
Automatic Conflict Detection on Contracts⋆

Stephen Fenech1, Gordon J. Pace1, and Gerardo Schneider3

1 Dept. of Computer Science, University of Malta, Malta
2 Dept. of Informatics, University of Oslo, Norway

{sfen002,gordon.pace}@um.edu.mt, gerardo@ifi.uio.no

Abstract. Many software applications are based on collaborating, yet compet-

ing, agents or virtual organisations exchanging services. Contracts, expressing

obligations, permissions and prohibitions of the different actors, can be used to

protect the interests of the organisations engaged in such service exchange. How-

ever, the potentially dynamic composition of services with different contracts, and

the combination of service contracts with local contracts can give rise to unex-

pected conflicts, exposing the need for automatic techniques for contract analysis.

In this paper we look at automatic analysis techniques for contracts written in the

contract language CL. We present a trace semantics of CL suitable for conflict

analysis, and a decision procedure for detecting conflicts (together with its proof

of soundness, completeness and termination). We also discuss its implementation

and look into the applications of the contract analysis approach we present. These

techniques are applied to a small case study of an airline check-in desk.

1 Introduction

Today’s trend towards Service-Oriented Architectures (SOA), in which different decou-

pled services distributed not only on different machines within a single organisation but

also outside of it, provides new challenges to reliability and trust. Since an organisation

may need to execute code provided by third parties, it requires mechanisms to protect

itself — one such mechanism is the use of contracts giving restrictions on the service

behaviours. Clearly, it is important that such contracts are conflict-free — meaning that

the contracts will never lead to conflicting or contradictory directives.

Services are frequently composed of different sub-services, each of which comes

with its own contract. The top-level service, not only needs to ensure that each single

contract is conflict-free, but also that the composition of all the contracts is itself also

conflict-free. This is true not only for SOA but for any application domain with a need

to specify and monitor prescriptive behaviour.

The concept of contracts has been widely interpreted in the literature, from sim-

ple pre/post-conditions, to QoS properties. In this paper, we take the deontic view of

contracts — a contract specifies the normative behaviour of a system, specifying obli-

gations, permissions and prohibitions of actions, as well as the reparations in case of

not respecting an obligation or prohibition. We build upon the contract language CL
[10], which enables formal specification of deontic electronic contracts, and we extend

⋆ Partially supported by the Nordunet3 project COSoDIS: “Contract-Oriented Software Devel-

opment for Internet Services”.



the trace semantics given in [6] in order to define and discover potential conflicts in

contracts.

Although useful for runtime monitoring of CL contracts, the semantics given in [6]

is not concerned with permissions, and it loses the deontic information (obligations,

etc.) of the parties involved in the contract, making it unsuitable for conflict analysis.

In this paper, we present an extension of this trace semantics to support conflict anal-

ysis, which is proved correct with respect to the original trace semantics. Based on

the extended semantics we define the concept of conflicting contracts, and develop and

prove the correctness of a decision procedure to detect conflicts in CL contracts. The

algorithm has also been implemented into the tool CLAN for CL contract analysis.

The paper is organised as follows. We start by presenting CL in section 2, whose

deontic trace semantics is introduced in section 3. The definition and algorithm for con-

flict analysis is then presented in section 4, where we also present theoretical results

concerning correctness of the algorithm. Section 5 presents a small case study to illus-

trate the use of the analysis, which is compared to related work in section 6. We finally

conclude in section 7.

2 The Contract Language CL

Deontic logic [13] enables reasoning about non-normative and normative behaviour

(e.g., obligations, permissions and prohibitions), including not only the ideal behaviours

but also the exceptional and actual behaviours. One of the main problems of the logic

is the difficulty theoreticians have to define a consistent yet expressive formal system,

free from paradoxes [8].

Instead of trying to solve the problem of having a complete paradox-free deontic

logic, CL has been designed with the aim to be used on a restricted application domain:

electronic contracts. In this way the expressivity of the logic is reduced, resulting in

a language free from most classical paradoxes, but still of practical use. CL is based

on a combination of deontic, dynamic and temporal logics, allowing the representation

of obligations, permissions and prohibitions, as well as temporal aspects. Moreover,

it also gives a means to specify exceptional behaviours arising from the violation of

obligations (what is to be demanded in case an obligation is not fulfilled) and of prohi-

bitions (what is the penalty in case a prohibition is violated). These are usually known

in the deontic community as Contrary-to-Duties (CTDs) and Contrary-to-Prohibitions

(CTPs) respectively. CL contracts are written using the following syntax:

C := CO | CP | CF | C ∧ C | [β]C | ⊤ | ⊥

CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α)

