Skip to main content

Learning a Self-organizing Map Model on a Riemannian Manifold

  • Conference paper
Mathematics of Surfaces XIII (Mathematics of Surfaces 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5654))

Included in the following conference series:

Abstract

We generalize the classic self-organizing map (SOM) in flat Euclidean space (linear manifold) onto a Riemannian manifold. Both sequential and batch learning algorithms for the generalized SOM are presented. Compared with the classical SOM, the most novel feature of the generalized SOM is that it can learn the intrinsic topological neighborhood structure of the underlying Riemannian manifold that fits to the input data. We here compared the performance of the generalized SOM and the classical SOM using real 3-Dimensional facial surface normals data. Experimental results show that the generalized SOM outperforms the classical SOM when the data lie on a curved Riemannian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Self-Organization and Associative Memory, 2nd edn. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  2. Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self Organization of a Massive Document Collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)

    Article  Google Scholar 

  3. Mavroudi, S., Papadimitriou, S., Bezerianos, A.: Gene Expression Data Analysis with a Dynamically Extended Self-organized Map That Exploits Class Information. Bioinformatics 18(11), 1446–1453 (2000)

    Article  Google Scholar 

  4. Joutsiniemi, S.L., Kaski, S., Larsen, T.A.: Self-organizing Map in Recognition of Topographic Patterns of EEG Spectra. Bioinformatics 42(11), 1062–1068 (1995)

    Google Scholar 

  5. Laaksonen, J., Koskela, M., Oja, E.: Class Distributions on SOM Surfaces for Feature Extraction and Object Retrieval. Neural Networks 17(8), 1121–1133 (2004)

    Article  Google Scholar 

  6. Barreto, G.A., Arajo, A.F.R.: Identification and Control of Dynamical Using the Self-organizing Map. IEEE Transactions on Neural Networks 15(5), 1244–1259 (2004)

    Article  Google Scholar 

  7. Wu, S.T., Chow, T.W.S.: PRSOM: A New Visualization Method by Hybridizing Multidimensional Scaling and Self-organizing Map. IEEE Transactions on Neural Networks 16(6), 1362–1380 (2005)

    Article  Google Scholar 

  8. Andras, P.: Kernel-Kohonen Networks. Int. J. Neural. Syst. 12(2), 117–135 (2002)

    Article  Google Scholar 

  9. Manuel, A.M., Alberto, M.: Extending the SOM algorithm to Non-Euclidean Distances via the Kernel Trick. In: 11th International Conference on Neural-Information-Processing, pp. 150–157. Springer Press, Calcutta (2004)

    Google Scholar 

  10. Ritter, H.: Self-organiring Maps on non-Euclidean Spaces. In: WSOM 1999, pp. 1321–1344. IEEE Press, Espoo (1999)

    Google Scholar 

  11. Shi, C.Q., Zhang, S.L., Shi, Z.Z.: Geodesic Distance based SOM for Image Clustering. In: International Conference on Sensing, Computing and Automation, pp. 2483–2488. Watam Press, Chongqing (2006)

    Google Scholar 

  12. Simila, T.: Self-organizing Map Learning Nonlinearly Embedded Manifolds. J. Information Visualization 4, 22–31 (2005)

    Article  Google Scholar 

  13. Pennec, X.: Probabilities and Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. In: IEEE Workshop on Nonlinear Signal and Image Processing, pp. 194–198. IEEE Press, Antalya (1999)

    Google Scholar 

  14. Karcher, H.: Riemannian Center of Mass and Mollifier Smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jost, J.: Riemannian Geometry and Geometric Analysis, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal Geodesic Analysis for The Study of Nonlinear Statistics of Shape. IEEE Transactions on Medical Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  17. Chang, K., Bowyer, K.W., Flynn, P.J.: Face Recognition using 2D and 3D Facial Data. In: ACM Workshop on Multimodal User Authentication, pp. 25–32. ACM Press, Santa Barbara (2003)

    Google Scholar 

  18. Smith, W.A.P., Hancock, E.R.: A New Framework for Grayscale and Colour Non-lambertian Shape-from-Shading. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 869–880. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Wu, J., Smith, W.A.P., Hancock, E.R.: Gender Classification using Shape from Shading. In: BMVC, UK, pp. 499–508 (2007)

    Google Scholar 

  20. Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET Evaluation Methodology for Face Recognition Algorithms. Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  21. Tan, X.Y., Chen, S.C., Zhou, Z.H., Zhang, F.Y.: Recognizing Partially Occluded, Expression Variant Faces from Single Training Image per Person with SOM and Soft kNN Ensemble. IEEE Transactions on Neural Networks 16(4), 875–886 (2005)

    Article  Google Scholar 

  22. Ruggeri, M.R., Darom, T., Saupe, D., Kiryati, N.: Approximating Geodesics on Point Set Surface. In: EG/IEEE Symposium on Point-Based Graphics, pp. 85–93. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  23. Stawiaski, J., Decencifre, E., Bidault, F.: Computing Approximate Geodesics and Minimal Surfaces using Watershed and Graph-cuts. In: 8th International Symposium on Mathematical Morphology, Brazil, pp. 349–360 (2007)

    Google Scholar 

  24. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast Exact and Approximate Geodesics on Meshes. ACM Transactions on Graphics 24(3), 553–560 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, D.J., Hancock, E.R., Smith, W.A.P. (2009). Learning a Self-organizing Map Model on a Riemannian Manifold. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03596-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03595-1

  • Online ISBN: 978-3-642-03596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics