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Abstract. Consider an “information market” where private and poten-
tially sensitive data are collected, treated as commodity and processed
into aggregated information with commercial value. Access and process-
ing privileges of such data can be specified by enforceable “service con-
tracts” and different contract rules can be associated with different data
fields.
Clearly the sources of such data, which may include companies, organiza-
tions and individuals, must be protected against loss of privacy and con-
fidentiality. However, mechanisms for ensuring privacy per data source
or data field do not scale well due to state information that needs to
be maintained. We propose a scalable approach to this problem which
assures data sources that the information will only be revealed as an
aggregate or as part of a large set (akin of k-anonymity constraints).
In particular, this work presents a model and protocols for implementing
“privacy preserving data markets” in which privacy relies on the distribu-
tion of the processing servers and the compliance of some (a quorum) of
them with the service contract. We then show how to compute statistical
information important in financial and commercial information systems,
while keeping individual values private (e.g., revealing only statistics that
is performed on a large enough sample size). In detail, we present two
novel efficient protocols for privacy-preserving S-moments computation
(for S = 1, 2, . . .) and for computing the Pearson correlation coefficients.

1 Introduction

Internet users today are often requested to pass personal information to their
health-care providers, to their banks, to insurance companies and other service
providers. Similarly, organizations have to disclose private individual data to
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suppliers and contractors in order to satisfy supply chain requirements. In fact,
such information that may be collected by a primary service provider can be
sensitive and may be protected by privacy disclosure acts (e.g., HIPAA is such
act in the United States) or by business confidentiality agreements. In many
cases, appropriately processed data are valuable market assets since they can be
used to improve services, increase sales, etc. Therefore it is often important to
transfer individual data items from the primary market where they are collected
to a “secondary market” where other parties will further process them (e.g.,
will compute statistics of important parameters) and potentially disclose these
secondary processed outcomes as opposed to the original (much more private)
data.

We note that the privacy implications in these “data market” settings are
dire since the users that provide data have no control on how primary service
providers outsource their data. In addition, there is no way to enforce privacy
and it is also possible that secondary market entities reside outside the juris-
diction where the data were collected originally (so even a legal procedure can
be complicated). Furthermore, collected outsourced data may be stored in data-
warehouses such as LexisNexis, can be sold to other parties for data mining, or
in the worst case they can be exposed to unauthorized malicious entities who,
exploiting a security vulnerability, may access this sensitive information. While
these scenarios raise serious privacy concerns, it should be stressed again that
there is a clear need for knowledge discovery in the secondary market: First for
commercial (e.g., marketing, pricing, improving market efficiencies, service as-
sessment and billing, revising insurance policy estimations), and secondly, for
research purposes; and even for safety reasons (e.g., identifying public health
hazards, realizing outbreaks such as epidemics or biological warfare instances,
market research, etc.). Still in the present situation, “data producers” (i.e., users
like all of us, and organizations) have little control over who, how, and what
exactly is done with private and sensitive data that are communicated to a
secondary market.

The current uncertainty of the way that private information may be taken
advantage of, brings forth another important concern: users increasingly use
falsification of their personal information when they are filling out Internet forms.
Indeed, a number of recent reports [31, 44, 4, 11] show that somewhere from 20%
to 50% of online users have provided false data when confronted with an online
form with the aim of protecting their privacy. The amount of false information
that is collected reduces the usefulness of information databases for legitimate
purposes and leads to a waste of resources.

1.1 Our contributions

Market Trust Infrastructure: We claim that what is needed, given the cur-
rent situation, is a trust infrastructure that will assure users that their personal
data is not revealed and that collection is secured at the primary service provider.
Further assurance involves the fact that the secondary market aggregation and
mining processing has security, integrity and validation built into it. (Note that
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Fig. 1. Privacy Preserving Information Processing. Data producers DProd contribute
scrambled private information to data collectors DCol; scrambled data enter the data-
market where they are freely marketed protected by their cryptographic contract. The
parties DTWatch and DMWatch are optional and have the role to ensure that data col-
lected from DCol are indeed corresponding to real users. Eventually data are removed
by the data market and packed into a crypto-database by the data processor DProc.
The contract authority CAuth verifies the properties of the associated contract and
engages in a protocol with DProc that reveals the required outcome of the processing.
DProc should be able to preprocess the cryptodatabase to reduce the computational
cost on CAuth and the communication complexity.

currently, certificate authority infrastructure is a trust infrastructure for users’
credentials but there is no similar entity for information markets).