α := 0 | 1 | a | a | α & α | α; α | α + α

β := ǫ | 0 | 1 | a | a | β & β | β; β | β + β | β∗

Being CL an action-based language, we assume a non-empty set of actions Σ =
{a, b, . . .}, together with the three special actions 0, 1 and ǫ explained below. A con-



tract clause C can be either an obligation (CO), a permission (CP ) or a prohibition (CF )

clause, a conjunction of two clauses, the trivially satisfied contract (⊤), the impossible

contract (⊥) or a clause preceded by the dynamic logic square brackets. OC(α) is in-

terpreted as the obligation to perform α in which case, if violated, then the reparation

contract C must be executed (a CTD). An obligation clause may be an exclusive dis-

junction of two other obligation clauses. This is interpreted as being obliged to satisfy

one of the obligations but not both. FC(α) is interpreted as forbidden to perform α and

if α is performed then the reparation C must be executed (a CTP). In what follows we

will write F (α) (respectively O(α)) instead of F⊥(α) (respectively O⊥(α)) to denote

that there is no CTP (respectively CTD) associated. [β]C is interpreted as if action β3 is

performed then the contract C must be executed — if β is not performed, the contract

is trivially satisfied. The conjunction of two clauses is interpreted as both clauses have

to be satisfied. The trivially satisfied contract ⊤ is satisfied by any sequence of actions

whereas the impossible contract ⊥ cannot be satisfied with any sequence of actions. ǫ
is an empty action, 1 is the action that matches any action, while 0 is the impossible

action.

Action expressions can be constructed from basic ones using the operators &, ;, +
and ∗ where & stands for the actions occurring concurrently, ; stands for the actions to

occur in sequence, + stands for a choice between actions and ∗ is the Kleene star. · is the

complement, so a means “any action except a”. In the rest of the paper α& will denote

basic actions or complex actions constructed from basic actions only using the concur-

rent operator & (for example a, a&b). It can be shown that every action expression can

be transformed into an equivalent representation where & appears only at the innermost

level. This representation is referred to as the canonical form. In the rest of this paper

we assume that action expressions have been reduced to this form. We also allow the

negation of compound actions in the formal syntax (and semantics). However, one can

push negations on action expressions down to the constituent actions. Throughout the

rest of the paper, whenever the negation of action expressions is used, it is assumed

that the expression will be reduced appropriately. Following [10], we assume there is

an action dictionary containing all possible actions, including which actions are con-

tradictory: we write a#b to denote that a and b are contradictory (for instance “send a

message shorter than 5 characters” and “send a message longer than 10 characters”).

In order to avoid paradoxes the operators combining obligations, permissions and

prohibitions are restricted syntactically. See [10, 6] for more details on CL.

As a simple example, let us consider the following clause from an airline company

contract: ‘When checking in, the traveller is obliged to have a luggage within the weight

limit — if exceeded, the traveller is obliged to pay extra.’ This would be represented in

CL as [checkIn]OO(pay)(withinWeightLimit).

3 Note that the only differences between the syntactic categories representing actions (α and β)

is ·∗. α is restricted to be used only under obligations, permissions and prohibitions, while β
only in “conditions”.



3 Deontic Trace Semantics

In this section, we will introduce a new finite trace semantics of CL that includes deontic

information — which obligations, permissions and prohibitions are enacted at each step

of the trace. This will enable us to detect conflicts in a contract, by looking at finite

traces allowed by the semantics leading to incompatible normative behaviour — for

example both obliging and forbidding the same action at the same time.

Let us consider a simple example to better understand the need of a finite trace

semantics with deontic information. Let C = [a]O(b) ∧ [b]F (b) be a contract on

the action alphabet {a, b} we want to check for conflicts. According to the CL (in-

finite) trace semantics given in [6], the set of traces “accepted” by the contract C is

{〈a, b, any〉 | any = (a + b)ω} ∪ {〈b, a, any〉 | any = (a + b)ω}. According to the

semantics, no trace starting with action {a, b} (i.e., with a and b occurring concurrently)

will be accepted by the contract, since this would imply a contract violation due to the

enacted conflicting obligation and prohibition. Moreover, there is no deontic informa-

tion in the trace, making it difficult to capture the notion of conflict. Since our aim is

to obtain a witness of such a conflict, and in particular a systematic way to obtain an

automaton that recognises such prefixes containing conflicts, it is necessary to extend

the trace semantics. This extension includes: (1) The addition of deontic information

(which obligations, permissions and prohibitions are satisfied at any moment), (2) The

addition of a trace semantics for permission (this was not present in the original trace

semantics), (3) The addition of the possibility to “accept” certain finite prefixes (in order

to get the witness for conflicts). With this new semantics we will be able to automati-

cally obtain an automaton accepting exactly the (finite prefix) traces “accepted” by the

contract, including those witnesses for conflict detection.

For a contract with action alphabet Σ, we will introduce its deontic alphabet Σd

which consists of Oa, Pa and Fa for each action a ∈ Σ, that will be used to represent

which normative behaviour is enacted at a particular moment. Given a set of concurrent

actions α, we will write Oα to represent {Oa | a ∈ α}.

Given a CL contract C with action alphabet Σ, the semantics will be expressed in

the form σ, σd � C, where σ is a finite trace of sets of concurrent actions in Σ and σd

is a finite trace consisting on sets of sets4 of deontic information in Σd. The statement

σ, σd � C is said to be well-formed if length(σ) = length(σd). In the rest of the paper

we will consider only well-formed semantic statements.

