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Abstract

The Photo Response Non-Uniformity acts as
a digital fingerprint that can be used to iden-
tify image sensors. This characteristic has been
used in previous research to identify scanners,
digital photo cameras and digital video cameras.
In this paper we use a wavelet filter from Lukas
et al [1] to extract the PRNU patterns from
multiply compressed low resolution video files
originating from webcameras after they have
been uploaded to YouTube. The video files
were recorded with various resolutions, and the
resulting video files were encoded with differ-
ent codecs. Depending on video characteristics
(e.g. codec quality settings, recording resolu-
tion), it is possible to correctly identify cameras
based on these videos.

Index terms - Photo Response Non Uniformity, Video
Camera Identification, Pattern Noise, Digital Foren-
sics, YouTube, Low resolution, MSN Messenger, Win-
dows Live Messenger

1 Introduction

Image sensors are being integrated in a wide range
of electronics, such as notebooks and mobile phones,
apart from the ‘traditional’ electronics as video- or
photo-cameras. Forensically, the scenes and events
that may be recorded with these devices may be very
interesting. When, however, these videos or pho-
tographs are used in a legal context, an interesting
question to be answered remains: who recorded or
photographed the depicted scene? To answer this
question, it may be of great help to establish which
specific camera was used to record the scene. Al-
though modern cameras often write metadata (e.g.
EXchangeable Image Format (EXIF) or eXtensible
Metadata Platform (XMP)) to the file containing tags
as the date, time and serial number of the originating
camera, there is currently no standard framework for
this kind of information for video files. Also, the meta-
data can be removed or manipulated easily, leaving the
initial quest for a reliable and more robust identifica-
tion method.
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Traditionally, defective pixels on the image sensor
could be used to establish the image origin. The lo-
cation of these defective pixels act as a fingerprint, as
these defective pixels are present in all images the sen-
sor produces [2]. A problem with this method occurs
when no defective pixels are present, or when the im-
age acquisition device internally corrects these defec-
tive pixels during post-processing. However, in the fol-
lowing years this method has been refined. Instead of
looking at the location of the defective pixels, we now
look at the individual pixels that may report slightly
lower or higher values compared to their neighbours,
when these pixels are illuminated uniformly. These
small deviations form a device signature, and it is this
pattern that is used for device identification. This dif-
fering sensitivity of individual pixels to light is called
the Photo Response Non-Uniformity. These deviations
are present in both CCD image sensors and CMOS sen-
sors (Active Pixel Sensors, APS), which, as was men-
tioned above, are present in a wide range of electronic
devices.

These seemingly invisible patterns originate from the
sensor pattern noise, and can be used to characterise
each image sensor. The origins of this pattern noise
suggest that each sensor has its own unique pattern
(see §2). By extracting and comparing these patterns,
device identification is possible in the same way as
fingerprint identification. Namely, the sensor pattern
noise that is extracted from a questioned image can be
compared with the reference patterns from a database
of cameras, and may include the camera of a suspect.
When two patterns show a high degree of similarity,
it is an indication that both patterns have the same
origin. Hence we conjecture that it is advantageous to
build a database of patterns obtained e.g. from videos
depicting child pornography; in this way the origin of
different videos can be linked together. Ultimately this
may aid law enforcement agencies in the prosecution of
suspects.

The PRNU has been successfully used in digital
photo-camera identification [3, 4, 5], scanner identifi-
cation [6, 7] and also in camcorder identification [8].

Obviously, filters are needed to extract these pat-
terns from the image. A wide range of filters is avail-
able, differing in performance and computational com-
plexity. These filters all work by subtracting a denoised
image from the original (see section 3.1). We use the
wavelet filter from [1], which is based on the work in
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This paper is organised as follows. In section 2 the



origins of the PRNU are explained. In section 3 the
algorithm from [1] used to extract the PRNU pattern
from images and videos is explained. In section 4 we
apply the method to low resolution videos from we-
bcams that are subsequently uploaded to YouTube.
These videos were initially compressed by XViD or
WMV before they were uploaded. Finally, in sections
5 and 6 we discuss some possible future work, and con-
clude this paper.

2 Sensor noise sources

During the recording of the scene on the CMOS APS
or CCD image sensor, various noise sources degrade
the image. Before the light hits the silicon in the sen-
sor, it has travelled through various components, such
as (the filter of) the lens and the colour filter array’.
Ultimately, we are interested in other characteristics,
namely the ‘noise’ sources that originate from the sen-
sor?. A distinction can be made between temporal and
spatial noise. For a comprehensive overview of noise
sources in CCD and CMOS digital (video) cameras,
see [12, 13] and the references therein.

The main contribution to the temporal noise comes
from the (photonic) shot noise and in lesser extent to
the (thermal) dark current shot noise. The photonic
shot noise is inherent to the nature of light, and is
essentially a quantum mechanical effect due to the dis-
crete electromagnetic field energy [14]. Due to the ran-
dom arrival of photons at the image sensor, this pro-
cess can be described by a Poisson distribution. This
means that the variance in the amount of photons that
arrive at the detector equals the mean number of pho-
tons. Hence, this temporal noise source is only sig-
nificant (and observable) at very low intensity levels.
These variable amounts of photons that arrive at the
detector naturally generate a variable amount of elec-
trons. The dark current shot noise follows a similar
distribution, and originates from the thermal genera-
tion of charge carriers in the silicon substrate of the
image sensor. As the camera is not able to differenti-
ate the signal charge from the spurious electrons gener-
ated, these unwanted electrons are added to the output
and represent a noise source. Another temporal noise
source is the flicker noise, in which charges are trapped
in surface states and subsequently released after some
time in the charge to voltage amplifier. In CMOS ac-
tive pixel sensors additional sources are present due the
various transistors integrated on each pixel [15, 16]. As
this temporal noise is a purely statistical phenomenon,
averaging multiple frames will reduce the amount of
temporal noise.