Privacy Preserving Information Processing. The present work puts forth
the notion of “Privacy-Preserving Information Processing” (PIP) to deal with the
above basic problem. Central to our scenario is the privacy-contract: an agree-
ment between the user and the service provider that will enable the generation of
a special record. This is a type of an electronic “smart contract” as the ones ad-
vocated in [52]. The framework provides mechanisms for limiting data exposure
and manipulation according to the contract, it also provides methods for vali-
dating compliance under the contract, in an analogous way to digital signature
validation inside a PKI. More specifically: in PIP the data collection operation
extends the protocol between the user and the primary service provider where
the user (based on local privacy settings) furnishes to the provider, in addition
to any other necessary information for primary service, also a contract-enforced-
record (CER) which defines rules regarding the encrypted information in the
record. In some settings the CER may contain rules contributed by both the



service provider and the user (for example the case where a patient interacts
with a primary care physician).

To enable secondary data markets that are under control, each CER is based
on a template form and contains a sequence of fields that are encrypted according
to specialized encryption functions (to be detailed later on). The primary service
provider, in turn, has the choice to outsource CERs to a secondary market where
they can be processed by following a data processing protocol that will involve
the “contract-authority,” a distributed entity that is used to safeguard privacy.
The contract-authority is implemented in a distributed fashion by various entities
possibly including (some of) the users themselves and service providers that
wish to be trustees in the privacy-preserving operations. Based on threshold
cryptography techniques, access to result decryption will be enforced by quorum
control.

Then, PIP is a natural extension of the PKI concept where the data-collector
offers a certificate to the data-producer. The certificate in this case has a much
broader scope though: not only it provides the authentication of the server iden-
tity, but it also includes the following information: (i) the data-structure type
of the data that the data-collector is soliciting, (ii) the contract that describes
the purpose of the data-collection and its conditions, and possibly (iii) a crypto-
graphic engine that enhances the client’s machine with encryption capabilities.
All the above information is signed by a contract authority (in the same way
that the certification authority would sign a server’s public-key).

The data producer, after verifying the certificate, supplies its data and is
ensured (by the contract authority) that the data it provides will not be used in
contract violation. This cryptographic contract binding is achieved by encrypting
the data using the included cryptographic engine. We stress that this means that
the data will not be available to the secondary market in cleartext form. Note
that the data-collector will still “own” the submitted data but these will only be
identified by descriptive fields (tags) such as “name”, “age”, “income” while the
respective values would be enciphered. At this stage the data-collecting server
may store the data or even trade them freely as a commodity in a data-market.

It should be stressed at this point that in PIP, nothing changes from the point
of view of the user/data-producer: the user software still verifies a certificate (as
in a SSL/TLS handshake) and then prompts the human operator to enter the
data in an online form that may also be complemented by data produced by the
primary service provider (e.g., the user’s cat-scan in a medical application).

Naturally, the data also needs to be processed. This requires that the data
elements are passed through the authorization of the contract authority who
verifies that the submission is compliant with the stated contractual agreements.
In particular, data is assembled into a “cryptodatabase”, potentially get pre-
processed by a data processing entity and is submitted to the contract authority,
that verifies the processing request and produces the appropriate aspect of the
data processing as described in the contract, to the requesting entity.



PIP Operation Encoding Size Communication Computation
up to S-statistics logN + S · len S · (logN + S · len) dec(ν)
correlation coefficient logN + 2 · len 4(logN + 2 · len) < 4 ·

√
#D1 ·#D2 · dec(ν)

Fig. 2. Summary of our results. S is a parameter that specifies the highest moment
that is required to be computed; ν is a cryptographic security parameter assumed to
satisfy ν = Ω(logN) where N is the sample size (i.e., the number of data producers).
Data producers are assumed to draw their values from a space D in the first system
and from D1,D2 for the correlation system; len is the maximum size required to encode
any of the numerical elements in D,D1,D2; dec(ν) is the time required to decrypt a
ciphertext corresponding to security parameter ν.

Constructing PIP schemes. Next, we identify the major challenge in designing a
PIP system which is the following: For a given processing operation, the challenge
is to design a cryptodatabase processing operation (that is accompanied by an
appropriate encryption scheme) so that the contract authority communication
and computation complexity becomes a small function of the size of the output
of the processing operation (which is the natural lower bound for the complexity
for performing the computation over the cleartext data — just from the need to
produce all the output).

Based on this, we concentrate on statistics for information processing that
is crucial in the context of collecting and processing financial numerical data.
Using novel cryptographic constructions together with recently devised existing
encryption systems, we present two near optimal PIP systems. These systems
enable the evaluation of statistical information from collected numerical data in
a private fashion. In particular, we consider the setting where data producers
contribute numerical data (e.g., their income, age, revenue, profit etc.) drawn
from domains D1,D2, . . . and the data processor wishes to extract the following
statistical information:

– S-statistics and S-th moments for S = 1, . . ., that disclose the mean, stan-
dard deviation and higher moments (note that with more moments available
better approximations of the sample distribution can be made available).

– the correlation coefficient between two samples that enables us to relate two
distributions via their corresponding samples.