A well-formed statement σ, σd � C will correspond to the statement that action

sequence σ is possible under (will not break) contract C, with σd being the deontic

statements enforced from the contract.

Let us consider again the contract C = [a]O(b) ∧ [b]F (b), and the trace σ =
〈{a}, {b}〉, then σd = 〈{∅}, {{Ob}}〉, and we have that σ, σd � C. The contract

C′ = F (c) ∧ [1](O(a) ∧ F (b)), for example, stipulates that it is forbiden to perform

action c and that after the execution of any action, there is an obligation to perform an a
(while prohibiting the execution of b), so we can write σd = 〈{{Fc}}, {{Oa}, {Fb}}〉.
The contract allows the execution of actions a and b concurrently, and then a concur-

rently with c (σ = 〈{a, b}, {a, c}〉), and we have that σ, σd � C′. As a final example, let

4 This is needed to distinguish choices from conjunction.



σ, σd � C if length(σ) = length(σd) = 0 (1)

σ, σd � ⊤ if σd(0) = ∅ and σ(1..), σd(1..) � ⊤ (2)

σ, σd � C1 ∧ C2 if σ, σ′

d � C1 and σ, σ′′

d � C2 and σd = σ′

d ∪ σ′′

d (3)

σ, σd � C1 ⊕ C2 if (σ, σd � C1 and σ, σd 2 C2) or (σ, σd � C2 and σ, σd 2 C1) (4)

σ, σd � [ǫ]C if σ, σd � C (5)

σ, σd � [α&]C if (α& 6⊆ σ(0) ⇒ σ, σd � ⊤) and (6)

(α& ⊆ σ(0) ⇒ (σd(0) = ∅ and σ(1..), σd(1..) � C)) (7)

σ, σd � [α&]C if (α& ⊆ σ(0) ⇒ σ, σd � ⊤) and (8)

(α& * σ(0) ⇒ (σd(0) = ∅ and σ(1..), σd(1..) � C)) (9)

σ, σd � [β; β′]C if σ, σd � [β][β′]C (10)

σ, σd � [β + β′]C if σ, σd � [β]C ∧ [β′]C (11)

σ, σd � [β∗]C if σ, σd � C ∧ [β][β∗]C (12)

σ, σd � OC(α&) if σd(0) = Oα&
and (13)

(α& ⊆ σ(0) ⇒ σ(1..), σd(1..) � ⊤) and (14)

(α& 6⊆ σ(0) ⇒ σ(1..), σd(1..) � C) (15)

σ, σd � OC(α; α′) if σ, σd � OC(α) ∧ [α]OC(α′) (16)

σ, σd � OC(α + α′) if σ, σd � O⊤(α) ∧ O⊤(α′) ∧ [α + α′]C (17)

σ, σd � FC(α&) if σd(0) = Fα&
and (18)

(α& ⊆ σ(0) ⇒ σ(1..), σd(1..) � C) and (19)

(α& * σ(0) ⇒ σ(1..), σd(1..) � ⊤) (20)

σ, σd � FC(α; α′) if σ, σd � F⊥(α) or σ, σd � [α]FC (α′) (21)

σ, σd � FC(α + α′) if σ, σd � FC(α) ∧ FC(α′) (22)

σ, σd � P (α&) if σd(0) = Pα&
and σ(1..), σd(1..) � ⊤ (23)

σ, σd � P (α; α′) if σ, σd � P (α) ∧ [α]P (α′) (24)

σ, σd � P (α + α′) if σ, σd � P (α) ∧ P (α′) (25)

Fig. 1. The deontic trace semantics of CL

us consider the contract C′′ = [a]O(b+c)∧[b]F (b). In this case, due to the choice inside

the obligation, we get that given the trace σ = 〈{a}, {b}〉 then σd = 〈{∅}, {{Ob, Oc}}〉,
and we have that σ, σd � C′′.

Given two traces σ1 and σ2, we will use σ1; σ2 to denote their concatenation, and

σ1 ∪σ2 (provided the length of σ1 is equal to that of σ2) to denote the point-wise union

of the traces: 〈σ1(0) ∪ σ2(0), σ1(1) ∪ σ2(1), . . . σ1(n) ∪ σ2(n)〉. In what follows we

explain our new trace semantics, shown in Fig. 1.5

Basic conditions: Empty traces satisfy any contract, as shown in Fig. 1-(1).

5 Due to lack of space, we do not present the trivial cases of actions 0 and 1, and they are omitted

in the rest of the paper.



Done, Break: The simplest definitions are those of the trivially satisfiable contract ⊤,

and the unsatisfiable contract ⊥. In the case of ⊥, only an empty sequence will

not have yet broken the contract, while in the case of ⊤, any sequence of actions

satisfies the contract (whenever no obligation, prohibition, or permission is present

on the trace). See Fig. 1 line (2).