Some of the variations due to dark current are some-
what systematic: the spatial pattern of these variations

ISome of these characteristics, such as CFA interpolation or
Chromatic Aberration can be used for camera classification (see
[10, 11]), as these features are characteristic for a camera model.

2Technically, the PRNU is not ‘noise’ in the usual sense, as
it represents a systematic (repeatable) addition to the signal.
However, it is customary to denote the following sources as noise.

remains constant. In other words, when the sensor is
not illuminated certain systematic variations occur in
the pixel values reported. Crystal defects, impurities
and dislocations present in the silicon lattice may con-
tribute to the size of the fixed pattern noise, as well
as the detector size, non-uniform potential wells and
varying oxide thickness. In CMOS image sensors ad-
ditional sources are present, and can be thought of as
composed of a column component (shared between all
pixels in a certain column) and an individual pixel com-
ponent [17]. For instance, due to a variable offset in
the reset transistor used to reset the photodiode to a
reference value a systematic offset in the output val-
ues is present. This gives a per-pixel variation. An
example of a column component is the variation of the
input bias current in the bias transistor present in each
column of the APS. As FPN is added to all frames or
images produced by a sensor and is independent of the
illumination, it can be easily removed by subtracting a
‘dark’ frame from the image. It should be noted that
the amount of shot noise will increase with a factor v/2
[12].

A source somewhat similar in characteristics to FPN
is PRNU, the variation in pixel response when the sen-
sor is illuminated. This variation comes e.g. from non-
uniform sizes of the active area where photons can be
absorbed. This is a linear effect: when the size of the
active area is increased with a factor x, the number
of photons detected will also increase with factor z.
This illustrates the multiplicative characteristic of the
PRNU: when the illumination increases, the effect of
this source increases as well. Another possibility is the
presence of non-uniform potential wells giving a vary-
ing spectral response. Hence, if the potential well is
locally shallow, long wavelength photons may not be
absorbed. Therefore, the PRNU is also wavelength de-
pendent. Another possible source of PRNU in CMOS
sensors is due to the sense node in the photodiode. This
sense node is integrated in the pixel, and as such the
room available for this node is small (the sense node
in CCD sensors is located off-chip). This results in a
small ‘capacitor’ which capacitance changes with signal
level, resulting in a nonlinear response called ‘floating
diffusion non-linearity’.

The multiplicative nature of the PRNU makes it
more difficult to remove this type of non-uniformity,
as simply subtracting a frame does not take this illu-
mination dependent nature into account. In principle
it is possible to remove the PRNU, or even add the
pattern of a different camera [18]. It is also possible
to reduce the PRNU inside the camera by a form of
non-uniformity correction [19].

FPN together with PRNU form the pattern noise
and is always present, though in varying amount due
to varying illumination between successive frames and
the multiplicative nature of the latter noise source.

There are also noise sources that do not find their ori-
gin on the image sensor but are added further down the
pipeline, i.e. when the digital signal is processed. The



most obvious source of this type of noise is the quan-
tisation noise, introduced when the analogue informa-
tion from the sensor (the potential change detected for
each pixel) is digitised in the analogue-to-digital con-
verter. This is however a small effect. Another effect
that occurs in the processing stage is the demosaic-
ing of the signal. CCD and CMOS image sensors are
monochrome devices, i.e. they detect the amount of
light incident on each pixel but cannot distinguish the
colour of the incident light. To produce colour images
a regular pattern in the form of a Colour Filter Array is
present above the image sensor, such that only one cer-
tain colour (or wavelength range) is absorbed by each
pixel. As a result each pixel only records the intensity
of one colour, and in this way a mosaic is obtained.
To give each pixel its three common RGB values, the
colour information of neighbouring pixels are interpo-
lated. This interpolation gives small but detectable off-
sets, and can be seen as a noise source [20, 21]. Also,
dust present on the lens may contribute to the detected
pattern noise, as well as possible optical interference in
the lens system. As denoising algorithms cannot dif-
ferentiate between the characteristic PRNU and noise
from the processing stages, these effects may also be
present in the estimated PRNU pattern.

3 Extracting the PRNU pattern

3.1 Introduction

We have seen in the previous section that various ran-
dom and systematic noise sources corrupted the image
to a certain extent during acquisition. The goal of a de-
noising filter is to suppress or remove this noise, with-
out substantially affecting the (small) image details. In
general, denoising algorithms cannot discriminate be-
tween true noise and small details. It is therefore im-
portant to select an appropriate filter that leaves the
image structure in tact, most notably around edges
where the local variance is high. For example, sim-
ple spatial filtering such as the Gaussian smoothing
filter [3] removes the noise from an image by low-pass
filtering the image data, as noise is generally a high
frequency effect. However, as this filter is not able
to distinguish between noise and signal features, this
method will also distort (blur) the edge integrity. This
is a problem especially in images that contain a large
amount of details, high frequency textures, etc. The
advantage of this filter is that the computational com-
plexity is very low.

The pattern noise in digital images can be seen as
a non-periodic signal with sharp discontinuities, as the
PRNU is a per-pixel effect. To extract the pattern
noise from the image, a wavelet transform is used.
The wavelet transform is very similar to a Short-time
Fourier Transform (STFT), with some important dif-
ferences. Instead of a window function we now have a
mother wavelet 1:
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Figure 1: Subbands of a two dimensional wavelet trans-
form. After the approximation and detail coefficients are
calculated, the approzimation details (LL1) are split up in
high- and low frequency subbands again.