In particular, if data producers provide the values v1, . . . , vN , the data pro-
cessor can use our first PIP system to extract the r-th sample central moment for
r = 1, . . . , S, or more generally can approximate the sample statistical distribu-
tion up to the S-th cumulant. Recall that computing cumulants enables one to
approximate the Maclaurin expansion of the logarithm of the probability density
function of the underlying population distribution. In our second PIP system we
show how the data processor can extract the Pearson correlation coefficient from
two data columns v1, . . . , vN , v′1, . . . , v

′
N submitted by the sample of N users.

Our results are summarized in figure 1.1. Note that the optimal measure is
S · len for the first PIP system and len for the second; it follows that our first
scheme almost matches the optimal measure (it is polylogarithmically related to



N and multiplied by the parameter S that specifies the highest moment to be
computed — in general S assumed a small constant); our second PIP system has
similarly favorable communication; on the other hand, the required computation
is proportional to the size of the data space as opposed to proportional to the
output of the processing operation which is len; still the size of the data space
is always a tractable value in practice.

It should be stressed that our constructions offer absolute privacy (i.e., they
reveal nothing but the required output) under the cryptographic conditions and
the threshold implementation of the contract authority.

We note though that the inclusion of the same CER to various different PIP
operations may result in privacy violations that are unanticipated. For example,
a record can be entirely revealed if two different sample mean calculations are
performed where the only difference is including and excluding that item — this
is a typical problem in statistical database queries. Resolving this issue – to the
degree it can be solved – goes beyond the scope of the present work. One possible
approach is to restrict subsequent inclusions of a certain CER to a PIP unless
it is used in the same context (i.e., with the same CERs that it appeared in the
first operation). Such approach would require an ever growing state that keeps
track of past PIP operations. Still there are possible alternatives to that end and
the basic infrastructure developed herein is consistent with other approaches to
ensuring database privacy that can be useful in this respect, in particular adding
noise to private data, [17] or using “baits” to catch misbehaving data collectors
[29].

1.2 Related Previous Work

We next review a few areas that are related to our notion and explain in what
ways our market model is different.
Secure function evaluation. Looking at PIP from a theoretical viewpoint,
one can identify it as an instance of a secure multi-party computation with
private inputs, a cryptographic primitive that has been studied extensively in
the literature, and in fact generic protocols have been constructed that allow
arbitrary functionality, see [27]. These protocols are not practical as they require
large communication and computation costs; as advocated in [28], it is important
to pursue more efficient instantiations of such “secure multi-party computations”
and the instantiations that will be described in this proposal characterize an
efficient sub-class of such generic protocols. More efficient cryptographic protocol
constructions have, in fact, been successful for example a prominent has been
electronic voting cf. [14, 12, 48, 49, 15, 33, 30, 35, 8, 6, 39–41].
Cryptographic database processing for privacy preserving data min-
ing. Knowledge discovery with privacy concerns in terms of Privacy Preserving
Data Mining (PPDM) was investigated in the context of secure computation
in [43, 34, 53, 2, 45, 1, 22, 42, 32, 54, 36, 37]. In this setting the focus is on merging
or processing data from multiple private datasets that should not be mutually
disclosed. The databases are typically owned and operated by entities that may



pre-process them and share cryptographically scrambled versions of database as-
pects. The fundamental difference between this approach and the present work
is that the private data are available in a cleartext form to the database owner
while in our approach the database owner is not trusted. In other words the
previous methods can be used to assist well-to-do data-collectors and processors
to adhere to their privacy statements. Nevertheless this approach does little to
protect against the problem we are tackling in this work, namely to provide a
safeguard mechanism that ensures contract enforcement as well as notification
and dispute control at the user level.

Encrypted access control and processing. Enforcing access control through
cryptographic means has been utilized numerous times in secure system design
(e.g., for file storage cf. [7, 26] for hierarchical access control cf. [3, 13, 50, 47]).
The PIP setting goes beyond such access control since it focuses on data col-
lection and processing, i.e., access to the data is not only restricted but also
requires ciphertext-based processing that should be combined to an aggregation
capability as data from many data-producers need to be pulled together prior
to processing.

Multi-party communication. A PIP system requires multi-party communi-
cation and coordination which is a challenging problem in distributed environ-
ments. Dealing with failures and corruptions in multi-party communication sys-
tems is the context of Byzantine agreement protocols, a subject that is exten-
sively studied in the literature, e.g. [18, 19, 25, 24]. Byzantine agreement proce-
dures, although they allow multi-party procedures to succeed under typically a
threshold assumption on the number of failing parties, they do not constitute
a very efficient approach for basing communication in multi-party systems. The
approach followed here bases all communication of a multi-party system over a
Client-Server communication infrastructure. The potential of the Client-Server
communication model for basing security in multi-party computations, has been
investigated in [5]. In this work, we employ the client-server architecture as
a mechanism for communication, computation assistance and increased trust-
worthiness (we do not deal with the underlying reliability issues since modern
communication is quite reliable and furthermore it is a different layer).