Conjunctions: For the conjunction of two contracts, the action trace must satisfy both

contracts, and the deontic traces are combined point-wise. See Fig. 1 line (3).

Exclusive disjunction: Similar to conjunctions. See Fig. 1 line (4). (Note that the rule

is valid only for C1 and C2 being both of the form CO , or CP . In the rest of the

paper we will continue to write C1 ⊕ C2 with the understanding that the above

restriction applies.)

Conditions: Conditions are handled structurally. Note that using the normal form de-

fined in [6], one can push concurrent actions to the bottom level. See Fig. 1 lines

(5)–(12).

Obligations: Obligations, like conditions, are defined structurally on action expres-

sions. The base case of the action simply consisting of a conjunction of actions

that can be dealt with by ensuring that if the actions are present in the action trace,

then the contract is satisfied, otherwise the reparation is enacted. The case for the

sequential composition of two action sequences is handled simply by rewriting into

a pair of obligations. The case of choice (+) is the most complex case, in which we

have to consider the possibility of having either obligation satisfied or neither sat-

isfied, hence triggering the reparation. Recall that the star operator cannot appear

within obligations. See Fig. 1 lines (13)–(17).

Prohibitions: Dealing with prohibitions is similar to obligations, with the main differ-

ence being that prohibition of choice is more straightforward to express. See Fig. 1

lines (18)–(22).

Permissions: The aim of the original trace semantics of CL [6] was to provide a lin-

ear time semantics to the language, appropriate for applications such as runtime

verification. Since a single linear trace does not give any information whether a

permission clause has been found to be in conflict with other clauses or not, the

original semantics simply discarded permission clauses. However, to reason about

conflicts, the fact that a permission operator has been enacted is important. See

Fig. 1 lines (23)–(25) for the semantics.

4 Conflict Analysis

Conflicts in contracts arise from four different reasons. The first two reasons are being

obliged and forbidden to perform the same action (e.g., O(a) ∧ F (a)), and being per-

mitted and forbidden to perform the same action (e.g., P (a)∧F (a)). In the first conflict

we would end up in a situation where whatever is performed will violate the contract.

The second conflict would not result in having a trace that violates the contract since in

the trace semantics permissions cannot be broken, however, we can still identify these

situations due to the deontic trace. The remaining two kinds of conflicts correspond to

obligations of contradictory actions (e.g., O(a)∧O(b) with a#b), and permissions and

obligations of contradictory actions (e.g., P (a) ∧ O(b) with a#b).



Before defining formally what a conflict-free contract is, we recall our motivating

example, the contract [a]O(b) ∧ [b]F (b) with allowed actions a and b. It is clear that

both traces σ1 = 〈{a}, {b}〉 and σ2 = 〈{b}, {a}〉 satisfy the contract. However, any

trace starting with concurrent actions {a, b} (e.g., 〈{a, b}, {b}〉) will not be accepted by

the contract since any action following it will violate either the obligation to perform b
or the prohibition from performing b. In this case, since unspecified, the reparation is

the ⊥ clause which cannot be satisfied regardless of what action is performed.

In what follows we define the notion of conflict-free contract at the semantic level,

formalising the four cases. We show how to obtain an automaton from a contract and

discuss an automata-based model checking algorithm for detecting conflicts.

Definition 1. For a given trace σd of a contract C, let D, D′ ⊆ σd(i) (with i ≥ 0). We

say that D is in conflict with D′ if and only if there exists at least one element e ∈ D
such that:

e = Oa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Pa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Fa ∧ (Pa ∈ D′ ∨ Oa ∈ D′).

A contract C is said to be conflict-free if for all traces σ and σd such that σ, σd � C,

then for any D, D′ ⊆ σd(i) (0 ≤ i ≤ len(σd)), D and D′ are not in conflict.

Let us consider the contract C = [a]O(b + c) ∧ [b]F (b), then we have that C is not

conflict-free since 〈{a, b}, {b}〉, 〈{∅}, {{Ob, Oc}, {Fb}}〉 � C, and there are D, D′ ⊆
σd(1) such that D and D′ are in conflict. To see this, let us take D = {Ob, Oc} and

e = Ob. We have then that for D′ = {Fb}, Fb ∈ D′ (satisfying the first line of definition

1).

We have then characterised the notion of conflict in contracts by analysing the set of

traces accepted by the contract. We now show how to generate a finite-state automaton

from a CL contract C, with the property that the language accepted by the automaton

corresponds to the traces given by the semantics of the contract. We also define the

notion of conflict in the generated automaton.

Generation of an automaton from a CL contract Given a contract C, over an action

alphabet Σ and corresponding deontic alphabet Σd, we can construct an automaton

A(C) = 〈S, A&, s0, T, V, l, δ〉 where S is the set of states, A& is the set of concurrent

actions from Σ, s0 is the initial state, T ⊆ S×A& ×S is the set of labelled transitions,

V is a special violation state, l is a function labelling states with the CL clause that

holds in that state (l : S → CL) and δ : S → 2Σd is a function labelling states with

the set of deontic notions that hold in that state. We say that a run (sequence of states)

is accepted by the automaton if none of the states of the run is V . Similarly, we say

that the automaton accepts a word w, consisting of a sequence of actions, if none of the

actions of w is the label of a transition containing the state V , in which case we write

Accept(A(C), w). Note that the automaton is deterministic.