where W denotes the wavelet transform. By scaling
and translating this mother wavelet different ‘window’
functions are obtained, the ‘daughter wavelets’. The
wavelet transform has an one more parameter com-
pared to the STFT: a translation 7 and a scale s. By
scaling the mother wavelet the wavelet is dilated or
compressed (the ‘window’ function is resized), and by
translating the wavelet the location of the window is
changed. A large scale parameter results in a slowly
varying daughter wavelet, while a small scale results in
a fast varying daughter wavelet. After translating the
signal from the beginning of the signal to the end of
the signal the wavelet representation for this scale is
obtained. The coarsest scale (large s, a ‘window’ with
large support) detects low frequencies, the approxima-
tion details. On the contrary, a fine scale is sensitive
to high frequencies, the detail coefficients, as can be
seen from the formula. Each scale represents a dif-
ferent subband, as can be seen in figure 1. The scale
and translation parameters are related: when the scale
parameter increases, the translation parameter is in-
creased as well. In this way the wavelet functions are
localised in space and in frequency, and solve the draw-
back of the (short time) Fourier Transform. Namely,
the Windowed Fourier Transform only uses a single
window in which the frequencies are found, while the
Wavelet Transform uses variable size ‘windows’. The
Wavelet Transform is like the Windowed Fourier Trans-
form with variable size window and an infinite set of
basis functions. We use a large window for finding low
frequency components and small windows for finding
high frequency components. Hence, compared to the
(Short-time) Fourier Transform, the wavelet transform
gives better time resolution for high frequency compo-
nents, while it gives a better frequency resolution for
low frequency components.

By calculating the wavelet coeflicients for different
values of s and 7, the wavelet representation is ob-
tained. When a wavelet coefficient is large, a lot of
signal energy is located at that point, which may in-
dicate important image features such as textures or
edges. On the other hand, when a wavelet coefficient
is small, the signal does not strongly correlate with the
wavelet which means a low amount of signal energy is



present and indicates smooth regions.

We employ the denoising filter as presented by Lukas
et al [1], which in turn is based on the work presented in
[9], in which an algorithm used for image compression
is used for image denoising . An extensive description
of the used algorithm follows, and for further details
the interested reader is referred to the aforementioned
works. The presented algorithm was implemented us-
ing the free WaveLab package [24] in Matlab, and has
been integrated in the open source NFI PRNUCom-
pare program that is freely available [27].

3.2 Algorithm

To perform video camera device identification, the
video is first split up in individual frames using FFm-
peg [26]. The image is assumed to be distorted with
zero-mean White Gaussian Noise (WGN) N(0, o7) in
the spatial domain with variance o2, and hence this
noise is also WGN after transforming it to the wavelet
domain.

The input frames (images) must be dyadic, as we
generally choose base 2 (dyadic sampling) so that the
coefficients for scale 27 , j = 1...n are computed. The
translation 7 depends on the scale, and can be dyadic
as well. The end result is an image with the same size
as the input image, composed of nested submatrices
each representing a different detail level, as shown in
figure 1. This is done for all frames extracted from the
video. We want to stress again that calculating the
PRNU pattern as presented here can easily be done
with the open source NFI PRNUCompare, which is
made freely available to the public.

We now present the actual algorithm [1].

1. The fourth level wavelet decomposition using
the Daubechies wavelet is obtained by letting
a cascade of filters work on the image data,
decomposing the image into an orthonormal
basis (known as transform coding). We have
seen that the Coiflet wavelet may have a slightly
better performance. The level-1 approximation
coefficients are obtained by filtering the image
data through a low-pass filter g, while the level-1
detail coefficients are obtained by filtering the
image data through a high-pass filter A. These
two filters are related, in such a way that the
original signal can be obtained by applying the
filters in reverse (‘mirrored’) order (these filters
are called Quadrature Mirror Filters). By filter-
ing the level-1 approximation coefficients (LL;
subband) with the same set of filters g and h, the
level-2 approximation and detail coefficients are
produced by iteration, as represented in figure 2
(see e.g. Ch. 5 of [27]).

Each resolution and orientation has its own sub-
band, with HL; representing the finest details at
scale 1 where the high pass filter was applied in
the horizontal direction and the lowpass filter in

e
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Figure 2: [Iterated filterbank. The output of the lowpass
filter g is the input of the next stage. See also figure 1.

the vertical direction. LL,4 represents the low res-
olution residual.

This wavelet decomposition into different detail
and approximation levels allows the image to be
represented as a superposition of coarse and small
details, as schematically represented in figure 3.

2. For all pixels in each subband the local variance is
estimated for each coefficient with a variable size
square neighbourhood N with size W € (3,5,7,9).

A2 . 1 .
O .0) = max(0. 5 D0 LHG.J) ~3).
(i,7)EN
(2)

with (7, 7) representing the pixel location in each
subband. This estimates the local signal variance
in each subband, and the minimum variance of
each pixel for these varying size neighbourhoods
is taken as the final estimate:

(3)

3. The wavelet coefficients in the detail subbands can

be represented by a generalised Gaussian with zero
mean [29]. This o3 parameter controls how strong
the noise suppression will be. When we estimate
the reference pattern as well as when we estimate
the pattern noise from the (questioned) natural
image, we need to set this parameter (denoted oy
and o, respectively). Ultimately this parameter
depends on the image itself (and hence also on the
compression) and on the size of the noise.
The actual denoising step takes place in the
wavelet domain by attenuating the low energy co-
efficients as they are likely to represent noise. This
is done in all detail subbands (LHs, HL,, HH,
with s = 1...4) while the low resolution resid-
ual LL4 remains unadjusted. The Wiener filter
denoises the wavelet coefficients:

02(i, j) = min(o2 .y (4, 7))

)2 5%(i,4)

LH(i,j) = LH(i, m

(4)

This approach is intuitive because in smooth re-
gions where the variance is small the coefficients
will be adjusted strongly as a disturbance in a
smooth region is likely caused by noise. On the
other hand, in regions that contain a lot of details



Figure 3: Left is the low resolution residual. The images
are obtained by applying the inverse wavelet transform to
the wavelet representation of different scales. Moving to
the right more detail is added (lower scales) until the final
image s obtained.

or edges, the variance will be large. Hence, these
coefficients are adjusted only marginally, and blur-
ring is avoided. This is also the reason why we se-
lect the minimum of the local variance for different
sizes of the neighbourhood (step 2).