Utilizing Client Interaction. Dealing with privacy in data collection, the en-
cipherment of collected data was also considered in the context of data mining
in [56, 55, 9]. For example in [56], k-anonymity was discussed in the context of
a non-trusted database holder; in the suggested approach the data-producers
help the database processors produce the k-anonymized version of the database
with interaction involving cryptographic operations extending beyond the ini-
tial data submission. Compared to the PIP framework we propose here, this
approach violates the principle that in a PIP protocol, data producers should
not be required to be active in other stages of the system beyond the original
data collection stage. Instead in PIP we opt for a logical separation between the
roles of contract authorities and data producers where the latter are still given
the opportunity to be contract authority shareholders if some of them wish to
participate in the trust infrastructure. Moreover the focus of the present work



is to provide near optimal solutions to numerical data statistical computation
whereas previous work focused on more generic tasks, e.g., [9], that if applied
to our setting they would result in protocols that lack privacy (as all numerical
values will be revealed as opposed to the final outcome of the computation).

2 The PIP Framework

In PIP there are four basic roles: data-producers (users), data-collectors (primary
service providers), data-processors (secondary market entities), and contract-
authority servers (that comprise the trust infrastructure). We will refer to these
entities as

〈DProd, DCol, DProc, CAserver〉

The operation of a privacy-contract-based system will comprise the following
four basic operations:
Trust Infrastructure Maintainance. This stage is executed by the “cloud” of
CAserver entities. The operation requires two parameters: ν a cryptographic
security parameter and ρ a fraction that determines the percentage of CAserver
that need to agree for a certain processing operation to take place. The main
task of the setup stage is to provide a set of cryptographic keys that will be used
in the formation of the CERs. The operation of the system assumes that all
CAserver entities may fail or shut-down arbitrarily; moreover, it assumes that
at any given moment no bigger than ρ fraction of servers is corrupted by an
adversary.

– Create Initial Key. An initial group of n CAserver setup a cryptographic key
pk so that each each server receives a share ski of pk so that any t = dρ · ne
shares can be used to reconstruct the secret but any smaller number reveals
no information about the secret in the computational sense.

– Add CAserver. This is a protocol between t = dρ · ne existing servers and a
new entity that wish to become a shareholder. It results in the generation of
an independent share and the outcome of this operation should be indistin-
guishable compared to the shares obtained by the n + 1 servers (n existing
plus the new one) should they have executed the initial key creation step.

– Remove CAserver. CAserver entities may arbitrarily shut off and stop par-
ticipating in the operations of the contract authority server cloud. Depending
on the communication model other servers may need to update routing ta-
bles.

– Shares Calibration. Given that the add/remove server operations modify the
number of servers it will be the case that |t/n−ρ| ≥ ε where ε is a deviation
threshold that is a parameter of the system. In such case, a set of t servers
execute a protocol that results in a corrected t′ threshold equal to dρ · ne.

The above operations can be achieved by employing threshold cryptography
techniques: creating the initial key will be based on Shamir’s secret-sharing [51]
as used in distributed key generation of e.g., [10], while the add-user and share



calibration protocols can be based on the poly-to-sum and sum-to-poly protocols
of dynamic proactive secret-sharing [20] for example. The communication model
that is assumed here is a full-broadcast channel that can be simulated by the
cloud of servers using byzantine-agreement in a fully adversarial setting [18,
19, 25, 24]; while in practical settings weaker protocols are still sufficient, say
employing a client-server based bulletin-board system.

The public-key is bound to the type of operation and data type of CER
records. It is certified by a certification authority and listed in a public directory
where users can recover it if needed. For a given privacy-contract C pertaining
to some data type and operation, we will denote by pkC the public-key of the
contract, by DC the data type of the data collected and by and by fC : (DC)∗ →
RC ∪ {⊥} the type of operation that will be applied after data-collection under
the contract C (note that it may be a class of functions as well but for simplicity
we just list a single function for now). Note that we allow fC(x) = ⊥, which is to
be interpreted that performing the operation fC on data input x ∈ (DC)∗ would
be in contract violation (this is not a catch-all as a contract violation may be
triggered by other conditions as well).
User setup stage. Each user can obtain a signing key; this key is incorporated
into the user’s software and acts like an authorization token. The primary service
provider (say health-care provider) can identify the user using such credential.
Moreover, the signing key enables the user to sign CER records so that the
following are satisfied:

– Anonymity of Signatures. Signatures produced by two distinct users are com-
putationally indistinguishable for any observer, including an entity that cor-
rupted the primary and secondary service providers as well as the contract
authority entities.

– Claiming of Signatures. Each user can use its signing-key to execute a pro-
tocol that will “claim” a posted signature as produced by this user. No user
can claim signatures that were not produced by it.

