

Retaining the notation of Fig. 11, we can also go in the other direction:

Theorem 2 Let F transform Π1 to Π2, and suppose G : F (A0) 7→ F (A1). G =
F (H), for some H : A0 7→ A1. H is unique to within isomorphism.

Proof sketch. Let G = [ψ2, β]. We define ψ1 = φ−1
1 ◦ ψ2 ◦ φ0. ut

Finally, each Π2-skeleton B has a decomposition into a maximal part of the form
F (A), to which a node-injective mapping is applied.

Theorem 3 Let F transform Π1 to Π2, and let B be a Π2-skeleton. Let

S = {F (A0) : A0 is a Π1-skeleton and F (A0) ≤N B}.

Then S has a ≤N -maximum member, i.e. there is a A1 such that F (A1) ∈ S
and for every B0 ∈ S, B0 ≤N F (A1).

Proof sketch. For each strand s with nodes in nodesB, consider the nodes in B
that equal the nodes of any F (αi(ρi

1)). For each s, choose a ρi
1 that maximizes

the k such that s is of the form F (αi(ρi
1)) up to g(k). Let B1 be the subskeleton

of B where:

1. nodesB1 consists of the nodes of B of height less than this g(k) for each s;
2. �B1 is the weakest order generated from the strand orderings and �B re-

stricted to nodes of the form s ↓ g(j);
3. nonB1 is the subset of nonB which are parameters appearing in some αi(ρi

1),
and likewise for uniqueB1

.

This B1 is of the form F (A1). ut
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6 Conclusion

In this paper we have simply provided a definition, and shown that the defini-
tion is well-behaved. Namely, we show that the definition of transformation fits
the skeletons-and-homomorphisms framework of strand spaces. However, this in
itself does not tell us when a transformation respects security properties.

For this, we believe that our work on protocol composition via the authen-
tication tests provides the crucial hint [8]. We show there that if adding a new
protocol Π2 to an existing protocol Π1 produces no new ways to solve the
challenge-response patterns on which Π1’s security goals depend, then Π2 pre-
serves security goals that Π1 achieves. We also provided a syntactic way to define
and validate the “no new solutions” property. We believe that a rewriting of that
property to our current framework provides a sufficient criterion for preserving
security properties through protocol elaboration.

Such a result would complement the protocol transformation techniques de-
veloped by Datta, Derek, Mitchell, and Pavlovic in an outstanding series of
papers including [3, 4]. The authors explore a variety of protocols with common
ingredients, showing how they form a sort of family tree, related by a number of
operations on protocols.

Our definition of multiprotocol from [8] covers both [4]’s parallel composition
and its sequential composition. Refinement enriches the message structure of a
protocol. Their transformation moves information between protocol messages,
either to reduce the number of messages or to provide a tighter binding among
parameters. Our notion of transformation appears to cover both refinement and
their transformation, although the “no new solutions” property appears more
likely to work with refinements than with transformations in their sense.

Despite their rich palette of operations, their main results are restricted to
parallel and sequential composition [4, Thms. 4.4, 4.8]. Each result applies to
particular proofs of particular security goals G1. Each proof relies on a set Γ of
invariant formulas that Π1 preserves. If a secondary protocol Π2 respects Γ , then
G1 holds of the parallel composition Π1∪Π2 (Thm. 4.4). Thm 4.8, on sequential
composition, is more elaborate but comparable. By contrast, the key theorem
of [8] is one uniform assertion about all security goals, independent of their
proofs. It ensures that Π2 will respect all usable invariants of Π1. This syntactic
property, checked once, suffices permanently, without looking for invariants to
re-establish.
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