4. The above steps are repeated for all levels and
colour channels. By applying the inverse discrete
wavelet transform to the obtained coefficients, the
denoised image is obtained. By subtracting this
denoised image from the original input image, the
estimated PRNU pattern is obtained. As a final
step this pattern is zero-meaned such that the row
and column averages are zero by subtracting the
column averages from each pixel and subsequently
subtracting the row averages from each pixel. This
is done to remove artefacts from e.g. colour inter-
polation, as suggested in [4]. Wiener filtering of
the resulting pattern in the Fourier domain, also
suggested in [4], was not applied.

3.3 Obtaining the sensor noise patterns
and detecting the origin

To determine whether a specific questioned video V
originates from a certain camera C|, we first extract the
individual frames I,, (i =1... N, with N the amount
of frames in V;) from the video, and subtract the de-
noised image I4, from each individual frame:

=1, — Iy, with I3, = F(Iy,), (5)

and F the filter as described above. Ideally, the re-
sulting pattern should not contain any image residue.
In other words, the pattern should closely resemble
white noise. To obtain the PRNU pattern, we use the
maximum likelihood estimator, as derived in [5]:

N
P, = > i1 Paila,
q N
Zi:1 Ili

with element-wise multiplication implied. In a sim-
ilar manner the reference patterns p,, from different
cameras with a known origin are obtained by averaging
a number of these noise residuals in order to suppress
the random noise contributions. However, instead of
using images that contain natural content, it is pre-
ferred to use a flatfield video Vy from which individual

plh‘

; (6)

flatfield images I, can be extracted that have no scene
content and an approximately uniform illumination:

Zil(lfi - f(Ifz))Ifz
~ .
i1 13,

This is done for multiple cameras, each with its own
reference pattern p,,. After all the reference patterns
are obtained, the final step is to measure the degree
of similarity between the questioned pattern and
the reference patterns. We use the total correlation
(summed over all colour channels) as the similarity
measure in order to find out whether a certain pattern
pq originates from a certain camera C. In order
to do so, we calculate the correlation between the
pattern from the questioned video p,; and the reference
patterns p,,. When the correlation of p, is highest
for a certain p,;, we decide the video was most likely
acquired using camera j.

When obtaining flatfield videos is not feasible (e.g.
the camera is not available or broken), it is also
possible to use (multiple) natural videos with known
origin to obtain the reference pattern.

When the resolution in which the videos have been
recorded are lower than the native resolution, binning
may occur and attenuate the pattern noise. When this
occurs, the pattern to be extracted is much weaker
which influences the optimal parameter to be used.
The same is expected to be true for compression, as
strongly compressed videos are expected to have less
of the pattern noise available in the video.

(7)

Pr =

3.4 Remarks on the uniqueness of the
PRNU

It was mentioned in the introduction that the origins
responsible for the existence of the PRNU suggest that
the sensor noise patterns from different cameras are
unique, though large scale tests are scarce. However,
it was observed that the estimated reference patterns
from cameras of the same type have a slightly similar
sensor noise pattern. This slight similarity was not
observed when the patterns from different brands
were compared, as can be seen in figure 4. When
reference patterns of dissimilar brands are compared,
the correlations are centred on 0, i.e. there is no
(linear) relationship between the patterns. When
patterns from the same brand/model are compared
the correlation increases, indicating partly similar
patterns. Thus, in practice a thorough test should
always include a large number of cameras of the
same type. In [30] a large scale test is performed
using the sensor fingerprints in the process of device
identification. In this paper, images downloaded from
Flickr from 6896 cameras from 150 different models
are used. It is found that the error rates do not
increase when multiple cameras of the same model are
used. This may contradict the earlier statement that
a slight similarity was found, as in figure 4. However,
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Figure 4: Correlations between the sensor patterns origi-
nating from the same make/brand and correlations between
patterns originating from different makes/brands.

in [30] the cameras are in general of higher quality, so
less common artefacts are expected.

Indeed, as already noted in section 2, when some of
the artefacts introduced in the output image do not
come from the CCD or CMOS sensor itself, but from
some other component that is present on all cameras
of a certain model and/or type (e.g. a colour filter
array), a similarity in the output can be expected. In
fact, it is these characteristics that are used in the
process of device classification.

In [20] and [31] the camera class is identified
by looking at traces left behind by the (proprietary)
colour interpolation algorithm that is used to demosaic
the colours, after the colour filter array decomposed
the incoming light in RGB/CYGM. In [32] different
measures are used to train a model with a Support
Vector Machine to identify the make/brand of the
camera. By using multiple features (high-order
wavelet statistics, image quality measures, binary
similarity measures) it is possible to a certain extent
to identify the make or brand of camera from which
an image originates. These characteristics show that
other traces left behind in the image are not unique
to the individual camera. Hence, device classification
shows we need to select an appropriate amount of
cameras of the same type and model to compare with.

As the relative size of the individual components
responsible for the PRNU is unknown it is possible
that the components present on all cameras of the
same type contribute a significant amount to the
magnitude of the estimated PRNU pattern. For high
quality digital cameras this is not a serious problem, as
it is expected that these high quality cameras contain
less systematic artefacts introduced by compression or
demosaicing.

In [4] the problems of non-unique artefacts were
removed by zero-meaning the estimates and Wiener
filtering the image in the Fourier domain.

4 Application to YouTube

videos

YouTube is (like Dailymotion, metacafe) a website
where users can view and share (upload) video con-
tent. Videos encoded with the most popular encoders
(such as WMV, DivX, Xvid, but also the 3GP for-
mat used by mobile phones) are accepted as upload,
after which the uploaded video is converted. Multi-
ple options are available for compressing the videos.
Currently, high quality video is offered in 640x480 or
854x480, depending on the aspect ratio of the source
video. For standard quality the resolutions and bi-
trates are lower. Videos are not upscaled; hence if the
source resolution is lower than the maximum resolu-
tion, the resolution will remain the same. The video
encoding is done using the H.264 (MPEG-4 AVC, de-
veloped by the Video Coding Experts Group VCEG in
collaboration with the Moving Picture Experts Group).
The container in which the video presented is either
FLV (Flash video) or MP4. If the resolution of the
source video is high enough, the video may be viewed
in HD quality (1280x720p). Note that unless the video
is uploaded in RAW format (that is, unprocessed data,
without any form of compression), the resulting video
is at least doubly compressed, as the output from the
camera may already be a compressed stream.