The above operations can be based on the notion of traceable signatures [38]
(as they constitute a subset of the requirements put forth there).
Data-collection. In this setting primary service providers will be engaging in com-
munication with the users that will furnish the CERs to the service provider.
Each CER will be encrypted under the public-key of the negotiated privacy con-
tract pkC and signed using the signing-key of the user (note that the anonymity of
the signature ensures that no information about the identity of the user is leaked
from the signature). In more detail, DCol may present to users/data-producers
a form that will facilitate the data-collection operation. The interface will be
part of the transaction that the data-producer DProd and DCol are engaged in.
The data-collection will include the following steps: first the data-collector and
the data-producer will engage in a contract negotiation stage; in simple deploy-
ments this will be manual (and as simple as checking that the user read a privacy
statement and it accepts it). Still it is possible to build a more elaborate nego-
tiation stage where a client-side sub-system (e.g., a web-browser extension) will



negotiate the right contract type out of the ones that the DCol offers based on
privacy settings that the user may have selected in advance. At the end of the
negotiation stage the DProd will have verified that it is DCol that is collecting
the data and that the data will be collected under the conditions of contract C

that DProd accepts. DProd may also obtain a data encapsulation package that
will be accompanying the key pkC (this is a cryptographic engine that will enable
the user to scramble the private information). At this stage DProd will be ready
to submit the private data that will be encapsulated and submitted to DCol in
enciphered form by the client’s local host under the public-key pkC.
CER processing stage. The CERs can be released by the primary service providers
to the secondary market. A data market of CERs can be implemented at this
stage that enables the exchange of CER records if this is desired (between sec-
ondary market entities). Data processors DProc will eventually form a database
of CER records denoted by CDB. At this stage the CDB will be processed accord-
ing to some prescribed ciphertext-based operations and the resulting scrambled
outcome will be transmitted to the CAserver entities along with a request to re-
lease the appropriate information based on the contract. The contract authorities
invoked by the action of DProc will inspect the submitted data for compliance
to the contract and subsequently use its private key information to will facilitate
the processing of the user data. The privacy safeguard of the system against
illicit data usage is exactly at this stage where all data processing requests have
to be authorized by the CAserver entities that check whether the contractual
agreement is consistent with the intended processing operation that is requested
by DProc. In the final step of the data-processing protocol, CAserver entities
will return to DProc the value fC(x) where x = 〈x1, . . . , xn〉 ∈ (DC)n are the
data that were collected by n users under the contract C.

In the basic framework as described above, the data processor DProc receives
a cryptodatabase CDB that contains the encapsulated data that were submitted
by the data-producers. While it is possible to submit the CDB directly to the
CAserver entities for processing under the contract function fC, this poses two
major shortcomings:

– The communication required to transfer CDB to CAserver’s maybe dispro-
portionately large compared to the required output of the data processing
protocol.

– The computation cost imposed on CAserver’s could be prohibitive as the
entities in the worst case would have to decrypt all data and apply the fC

function to them in order to finish the protocol.

To put this into perspective consider the following setting: suppose that the
data processor is interested in obtaining the mean salary of all the users in its
cryptodatabase under a contract that allows the data-processor to do so provided
that the salaries are revealed in batches of at least 1000 individual records. The
data-processor may submit to the contract authority 1000 enciphered salary
fields and the contract authority will decrypt the data, compute the mean and
return it to the data processor. Clearly this solution is sub-optimal: (1) the



communication is proportional to 1000 ciphertexts where the outcome of the
protocol is a single element. (2) the computation that is imposed on CAserver
entities is dependent to the size of all collected data where it would be preferable
to be dependent only on the size of the output of the data processing stage.

To resolve the above problem we would like to devise methods that will allow
to the data processor DProc to process the cryptodatabase prior to submitting
it to the CAserver entities so that DProc can recover an object that will en-
capsulate the value of the mean (in this example) and this value can still be
recovered by the contract authority following a protocol that has time and com-
munication complexity proportional to the size of the average itself as opposed
to proportional to the size of the cryptodatabase. This puts forth the following
formalism:

Definition 1. A contract function fC : P∗ → R is said to support cryptodatabase
processing under the encryption scheme 〈gen, enc, dec〉 if the following condition
holds: there exist two functions Combine and Reveal so that for any n ∈ IN and
any m1, . . . ,mn ∈ DC, if 〈pk, sk〉 ← gen(1n), ci ← enc(pk,mi) for i = 1, . . . , n
and c← Combine(c1, . . . , cn), then we have Reveal(sk, c) = fC(m1, . . . ,mn).

Note that any function f supports cryptodatabase processing trivially under
a public-key encryption scheme 〈gen, enc, dec〉 by setting Combine to be the iden-
tity function and Reveal to simply decrypt each ciphertext individually and then
apply the function fC to the decrypted vector. Given this observation we will
be interested in the following problem: given a function fC find suitable encryp-
tion schemes under which the function fC supports cryptodatabase processing
so that (1) the size of the output of Combine is minimal (this will minimize the
communication complexity between the data-collector and the data-producer),
and (2) the time-complexity of Reveal is minimal (this will minimize the time
complexity of the CAserver entities’ side of the protocol).