The construction of the automaton uses the residual contract function f which, given

a CL formula C and an action α, will return the clause that needs to hold in the following

step, similarly to the CTL sub-formula construction [2]. f is defined in Fig. 2. The



f : CL × A& → CL
f(⊤, ϕ) = ⊤
f(⊥, ϕ) = ⊥

f(C1 ∧ C2, ϕ) = f(C1, ϕ) ∧ f(C2, ϕ)

f(C1 ⊕ C2, ϕ) =

8

>

>

>

>

<

>

>

>

>

:

⊤ if (f(C1, ϕ) = ⊤ ∧ f(C2, ϕ) = ⊥)∨
(f(C1, ϕ) = ⊥ ∧ f(C2, ϕ) = ⊤)

⊥ if (f(C1, ϕ) = f(C2, ϕ) = ⊤)∨
(f(C1, ϕ) = f(C2, ϕ) = ⊥)

f(C1, ϕ) ⊕ f(C2, ϕ) otherwise

f([α&]C, ϕ) =



C if α& ⊆ ϕ
⊤ otherwise

f([α&]C, ϕ) =



C if α& * ϕ
⊤ otherwise

f([α; α′]C, ϕ) =

(

C if (α; α′)/ϕ = 0

[(α; α′)/ϕ]C otherwise

f([α + α′]C, ϕ) = f([α]C, ϕ) ∧ f([α′]C, ϕ)
f([β; β′]C, ϕ) = f([β][β′]C, ϕ)

f([β + β′]C, ϕ) = f([β]C ∧ [β′]C, ϕ)
f([β∗]C, ϕ) = f(C ∧ [β][β∗]C, ϕ)

f(OC(α&), ϕ) =



⊤ if α& ⊆ ϕ
C otherwise

f(OC(α; α′), ϕ) = f(OC(α) ∧ [α]OC (α′), ϕ)

f(OC(α + α′), ϕ) =

8

<

:

⊤ if f(O⊥(α), ϕ) = ⊤ or f(O⊥(α′), ϕ) = ⊤
C if f(O⊥(α), ϕ) = ⊥ and f(O⊥(α′), ϕ) = ⊥
OC(α + α′/ϕ) otherwise

f(FC(α&), ϕ) =



C if α& ⊆ ϕ
⊤ otherwise

f(FC(α; α′), ϕ) = f([α]FC (α′), ϕ)
f(FC(α + α′), ϕ) = f(FC(α) ∧ FC(α′))

f(P (α&), ϕ) = ⊤
f(P (α · α′), ϕ) = f(P (α) ∧ [α]P (α′), ϕ)

f(P (α + α′), ϕ) = f(P (α) ∧ P (α′), ϕ)

Fig. 2. The residual function f

binary operator / used in f , that gives the tail of the left-hand side sequence of actions

if its head matches the right-hand side action, is defined inductively as follows:

α′

&/α& = ǫ if α′

& ⊆ α&, otherwise 0
(0; α)/α& = 0
(1; α)/α& = α

(α; α′)/α& = (α/α&); α′

(α + α′)/α& = α/α& + α′/α&

For example, (a; b)/a will give b whereas ((a; b) + (a; c))/a will result in b + c.

The automaton is built using the construction function fc shown in Fig. 3, that takes

as argument an initial state s0 where l(s0) = C. Besides the residual function f , fc



fc(s) = if l(s) = 1 then

T := T ∪ (s, 1, s)
if l(s) = 0 then

V := s
T := T ∪ (V, 1, V )

otherwise ∀a ∈ A&

if ∃ s′ ∈ S s.t. l(s′) = f(l(s), a)
then T := T ∪ (s, a, s′)
otherwise

new s′

l(s′) := f(l(s), a)
S := S ∪ s′

T := T ∪ (s, a, s′)
d(s′) := fd(l(s

′))
fc(s

′)

Fig. 3. The construction function fc

fd(C1 ∧ C2) = fd(C1) ∪ fd(C2)
fd(O(α&)) = {{Oa1

}, . . . , {Oan
}}

fd(F (α&)) = {{Fa1
}, . . . , {Fan

}}
fd(P (α&)) = {{Pa1

}, . . . , {Pan
}}

fd(O(α + α′)) = {x ∪ y | x ∈ fd(O(α))
and y ∈ fd(O(α′))}

fd( otherwise ) = ∅

Fig. 4. The deontic labelling function fd

uses function fd (shown in Fig. 4) that adds all the relevant deontic information to each

state (we take α& to be equal to a1& . . .&an).6

As an example, let us consider the contract [a]O(b) ∧ [b]F (b). The automaton is

constructed by applying fc to the state s0 where l(s0) = [a]O(b) ∧ [b]F (b). Every

possible transition is created (in this case, transitions labelled with a, b and a&b) from

this state to a new state labelled with the result of applying function f to the original

formula and the label of the transition as parameters. Thus, the state that is reached

with the transition labelled with action a is f([a]O(b) ∧ [b]F (b), a) = O(b). If there

is another state with the same label, the transition will connect to the existing state and

the new one will be discarded (this ensures termination). If there is no such a state,

fc is then recursively called on this new state. Eventually we either reach a satisfying

state, a violating state, or a state already labeled with the formula. The corresponding

automaton is shown in Fig. 5.7

Since our objective is to find conflicts analysing the constructed automaton, we need

to define what a conflict is at the automaton level. The definition is straightforward and

it is very similar to the definition given for CL traces.