Online viewing is done using a Flash videoplayer,
while downloading these videos can be done using ser-
vices such as keepvid.com, or the newer keephd.com
for downloading HD material. The aspect ratio of the
video will generally not change (there are exceptions,
see §4.3). As the resolution and the visual quality of
the MPEG-4 video is higher (more details are avail-
able) than for the Flash video, we use the MPEG-4
video for extracting the pattern noise though the ac-
tual bitrate in bits per pixel is lower. To assess the
performance of the algorithm for videos that are up-
loaded to YouTube, we uploaded multiple (natural)
videos encoded with different settings and from dif-
ferent cameras to YouTube. The natural videos of ap-
proximately 30 seconds were recorded using two popu-
lar video codecs, namely Xvid (version 1.1.0) and Win-
dows Media Video 9 (version 9.0.1) in single pass set-
ting, using the Video for Windows (VfW) or Direct-
Show framework. The WMV codec is also used in the
popular Windows Live (MSN) Messenger application
(see also §4.1.2).

The flatfield video was obtained by recording (with-
out any form of additional compression on top of the
possibly compressed output from the cameras) a flat
piece of paper under various angles in order to vary the
Discrete Cosine Transform (DCT) coeflicients in the
compression blocks for the duration of approximately
30 seconds. Natural video (also approximately 30 sec-
onds) was obtained by recording the surroundings of
the office in which scenes with a high amount of details
alternated smooth scenes, both with dark and well-
illuminated scenes. Static shots alternated shots with
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Figure 5: Mean square error of the estimated pattern noise
with respect to the final estimate. We clearly see the esti-
mated pattern converges reasonably quick to the final pat-
tern.

fast movements, and saturation occurred frequently.
All recorded videos have approximately the same con-
tent. We made no attempt to select suitable frames
based on brightness or other characteristics, other than
the removal of saturated frames that occurred at the
start of the recording.

When the uploaded (natural) video content has a
resolution lower than the maximum resolution from
YouTube (1280x720), there is no change in resolution.
If this is the case, the reference pattern can be ob-
tained from the RAW video directly from the camera;
this gives a better performance compared to uploading
the RAW video and finding the reference pattern from
the downloaded video.

However, when the resolution of the uploaded (natu-
ral) content exceeds the maximum resolution that can
be obtained from YouTube, YouTube resizes the input
video. As it is unknown how the resizing occur and
which artefacts are introduced by the YouTube com-
pression scheme, it is necessary to upload the reference
material (in native resolution) to YouTube as well. In
this way the reference video undergoes the same pro-
cessing as the natural video that was uploaded.

Ideally, a large number of frames should be used to
calculate the sensor noise patterns. To see how many
frames should be averaged we calculated the Mean
Square Error (MSE) with respect to the final pattern as
obtained from N=450 flatfield frames for the Logitech
Communicate STX webcam, see figure 5:

MSE(p}_y,py), with pj_, = 7 b (8)

We see that the pattern obtained converges quickly
to a stable pattern, and that by averaging the patterns
from approximately 200 images already a reliable esti-
mate is found. This is not necessarily true for natural
video, as the noise estimation depends on the content
of the individual frames.

The patterns obtained from each natural video are
compared with the reference patterns from all other
cameras of the same type.

As explained above, the o-parameters control the
amount of noise that is extracted from each frame. To

see which settings perform best, we calculate the ref-
erence patterns as well as the natural patterns (the
patterns obtained from the natural video) for multiple
values: 0pqt = 0.5+ n, (n =0...8), gpey = 0.5 + 71,
(r = 0...8). By calculating the correlation between
all these possible pairs we can find the optimum pa-
rameters. In actual casework this is not possible, as
the questioned video has an unknown origin. We only
report the correlation values of the matching (the nat-
ural video and reference material have the same origin)
and the maximum correlation value of the mismatch-
ing pairs (the maximum correlation between the pat-
tern from the natural video and the patterns from all
other unrelated cameras), p,, and pm.m, respectively.
Hence, when p,, is larger than p,,,, the correct camera
was indeed identified. We tested several cameras, but
for reasons of brevity we only report extensively upon
one type, namely the Logitech Communicate STX, and
only briefly comment on the other cameras and tests.

Remark

At the time these calculations were done, the max-
imum available resolution that could be viewed was
480x360 (for aspect ratio 4:3). Recently the maxi-
mum resolution that can be viewed (and downloaded)
was increased. The experiments were performed when
the maximum resolution was still 480x360. Hence,
videos that were uploaded as 640x480 could be viewed
as 480x360. In the experiments and results that fol-
low we assume this restriction is still in place. This
made it necessary to perform additional pre-processing.
Namely, when a video was uploaded as 640x480, we
could only download it as 480x360. To compare the
extracted pattern from the downloaded video with a
reference pattern of the same size, it was necessary to
resize the reference video, or alternatively upload the
reference video in its native resolution to YouTube. For
videos with a resolution of 640x480 this is not neces-
sary anymore. However, the same principles hold when
a video is now uploaded with a resolution higher than
1280x720.