The Data Market. The framework of PIP allows data-collectors to freely trade
the encapsulated private data in a data-market. In this section we comment how
it is possible to facilitate such data-market operation within our framework.

A challenge of treating (encapsulated) private data as a commodity is the
fact that a data-collector is capable of faking data collection from users and
accumulate a number of private data fields without actually collecting them
from users. Subsequently through free trade he may exchange such corrupt data
with actual data in the data-market.

One can tackle this problem as follows: prior to submitting the data the
user will receive the direction from the contract specifications to submit the
encapsulated data to a data-transfer transaction “watchdog” DTWatch that will
validate the transaction. We stress that no data will be revealed to DTWatch; the
communication to DTWatch will serve only as a leveraging measure to discourage
fake data-creation by the data-producer. DTWatch will receive the encapsulated
data and sign them. The data-collector will accept signed encapsulated data.



Each data-collector DCol records the encapsulated data and they become its
property but now the private data cannot be modified, get corrupted or man-
ufactured by the data-collector without going through DTWatch. Subsequently,
DCol can enter the data into the data-market virtual network where the encap-
sulated data become a commodity that can be traded. A special entity called
the data market watchdog DMWatch will check the validity of the signatures of
the DTWatch and will only allow properly signed data to enter the market.

We point at this stage that the DTWatch and DMWatch may communicate
in special occasions, and in addition to the above, DMWatch will verify any cre-
dentials attached to the encapsulated data as they were attached by the data-
transfer-watchdog entity and it may request the revealing of relevant communica-
tion transcripts by DMWatch for comparison with the communication transcripts
requested from DCol. The data-market-watchdog may also check the identity of
DCol against a blacklisting database where previous offenders that have “poi-
soned” the data-market with illegal data will be entered. In this way DMWatch
will protect the encapsulated data as a commodity by isolating misbehaving
DCol’s (we note nevertheless that always a determined DCol can subvert any
data collection system by launching a “distributed data submission” attack if it
has the necessary resources).

2.1 Homomorphic Encryption Schemes

We will employ two homomorphic encryption schemes that we describe briefly
here. The first one is the Paillier encryption scheme [46]; the key generation
process selects a large composite n = pq, where p, q are two prime numbers
that are assumed to be hard to be recovered from n; additionally the Decisional
Composite Residuosity assumption holds over Z∗n2 ; in particular it is hard to
distinguish between the uniform distribution over the whole group and the uni-
form distribution over the set of n-th residues in Z∗n2 . In this scheme, to encrypt
a plaintext m ∈ Zn, the sender selects r ∈ Z∗n and transmits the cipherext
(1 + n)mrn mod n2. In order to recover a plaintext, the receiver first applies
the Carmichael value λ that corresponds to n on the ciphertext; this results to
the value (1 + n)λm mod n2; over the subgroup 〈(1 + n)〉 in Z∗n2 the discrete-
logarithm problem is easy and as a result the value m is computable. The Paillier
encryption is homomorphic with respect to addition over the plaintext group:
indeed, given c1, c2 and two ciphertexts encrypting m1,m2 it is easy to verify
that c1 � c2 = c1 · c2 = (1 + n)m1+m2(r∗)n mod n2. The scheme can be turned
into a threshold encryption scheme as shown in [16].

The second homomorphic encryption, we will employ is due to Boneh et al.
[8]. The key-generation process chooses a bilinear groupG that has orderN = pq;
the public-key of the system is set to 〈G,N, g, gp〉, where g is a generator of G,
and gp is an element of order p over G. The secret-key is set to the factorization
of n. To encrypt a message m ∈ {0, 1, . . . , t}, the value gmgrp is computed where
r is selected at random from ZN . To decrypt a message, the receiver raises the
ciphertext c to p something that cancels the random component of the ciphertext
and reveals the value gmp. Subsequently, the value m can be computed by solving



the discrete-logarithm over 〈g〉; given that it is not easy to compute discrete-
logarithms over that group, the plaintext spaces would have to restricted to loga-
rithmic length. The scheme is homomorphic with respect to addition in the same
way that the Paillier encryption, introduced above, is homomorphic. Moreover,
the scheme is homomorphic with respect to multiplication for a single operation.
This is as follows: using the fact that there exists a bilinear map over G, we have
that for two ciphertexts, c1, c2, that contain the plaintexts m1,m2, it is possible
to compute e(c1, c2) = e(gm1gr1p , g

m2gr2p ) = e(g, g)m1m2+q(r1m2+r2m1)+q
2r1r2 . It

follows that processing e(c1, c2)e(gp, gp)s would result to a ciphertext encrypting
m1 ·m2 (note that the multiplication is thought to be over the integers as long as
the domain from which the plaintexts are drawn is selected to be suitably small).
The cryptosystem can be ported to the threshold setting using the techniques
of [21].