Definition 2. Given a state s of an automaton A(C), let D, D′ ⊆ fd(s). We say that D
is in conflict with D′ if and only if there exists at least one element e of D such that:

6 We have omitted the case for ⊕ in the deontic labelling function description. In practice, two

different automata are created for each one of the choices, and the analysis proceeds as usual.

Also note that there is no explicit labelling function for F (α + α′) and P (α + α′) since these

cases are reduced to conjunction.
7 Note that what is written in each state is the sub-formula remaining to be satisfied. Formally

speaking, each state will be “marked” with the deontic information as defined by the function

fd. So, O(a) is a syntactic expression in CL, while Oa is the corresponding “marking” at the

state saying there is an obligation of doing a.



[a]O(b) ∧ [b]F (b)

O(b) ∧ F (b) F (b) O(b)

V Sat

a&b
ab

a
b

a

a&b a&b

a&b

b a b

Fig. 5. Automaton for [a]O(b) ∧ [b]F (b)

e = Oa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Pa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Fa ∧ (Pa ∈ D′ ∨ Oa ∈ D′).

An automaton A(C) is said to be conflict-free if for every state s ∈ S, then for any

D, D′ ⊆ fd(s), D and D′ are not in conflict.

The automaton shown in Fig. 5 is not conflict-free since there exists a state which is

not conflict-free. Consider that s is the double-lined state labelled with O(b)∧F (b) then

fd(s) = {{Ob}, {Fb}}. Using definition 2, let e = Ob. For this state to be conflict-free,

any subset D ∈ fs(s) should not contain Fb, which is not the case.

Conflict detection algorithm The main algorithm takes a contract written in CL and

decides whether or not the given contract may reach a state of conflict. Once the au-

tomaton was generated from the contract as explained above, the conflict detection al-

gorithm simply consists of a standard forward or backward reachability analysis based

on a fix-point computation, looking for states containing conflicts.

For example, performing reachability analysis on the simple contract whose au-

tomaton is shown in Fig. 5 would identify that the conflict state labelled O(b)∧F (b) is

reachable from the initial state upon receiving action a&b, since the state contains the

deontic information {{Ob}, {Fb}}.

Correctness of the algorithm We now prove the correctness and completeness of

the algorithm, which includes proving the following auxiliary results: (1) The traces

accepted by the automaton coincide with those “accepted” by the contract in CL (ac-

cording to the trace semantics); (2) A contract C in CL is conflict-free iff the generated

automaton A(C) is conflict-free.

We first prove that the automaton will accept all and only those traces which satisfy

the contract.



Lemma 1. Given a CL contract C, the automaton A(C) accepts all and only those

traces σ that satisfy the contract: σ, σd � C if and only if Accept(A(C), σ).

The proof is based on a long and tedious induction on the structure of the formula,

proving that fc (and the auxiliary functions f and fd) are complete and correct.

Note that our algorithm checks that no state contains a conflict rather than checking

all possible satisfying runs. In order to prove that this is correct we need to prove that

we generate only and all the reachable states.

Proposition 1. The function fc generates all and only reachable states.

Based on the above proposition and the definition of conflict at the trace and the au-

tomaton level, we can prove that the automata construction function preserves conflict-

freedom, and that no spurious conflicts are generated.

Lemma 2. A contract C written in CL is conflict-free if and only if the automaton

A(C) is conflict-free.

Based on the above results, and the correctness and completeness proofs of stan-

dard forward reachability analysis, we can finally prove our main result. Termination is

trivially guaranteed since the generated automaton is finite and the reachability analysis

is based on a standard fix-point computation.

Theorem 1. The CL conflict detection algorithm is correct and complete.

5 Case Study

In this section, the use of conflict analysis will be illustrated through a small case study,

starting from a draft contract written in English, translated in CL and analysed using

the techniques developed in this paper.

Consider a contract between an airline company and a company taking care of the

ground crew (mainly the check-in process), where the normative specification is given

as the following contract:

1. The ground crew is obliged to open the check-in desk and request the passenger manifest

two hours before the flight leaves.

2. The airline is obliged to reply to the passenger manifest request made by the ground crew

when opening the desk with the passenger manifest.