4.1 Logitech Quickcam STX

We recorded for each of the 8 Logitech Quickcam STX
cameras a 30 second sample with natural content in
the native resolution of 640x480 with the Xvid codec
with quality setting 4, as well as a 30 second flat-
field sample in the same resolution in RAW. At the
time when these calculations were done, this resolution
was higher than what could be viewed and downloaded
(480x360), hence resizing occurred. As we wanted to
compare the noise pattern extracted from these natural
videos with the noise patterns extracted from the flat-
field videos, we also needed to resize the flatfield videos.
This could be done either by uploading the flatfield
videos to YouTube, or by simply resizing the individ-
ual frames extracted from the reference video using a



bilinear interpolation. The disadvantage of the first op-
tion is that the YouTube compression introduces cer-
tain artefacts into the output video, which causes a
higher correlation between the noise pattern from the
natural video and the reference patterns from the flat-
field videos. Therefore, it is generally recommended
to record the flatfield video in the native resolution
of the camera, and subsequently resize the individual
frames from the video to match the resolution of the
natural material. Of course, when the natural video as
downloaded from YouTube has a resolution lower than
the maximum allowed resolution (currently 1280x720
or correspondingly for different aspect ratios) this does
not need to be taken into account.

Regardless of the parameter settings (4t = 4.5 — 6.5,
Of1at = 2.5—6.5 has the best separation), this resulted
in a 100% correct identification rate as can be seen in
Table 1 (see end of the article).

We also resized the frames from the RAW flatfield
video from 640x480 to 480x360 using the bilinear resiz-
ing method to match the dimensions obtained from the
natural video, and subsequently calculated the correla-
tion between the noise pattern from the natural video
and the reference patterns. In Table 2 the results are
presented when the RAW flatfield video is resized with
the bilinear resizing method.

We repeated the experiment with the same cameras
and only changed the recording resolution to 320x240.
Recording in a lower than native resolution means in
this case that the pixels in the output video are binned
(in this case 4 pixels are averaged to give the output
of 1 pixel) which results in a strong attenuation of the
PRNU, as the PRNU is a per-pixel effect. If one general
set of parameters is chosen, a maximum of 6 cameras
were correctly identified, as can be seen in Table 3.

4.1.1 Codec variations

For one camera we recorded video in the native resolu-
tion of 640x480, as well as the lower resolution 320x240
for two different codecs and different codec-settings.
In order to let the video content be the same for all
videos, we first recorded the video in RAW at both
resolutions, and subsequently encoded it with different
codec settings in VirtualDub [33]. For both resolu-
tions we recorded the video in XvID and WMV9, with
different codec settings. For the XVID codec we used
quality settings ¢ = 4 - n, with n = 1...8, while for
the WMV9 codec we used quality settings ¢ = 10 - n,
n=2>5...9. Note that in the case of XVID higher ¢ val-
ues represents higher compression, while in the case of
the WMV9 codec a higher setting means higher qual-
ity. The videos were uploaded to YouTube, and sub-
sequently downloaded after which the sensor pattern
noise was extracted again.

For these settings we again tried to find out whether
the outlined method was able to pick out the source
camera; a comparison was made with the reference pat-
terns from 7 other Logitech cameras of the same type.
For the low resolution 320x240 we used the RAW video

to extract the patterns, while for the high resolution it
was required to first resize the reference videos.

We see the algorithm performs very well for the
640x480 (native) resolution: the correct identification
rate is 100% for all codec settings (Table 4 and 5).
Also, the parameter values do not influence the iden-
tification rate, and the correct camera is identified for
almost all combinations of these parameters.

When the recording resolution is set to 320x240 we
see that the correct identification rate is lowered. For
the XVID codec we see this happens at the moderate
quality setting of 16, while for even lower quality en-
codings the camera is correctly identified. This shows
that video compression is not a linear process; appar-
ently, at lower quality settings more important details
are retained. For the WMV9 codec we see the correct
identification rate is decreased for the lowest quality
settings (Table 6 and 7).

4.1.2 Video extracted from Windows Live
Messenger stream

Windows Live Messenger, formerly known as MSN
Messenger, is a popular instant messaging client, which
provides webcam support as well as videochat support.

Through the use of external programs it is possible
to record the video stream sent during a webcam ses-
sion, often simply by capturing the screen. It is also
possible to directly record the data from the stream,
as is done with MSN Webcam Recorder [34].

As a final test with this webcam, we set up a we-
bcam session between two computers with Windows
Live Messenger, with one computer capturing a we-
bcam stream of approximately two minutes sent out
by the other computer. The stream was sent out as a
WMV9 video at a resolution of 320x240 (selected as
‘large’ in the host client). After the data was recorded
with the aforementioned program, it was encoded with
the XVID codec (1.2.-127) with a bitrate of 200 kbps,
which resulted in 1705-1815 frames (0.17-0.18 bpp). Fi-
nally, the resulting video was uploaded to YouTube,
where a third layer of compression was added. It has
to be stressed that in practice with low bandwidth sys-
tems the framerate may be reduced significantly.

We again see the source camera is correctly identi-
fied.

4.2 Creative Live! Video IM

For 6 Creative Livel Cam Video IM webcams we
recorded a 30 second sample in 352x288 (11:9), while
the native resolution is 640x480 (4:3). These videos
were encoded using the WMV9 codec, with quality
setting 70 and uploaded to YouTube. This resulted in
videos with a bitrate between 180 and 230 kbit /s (0.13-
0.16 bpp). Only 5 out of 6 cameras were correctly iden-
tified with the optimal parameters of 0,4, = 6.5 and
Oref = 2.5. Next, we recorded a video with resolution
of 800x600 (4:3) and encoded it with quality setting 60
in WMVO. After recording the flatfield videos in the



native resolution, we either have to upload these refer-
ence videos to YouTube or resize the individual frames
from the flatfield videos. In this case it is advantageous
to resize the individual frames: the correlations of mis-
matching pairs is more closely centred on zero, indicat-
ing no (linear) relationship between the noise patterns
extracted from the natural video and the patterns ex-
tracted from the reference videos. This resulted in a
100% correct identification rate, although the differ-
ence between matching and mismatching correlations
is low.