3 Constructing PIP systems for Statistical Data

In this section we will present two instantiations of the general framework of pri-
vacy preserving information processing motivated by statistics extraction from
private numerical data.

3.1 PIP for computing the moments of a sample distribution

In this section we focus on numerical data and in particular how it is possi-
ble to extract statistics from the data that the DProd users contribute to draw
conclusions about the population probability distribution; we will focus on a uni-
variate analysis and in particular in extracting the central moments of the sta-
tistical distribution. Suppose that x1, . . . , xN are the data that are contributed
by the data producers. The r-th central moment of the sample statistical distri-
bution is defined as 1

N

∑N
i=1(xi−µ)r where µ is the first moment that coincides

with the sample mean. Computing central moments allows one to calculate k-
statistics that are the unique symmetric unbiased estimators of the cumulants
of the sample statistical distribution. Sample central moments can be computed
easily based on power sums Pr =

∑N
i=1 x

r
i so in this section we will focus on the

computation of such power sums.
We will consider the following description for the contract C of this section:

“The data requested entered in this field are numerical and describe the
quantity X ∈ D; they will be used for purpose Y and only statistical
information of samples of N elements size will be revealed. The statisti-
cal information collected will allow the approximation of the statistical
distribution up to degree S ∈ IN.”

As an example, consider that X=“salary”, Range = [10K . . . , 500K], Y is
“market research”, and N = 1000. The degree S provided in the description of
the contract will be the upper bound on the degree of the power sum that can



be extracted from the collected data (i.e., only the power sums P1, . . . , PS will
be computed by the data processor). This in turn bounds the information about
the statistical distribution that is provided by the PIP system (e.g., if S = 2
only the mean and the standard deviation will be possible to be extracted).
Based on the above we will be interested in the following problem: how is it
possible to extract r-power sums for r ∈ {1, . . . , S} where S ∈ IN is a parameter
from the collected data. The system presented in this section will be based
on homomorphic encryption and in particular on Paillier encryption [46] but
a specialized encoding will be required. Below let 〈gen, enc, dec〉 be the Paillier
encryption. Note that the homomorphic encryption of the operation suggests
that there exist an operation � such that enc(m)� enc(m′) = enc(m+m′). The
characteristics of our solution are as follows:
• During the data collection stage the data value v ∈ D ⊆ Z will be en-
crypted as an integer using the enc(·) Paillier encryption function as follows:
c = 〈c[1], . . . , c[S]〉 = 〈enc(v), enc(v2), . . . , enc(vS)〉.
• During the data-processing stage DProc will use the following Combine function
to process the cryptodatabase c1, . . . , cN . Recall that each ci is in fact a vector
of the form 〈ci[1], . . . , ci[S]〉. Using the homomorphic property of the encryption
function, DProc calculates the power sum vector ciphertext

〈c1, . . . , cS〉 = 〈�Ni=1ci[1], . . . ,�Ni=1ci[S]〉

Then, it submits the power vector ciphertext for processing and the CAserver
entities will apply its secret-key to recover the power sums

∑N
i=1 v

r
i for r ∈

{1, . . . , S}. Note that this requires that the capacity of the Paillier encryption
is at least N · (max D)S i.e., the capacity of the encryption summation register
is of logN + S · len bits where len = log2 max D the size required to encode the
maximum element of D as an integer.
Efficiency. We observe that the cryptodatabase processing that is performed
using Combine reduces the size of the cryptodatabase from N · S ciphertexts to
a vector of S ciphertexts, where each one is of length at least logN + S · len
bits. This makes the communication complexity of the data processing stage
only polylog dependent to N (it is only S logN + S2 · len) and thus very close
to the optimal communication that is the output length of the Reveal function
and equals S · len bits. Note that S is only a small constant parameter (e.g., it
can be as small as S = 2 if one wishes to extract only the mean and the standard
deviation of the sample).
Security. Since we use a specialized encoding for the numerical data ( a vector
of S ciphertexts each one containing consecutive powers of the data input) and
it holds that the recovery of the power sums is dependent on conforming to
this encoding, the computation relies on the fact that data producers DProd
are following the encoding specifications. This can be ensured by requiring that
DProd proves in zero-knowledge for a ciphertext vector 〈c[1], . . . , c[S]〉 that the
plaintext of c[i] equals the plaintext of c[i−1] times the plaintext of c[1]. This can
be done efficiently by employing the proofs of knowledge of [23]. Ensuring that
the data collector has submitted the homomorphic aggregation of N ciphertexts



can be done by repeating the preprocessing computation at a later stage; for this
purpose the aggregated ciphertext submitted to the CAserver entities and the
actual crypto database can be stored for post-computation auditing purposes;
misbehaving DProc will be caught by comparing the transmitted ciphertext to
CAserver entities and the extracted ciphertexts from the data market. Note
that data market data are assumed to be assigned in a way that a DProc cannot
forge (unless it goes to substantial lengths in introducing a distributed set of
data producers, cf. the data market discussion in section 2).