3. After the check-in desk is opened the check-in crew is obliged to initiate the check-in process

with any customer present by checking that the passport details match what is written on

the ticket and that the luggage is within the weight limits. Then they are obliged to issue the

boarding pass.

4. If the luggage weighs more than the limit, the crew is obliged to collect payment for the extra

weight and issue the boarding pass.

5. The ground crew is prohibited from issuing any boarding cards without inspecting that the

details are correct beforehand.

6. The ground crew is prohibited from issuing any boarding cards before opening the check-in

desk.



7. The ground crew is obliged to close the check-in desk 20 minutes before the flight is due to

leave and not before.

8. After closing check-in, the crew must send the luggage information to the airline.

9. Once the check-in desk is closed, the ground crew is prohibited from issuing any boarding

pass or from reopening the check-in desk.

10. If any of the above obligations and prohibitions are violated a fine is to be paid.

The contract can be represented in CL as shown below. Note that the last clause

is introduced as a reparation for breaking the previous clauses.8 Also, all the natural

language clauses include an implicit universal quantification — statements of the form

‘After the check-in desk is open. . . ’ should be interpreted as ‘At any time, after the

check-in desk is open. . . ’. Hence, [1∗] precedes such clauses.

Note that the last clause corresponds to the penalty (reparation) of all the obligations

and prohibitions appearing in the contract, and thus they are represented as CTDs and

CTPs with the secondary obligation O(fine).

1. [1∗][2hBefore]O
O(fine)

(openCheckIn & requestInfo)

2. [1∗][openCheckIn&requestInfo]O
O(fine)

(replyInfo)

3. [1∗][openCheckIn][1∗](O(correctDetails & luggageInLimit) ∧
[correctDetails & luggageInLimit]O

O(fine)
(boardingCard))

4. [1∗][openCheckIn][1∗][correctDetails & luggageOverLimit]
O

O(fine)
(collectPayment&boardingCard)

5. [1∗][correctDetails]F
O(fine)

(boardingCard)

6. [openCheckIn
∗

]F
O(fine)

(boardingCard)

7. ([1∗][20mBefore]O
O(fine)

(closeCheckIn)) ∧ ([20mBefore
∗

]F
O(fine)

(closeCheckIn))

8. [1∗][closeCheckIn]O
O(fine)

(sendLuggageInfo)

9. [1∗][closeCheckIn][1∗](F
O(fine)

(openCheckIn) ∧ F
O(fine)

(boardingCard))

Running the contract through the conflict discovery algorithm, we discover a num-

ber of problems. The first conflict we encounter is being obliged and forbidden to issue

a boarding pass.

The tool will identify a state in conflict labelled with the obligation to perform

action boardingCard and the prohibition of performing action boardingCard together

with a trace leading to this state. Looking at clause 3, once the crew opens the check-

in desk, they are always obliged to issue a boarding pass if the client has the correct

details. However, according to clause 9 it is prohibited to issue of boarding pass once

the check-in desk is closed. These two clauses are in conflict once the check-in desk is

closed and a client arrives to the desk with the correct details. To fix this problem we

require to change clause 3 so that after the check-in desk is opened, the ground crew is

obliged to issue the boarding pass as long as the desk has not been closed. This issue

can also be found in clause 4 and the solution is similar.

The trace returned identifies the situation in which the check-in desk is closed at the

same time the client provides his correct details:
〈openCheckIn, closeCheckIn & correctDetails, O(boardingCard) & F (boardingCard)〉.

8 Note that the payment is supposed to be immediate.



In reality, a check-in desk cannot close and accept the passport details at the same

time, and thus these two are mutually exclusive actions. Adding these two actions as

mutually exclusive will solve this conflict.

To ensure that 2hBefore and 20mBefore occur in the correct order, we make use of

path constraints. Similar constraints are used for openCheckIn and closeCheckIn. Thus,

clauses number 3 and 4 have to be modified as follows:

3′. [1∗][openCheckIn][closeCheckIn
∗

][correctDetails & luggageInLimit]O
O(fine)

(boardingCard)

4′. [1∗][openCheckIn][closeCheckIn
∗

][correctDetails & luggageOverLimit]

O
O(fine)

(collectPayment&boardingCard)

This could be represented in textual form as:

3′. After the check-in desk is opened the check-in crew is obliged to initiate the check-in process

with any customer present until the check-in desk is closed9. This is done by checking that

passport details match the ticket and that luggage is within the weight limits. Then the crew

is obliged to issue the boarding pass.

4′. If the luggage weighs more than the limit, the crew is obliged to collect payment for the extra

weight and issue the boarding pass.

Note that 4′ is stated in the same way as in the original contract since what have

changed are the common conditions stated in 3′. From this small case study, it should

be evident that the resolution of conflicts in a contract require human intervention, to

ensure that the amendments to the contract correspond the what one had in mind in the

first place. Although one could define automated ways of changing, removing or adding

clauses to resolve conflicts, the sheer number of possibilities one has (making certain

actions mutually exclusive, removing parts of a contract, delaying the triggering of a

contract, etc) and the fact that most of the options would not make sense in the real-

world interpretation of the contract makes automated conflict resolution impractical.