4.3 Vodafone 710

For each of the ten Vodafone 710 mobile phones, we
recorded a 30 second sample in the native resolution of
176x144. This phone stores the videos in the 3GP for-
mat. This is, like the AVT file format, a container for-
mat in which H.263 or H.264 can be stored. This phone
uses the H.263 format optimised for low-bandwidth
systems. The natural video had a bitrate between 120
and 130 kbit/s (0.36-0.39 bpp). After uploading the
natural videos, YouTube automatically changed the as-
pect ratio, from 11:9 to 4:3. The correct identification
rate is only 50%.

The correct identification rate for this camera is
much lower than for the other cameras. This may be
due to the codec used to initially encode the source
video, namely H.263. This codec uses a form of vector
quantization, and is therefore different from the dis-
crete cosine transform used in WMV9 and XVID.

5 Future work

Although video processing is much less common than
image processing, a problem occurs when the ques-
tioned video has undergone some form(s) of spa-
tial transformations. For example, when videos are
cropped, scaled or rotated, the extracted PRNU pat-
tern is transformed in a similar manner.  Also,
video stabilisation may irreversibly destroy the pat-
tern. Hence, the found pattern will not match the ref-
erence pattern acquired from the source camera. For
simple transformations like cropping and scaling, do-
ing a brute force search may be possible, as is done
for images in [35]. However, for videos this may not
be realistic or computationally feasible, as at least a
few hundred frames are needed to estimate the PRNU
pattern reliably. Doing a brute force search in this case
means much more computational power is needed.

As an alternative it may be interesting to see how
camera classification performs in this case, for exam-
ple by means of a Support Vector Machine (SVM). In
this approach BSM, IQM, HOWS features are used to
build a classifier that is able to distinguish between dif-
ferent camera brands/models. The advantage is that
it can easier be made robust to image manipulations,
as is shown in [36] for images originating from cell-
phone cameras. In the aforementioned paper an in-

formed classifier was built, i.e. a classifier that was also
trained with manipulated images. Rotations could be
detected in this way with accuracy above 80% when 9
cameras were used, depending on the angle over which
the image was rotated.

6 Conclusion

It was previously shown that the technique used, the
extraction of the Photo Response Non-Uniformity, was
successfully applied in the source identification of digi-
tal cameras and digital scanners. We have seen that it
is possible to identify low resolution webcams based on
the extraction of sensor noise from the videos it pro-
duces, even after these videos were re-compressed by
YouTube. Depending on various video characteristics
(recording resolution, the codec and bitrate used to en-
code the video, etc.), reliable identification is possible
in a wide range of circumstances. This is not the case
for all video material tested: the H.263 compression
that is used in the mobile phone we tested does not
leave enough pattern noise in the video, and in this
case no reliable identification was possible.

We have seen that a change of aspect ratio (e.g. from
4:3 to 16:9) after recording is detrimental to the reli-
able extraction of the sensor noise. Also, recording
videos in non-native resolution may present problems
due to the occurrence of binning (e.g. recording a video
in 640x480 when the native resolution is 1280x960).
Hence, we do not always know in which resolution a
video was recorded and/or uploaded.

Another problem is that YouTube may change its en-
coding scheme from time to time, such that at the time
the original (natural) video was uploaded the codec
(settings) used to encode the video to H.263 or H.264
may be different compared to when the reference mate-
rial is uploaded. However, as long as no spatial trans-
formations are applied (such as changing the aspect
ratio), this is no severe limitation.

As there are a lot of parameters (duration of the
video, content of the video, amount of compression,
which codec was used to encode the video, which pa-
rameters should be used to extract the noise patterns,
with which resolution was the video recorded, etc.) it
is not possible to give a general framework to which
a video should comply in order for a correct identifi-
cation to occur. In general, by setting the parameter
for extracting the PRNU pattern from natural or flat-
field videos between 4 and 6, satisfactory results are
obtained. It has to be kept in mind that the noise pat-
terns estimated from cameras of the same make and
model may contain similarities. Further pre-processing
may reduce these similarities and is likely to improve
the results. Especially as the output of webcams or
mobile phones may actually be a compressed JPEG
stream in which the DCT compression blocks can be
clearly distinguished, this may introduce higher than
expected correlations based on the sensor noise alone.
For this reason it is advised to use a large amount



of cameras of the same brand and model in actual
casework. In this way we can see whether similarities
between noise patterns comes from the actual sensor
noise, or whether it comes from post-processing steps
such as CFA interpolation that is common to all cam-
era models of the same brand.

The assumption that the PRNU can be modelled as
a white Gaussian noise (either in the spatial or the
wavelet domain) is only an approximation to the true
distribution of the PRNU, as the multiplicative nature
of the PRNU implies that well illuminated areas con-
tain more pattern noise than dark areas. Either the
denoising parameter could be made spatially adaptive,
or a denoising algorithm could be used that does not
make these explicit assumptions about the frequency
content in the image, for example a Non-Local means
approach [37]. However, although the latter approach
performs really well in the case of artificially added
white Gaussian noise, the actual performance is often
below that of the wavelet filter as presented. Also, the
computation time is several times larger compared to
the wavelet filters.

In general, we have two opposing predictions for the
future with respect to the source video camera identifi-
cation. On one hand we theorise that the sensor noise
is likely to decrease when manufacturing standards in-
crease. This will frustrate the camera identification
scheme, as the reliable extraction of the pattern is hin-
dered. On the other hand, a few opposing processes
occur simultaneously. First, with increasing resolu-
tion the relative PRNU size increases (with the same
manufacturing technique) in general as well. Also, the
storage capacity of these devices (in mobile phones,
but also the maximum allowed video size that can be
uploaded to e.g. YouTube) increases. Furthermore,
the bandwidth of (mobile) networks increases, allow-
ing faster transfers of these files. Finally, due to the
increasing processing power in these electronic devices,
more advanced compression schemes become available,
possibly retaining more of the pattern noise after com-
pression.
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l ‘ caml cam?2 cama3 cam4 camb cam6 cam7 cam8

pm | 0.1836 | 0.3013 | 0.1926 | 0.2297 | 0.1731 | 0.1967 | 0.1998 | 0.2581
Pmm 0.0526 0.0369 0.0239 0.0362 0.0406 0.0190 0.0283 0.0315