Based on the above we have the following (informally stated):

Theorem 1. The PIP system presented above correctly computes power sums
of the inputs of degree up to S and assuming the security of threshold Paillier
encryption it preserves the privacy of the data providers.

3.2 PIP of the Pearson correlation coefficient of two samples

In this section we show how it is possible to extend the PIP system of the previous
section to bivariate correlational statistics focusing on the Pearson correlation
coefficient which is used to estimate the the correlation of two random variables
x, y. Recall that the correlation coefficient for a sample 〈x1, . . . , xN 〉 equals

rxy =
N

∑
xiyi −

∑
xi

∑
yi√

N
∑
x2
i − (

∑
xi)2

√
N

∑
y2
i − (

∑
yi)2

Evidently, it can be easily computed if one has the power sums P1, P2 for the
variables x and y as well as the sum of products

∑
xiyi. In order to achieve this

type of contract-based computation in this section we employ another type of
additive homomorphic encryption that enables the computation of one multipli-
cation as well as unlimited additions that was proposed in [8]. In the encryption
scheme of [8] (we refer to it also as BGN encryption) given c = enc(m) and
c′ = enc(m′) one can compute a ciphertext of the form c � c′ = enc(m + m)
but also by changing the representation of ciphertexts to an equivalent one it is
possible to compute a ciphertext of the form enc(m)⊗enc(m) = enc(m ·m′). The
disadvantage of the scheme in general is that requires O(

√
#D) steps for decryp-

tion where m ∈ D using standard time-memory trade-off techniques; while this
makes the decryption less efficient than that of Paillier’s encryption that was
employed in the previous section, the overhead is not substantial for our appli-
cation domain. The capacity that we will require from the summation register
of the encryption would be logN + 2 · len where len is the size of the maximum
element in the integer range the DProd select values.

The contract description that we will employ in this section will be of the
following form:

“The data requested entered in these two fields are numerical and de-
scribe the quantities X ∈ D1, Y ∈ D2; they will be used for purpose Z
and only statistical information of samples of N elements size will be re-
vealed as well as their correlation coefficient. The statistical information



collected will allow the approximation of the statistical distribution up
to degree 2.”

The construction will be built on top of that of section 3.1 with the following
modifications:
• During the data collection stage the x = data ∈ D1 and y = data ∈ D2 will
be encrypted as integers using the enc(·) encryption function of [8] as follows :
c = 〈c[x, 1], c[x, 2], c[y, 1], c[y, 2]〉 = 〈enc(x), enc(x2), enc(y), enc(y2)〉.
• During the data-processing stage DProc will use the following Combine func-
tion to process the cryptodatabase c1, . . . , cN . Each ci is in fact a vector of the
form 〈ci[x, 1], ci[x, 2], ci[y, 1], ci[y, 2]〉. Using the homomorphic property of the
encryption function, DProc calculates the four power sum ciphertexts c[x, 1] =
�Ni=1ci[x, 1], c[x, 2] = �Ni=1ci[x, 2], c[y, 1] = �Ni=1ci[y, 1], c[y, 2] = �Ni=1ci[y, 2].
Finally using the multiplicative homomorphic property DProc computes ci,j =
ci[x, 1] ⊗ cj [y, 1] and again by employing the additive homomorphic property
DProc computes cx,y = �Ni,j=1ci,j . DProc will submit to CAserver entities the
five ciphertexts c[x, 1], c[x, 2], c[y, 1], c[y, 2], cx,y.

Using its secret-key CAserver entities will recover (1) the sums, (2) the
power sums, (3) sum of products in time

√
#D1 +

√
#D2,

√
#D1 +

√
#D2 and√

#D1 ·#D2 steps respectively.
Efficiency. The length of the communication required for the computation of
the correlation coefficient is equal to four ciphertexts that each one is of size
logN + 2 · len which is asymptotically optimal given the output size of the
Reveal function.
Security. As in the case of section 3.1 the DProc needs to perform a zero-
knowledge proof to ensure that in the four ciphertexts 〈c[x, 1], c[x, 2], c[y, 1], c[y, 2]〉
that are submitted, the plaintext of c[x, 2] is the square of the plaintext of c[x, 1]
and similarly for c[y, 2] and c[y, 1]. This can be done efficiently using the tech-
niques of [23].

Based on the above we have the following (informally stated):

Theorem 2. The PIP system presented above correctly computes the Pearson
correlation coefficient of the inputs and assuming the security of threshold BGN
encryption it preserves the privacy of the data providers.
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