6 Related Work

The use of model checking techniques for logics other than temporal logic is quite

new, and it focuses mainly in multi-agent systems (see for instance [12]). There is not

much work on the verification of logics containing the deontic notions of obligation,

permission and prohibition, and including CTDs and CTPs. An extended temporal logic

with conditional obligations and permissions is presented in [4] for checking whether an

organisation conforms to a body of regulation. In the context of SOA, model checkers

have recently been used to verify compliance of web-service composition [7], where the

specifications are given in the so-called temporal deontic interpreted systems. However,

we are not aware of any work that automatically detects conflicts in deontic contracts

as presented here.

9 Recall that we made closeCheckIn and correctDetails mutually exclusive, and cannot thus

happen at the same instance of time. This ensures the submission of the correct details before

the desk is closed.



The trace semantics used in our paper extends the one introduced for monitoring

purposes in [6]. The automaton they generate is different and cannot be used for conflict

analysis since it does not consider permissions, and does not keep deontic information

in the states, determining only if a trace has been satisfied, violated or neither. More-

over, we can create a monitor directly from the automaton generated thus enabling both

monitoring and conflict analysis.

In [9], a labelled transition system is generated in an ad hoc manner from a CL con-

tract in order to be model checked using nuSMV, against properties expressed in LTL.

The process is subject to error since many of the steps are manual, and the encoding of

the deontic information into nuSMV is complicated. Our method is completely auto-

matic, and though it is specific for conflict analysis it could be extended for other uses

as we explain in the next section.

7 Conclusions

We have presented a finite trace semantics for CL augmented with deontic information,

and showed its use for automatic contract analysis for conflict discovery. Remarkably,

we do not use CL branching semantics [11] for conflict detection, which has the advan-

tage of allowing a simpler automaton and algorithm for conflict detection. The automata

we create can also be used as a basis for other kinds of analysis, including the possibil-

ity of performing queries, the detection of unreachable clauses, and the identification of

superfluous clauses. In particular, the detection of unreachable clauses can be very use-

ful in identifying parts of a contract which may be useless. This would generate more

lightweight monitors, for runtime verification.

Based on the constructions presented, we have implemented a model checker for

detecting conflicts in CL (the tool CLAN [1]). In other ongoing work using the seman-

tics presented in this paper, we are using the automata created from CL contracts for

runtime verification using LARVA [3]. This enables the writing of contracts about Java

programs and automatically obtaining monitors ensuring conformance at runtime.

We believe that contract analysis is essential in dynamic contract composition. Even

in the case of a single contract, conflict analysis can be a useful aid, as shown in the

case study we present. Moreover, when dynamically generated contracts are to be used,

the analysis becomes even more valuable. The main advantage of using a deontic ap-

proach is that the obligations, permissions and prohibitions are explicitly identified, and

differentiated from conditionals. This enables an analysis focusing only on conflicts at

the deontic level.

Please refer to [5] for more details and full proofs.

References

1. CLAN. CL ANalyser – A tool for Contract Analysis. Available from www.cs.um.edu.

mt/∼svrg/Tools/CLTool/.

2. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press, 1999.

3. C. Colombo, G. J. Pace, and G. Schneider. Dynamic event-based runtime monitoring of

real-time and contextual properties. In FMICS, LNCS. To appear, 2008.



4. N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Reasoning about conditions and exceptions to

laws in regulatory conformance checking. In DEON, volume 5076 of LNCS, 2008.

5. S. Fenech. Conflict analysis of deontic contracts. Master’s thesis, Dept. of Computer Science,

Univ. of Malta, 2008.

6. M. Kyas, C. Prisacariu, and G. Schneider. Run-time monitoring of electronic contracts. In

ATVA, volume 5311 of LNCS, pages 397–407. Springer-Verlag, 2008.

7. A. Lomuscio, H. Qu, and M. Solanki. Towards verifying compliance in agent-based web

service compositions. In AAMAS, pages 265–272, 2008.

8. P. McNamara. Deontic logic. In Handbook of the History of Logic, volume 7, pages 197–289.

North-Holland Publishing, 2006.

9. G. Pace, C. Prisacariu, and G. Schneider. Model Checking Contracts –a case study. In ATVA,

volume 4762 of LNCS, pages 82–97. Springer, 2007.

10. C. Prisacariu and G. Schneider. A Formal Language for Electronic Contracts. In FMOODS,

volume 4468 of LNCS, pages 174–189. Springer, 2007.

11. C. Prisacariu and G. Schneider. CL: A Logic for Reasoning about Legal Contracts – Seman-

tics. Technical Report 371, Univ. Oslo, 2008.

12. B. Wozna, A. Lomuscio, and W. Penczek. Bounded model checking for knowledge and real

time. In AAMAS, pages 165–172. ACM, 2005.

13. G. H. V. Wright. Deontic logic. Mind, (60):1–15, 1951.

View publication statsView publication stats

https://www.researchgate.net/publication/220933282