Table 1: Logitech Communicate STX. Natural videos encoded with XVID quality setting 4 in 640x480 resolution.
Flatfield videos uploaded and subsequently downloaded from YouTube, after which the pattern noise was estimated with
parameters opnar = 4.5, 0f1ar = 3.5.

l [ caml [ cam?2 [ cama3 [ cam4 [ camb [ cam6 cam7 cam8

pm | 0.1334 | 0.2301 | 0.1279 | 0.1818 | 0.1596 | 0.1622 | 0.1515 | 0.2099
Pmmn 0.0374 0.0512 | -0.0009 0.0342 0.0355 0.0290 0.0118 0.0421

Table 2: Logitech Communicate STX. Frames from the uncompressed flatfield videos are resized with a bilinear inter-
polation to match the size of the natural video downloaded from YouTube (480x360), after which the reference patterns
are calculated with parameters g,q4¢ = 6.5, 0f1a¢ = 7.5.

l [ caml cam?2 cam3 cam4 camb [ camb6 [ cam7 cam8

pm | 0.1044 | 0.0936 | 0.1090 0.0153 | 0.0304 | 0.1044 | 0.0984 0.0334
Pmm 0.0280 0.0616 0.0803 | 0.0407 | 0.0245 0.0526 0.0652 | 0.0648

Table 3: Logitech Communicate STX. As the natural video downloaded from YouTube is not resized (320x240), the
reference patterns are estimated directly from the uncompressed video with parameters onqat = 3.5, 010t = 5.5.

l setting ‘ size (kB) ‘ frames ‘ kbit/s ‘ bpp ‘ Pm ‘ Prm, ‘
4 4031 519 932(0.202|0.2252|0.0693
8 2008 519 46410.101 {0.2046 | 0.0901

12 1455 519 33710.073(0.1957 | 0.0678

16 1193 519 27610.060 | 0.1921 | 0.0690

20 1036 519 24010.052]0.1715|0.0471
24 960 519 22210.048 [0.1612 | 0.0679
28 889 519 206 0.045 | 0.1798 | 0.0677
32 863 519 200|0.043]0.1479|0.0579

Table 4: Logitech Communicate STX. Video recorded in 640x480 with the XVID codec, variable quality. o, = 8.5,
O flat = 75

l setting ‘ size (kB) ‘ frames ‘ kbit/s ‘ bpp ‘ Pm ‘ Prm, ‘
90 6401 508 | 14801(0.207 |0.2852 | 0.0665
80 3013 508 697 (0.103 | 0.2084 | 0.0599
70 1994 508 461(0.075|0.1972|0.0521
60 1459 508 337(0.061|0.1666 | 0.0620
50 1210 508 28010.0530.1773 | 0.0689
40 967 508 22410.049 | 0.1842 | 0.0586

Table 5: Logitech Communicate STX. Video recorded in 640x480 with the WMV9 codec, variable quality. onq: = 8.5,
Oflat = 9.5

[ setting [size (kB) [frames [kbit/s[ bpp]| pm | pmm |
4 2206 488 535(0.859(0.1173 | 0.0497

8 1238 488 300(0.429| 0.0795|0.0852

12 949 488 230(0.311{0.1115| 0.0541

16 813 488 197]0.255]0.0811| 0.0608

20 750 488 18210.221{0.1474 | 0.0472

24 703 488 171]0.205]0.0935| 0.0684

28 675 488 164 |0.1900.1259| 0.0531

32 660 488 160(0.184{0.1026 | 0.0381

Table 6: Logitech Communicate STX. Video recorded in 320x240 with the XVID codec, variable quality. ona: = 5.5,
Oflat = 4.5
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[ setting [size (kB) [frames [kbit/s[ bpp]| pm | Pmm
90 3023 489 73410.859|0.0939 | 0.0811
80 1717 489 417(0.428 [ 0.1107| 0.0894
70 1229 489 298 0.310|0.1483 | 0.0823

60 953 489 231(0.254]0.1001 | 0.0800
50 815 489 19810.221|0.0663 | 0.0481
40 700 489 170{0.204| 0.0592|0.0740

Table 7: Logitech Communicate STX. Video recorded in 320x240 with the WMV9 codec, variable quality. o,q: = 6.5,
Uflat = 75

l [ caml cam?2 cam3 cam4 camb camb6 cam7

pm |0.1029|0.1361 | 0.0792 | 0.1060|0.1010 | 0.0770 | 0.0616
pmm | 0.0421| 0.0383| 0.0476| 0.0129| 0.0459 | 0.0288| 0.0505

Table 8: Logitech Communicate STX. Video (320x240) recorded from webcam stream from Windows Live Messenger
(WMV9) and subsequently encoded with the XVID codec. opar = 4.5, 0rey = 2.5

l [ caml cam?2 cam3 cam4 camb cam6

pm | 0.0569 | 0.0242 | 0.0381 0.0121 | 0.0294 | 0.1017
Pmm 0.0240 0.0233 0.0262 | 0.0533 0.0070 0.0526

Table 9: Creative Live! Natural video recorded in 352x288, wmv70. 0par = 6.5, 0y = 2.5

l [ caml cam?2 cam3 cam4 camb camb6 cam7| cam8& cam9 | camlO

pm | 0.0106|-0.0138 | 0.0913 | 0.0632 | 0.0497 | 0.0339 | 0.0401| 0.0069| 0.0291|0.0326
Pmm | 0.0340]0.0195| 0.0713| 0.0212| 0.0385| 0.0306 | 0.0548 | 0.0261 | 0.0558 | 0.0286

Table 10: Vodafone 710 (176x144, resized by YouTube) H.263 (no further settings possible). RAW downloaded from
YouTube, opat = 1.5, 0fiat = 6.5. Results did not improve when the patterns were estimated from resized flatfield
frames.
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