Skip to main content

Parameter Estimation for Marked Point Processes. Application to Object Extraction from Remote Sensing Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

This communication addresses the problem of estimating the parameters of a family of marked point processes. These processes are of interest in extraction of object networks from remote sensing images. They are defined from a combination of several energy terms. First, a data energy term controls the localization of the objects with respect to the data. Second, prior information is given by intern energy terms corresponding to geometrical constraints on the configuration to be detected. An estimation procedure of the weight associated with these energies is studied. The application to unsupervised detection of objects is finally discussed.

This work was partially funded by CNES and by associated team ODESSA, and was conducted during a postdoc fellowship of the first author at INRIA Sophia Antipolis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Descombes, X., Kruggel, F., Lacoste, C., Ortner, M., Perrin, G., Zerubia, J.: Marked point process in image analysis: from context to geometry. In: Int. Conference on Spatial Point Process Modelling and its Application (SPPA), Castellon, Spain (2004)

    Google Scholar 

  2. Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Analysis and Machine Intelligence 27(10), 1568–1579 (2005)

    Article  MATH  Google Scholar 

  3. Ortner, M., Descombes, X., Zerubia, J.: A marked point process of rectangles and segments for automatic analysis of digital elevation models. IEEE Trans. Pattern Analysis and Machine Intelligence 30(1), 105–119 (2008)

    Article  Google Scholar 

  4. Perrin, G., Descombes, X., Zerubia, J.: 2d and 3d vegetation resource parameters assessment using marked point processes. In: Proc. International Conference on Pattern Recognition (ICPR), Hong-Kong (August 2006)

    Google Scholar 

  5. Descamps, S., Descombes, X., Béchet, A., Zerubia, J.: Automatic flamingo detection using a multiple birth and death process. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), pp. 304–306 (2008)

    Google Scholar 

  6. Geyer, C.: On the convergence of Monte Carlo maximum likelihood calculations. Journal of the Royal Statistical Society, Series B 56, 261–274 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Geyer, C.: Likelihood inference for spatial point process. In: Stochastic Geometry - Likelihood and Computation. Chapman and Hall/CRC (1999)

    Google Scholar 

  8. Descombes, X., van Lieshout, M., Stoica, R., Zerubia, J.: Parameter estimation by a Markov chain Monte Carlo technique for the Candy-model. In: Proc. of IEEE Workshop on Statistical Signal Processing, Singapour (August 2001)

    Google Scholar 

  9. Jensen, J., Møller, J.: Pseudolikelihood for exponential family models of spatial point processes. The Annals of Applied Probability 1(3), 445–461 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jensen, J., Kunsch, R.: On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes. Ann. Inst. Statist. Math. 46, 475–486 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Mase, S.: Consistency of the maximum pseudo-likelihood estimator of continuous state space Gibbsian processes. The Annals of Applied Probability 5(3), 603–612 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mateu, J., Montes, F.: Pseudo-likelihood inference for Gibbs processes with exponential families through generalized linear models. Statistical Inference for Stochastic Processes 4(2), 125–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baddeley, A., Turner, R.: Practical maximum pseudolikelihood for spatial point patterns (with discussion). Australian and New Zealand Journal of Statistics 42(3), 283–322 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Billiot, J.M., Coeurjolly, J.F., Drouilhet, R.: Maximum pseudo-likelihood estimator for nearest-neighbours Gibbs point processes. Electronic Journal of Statistics 2, 234–264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Van Lieshout, M.N.M.: Markov Point Processes and Their Applications. Imperial College Press, London (2000)

    Book  MATH  Google Scholar 

  16. Perrin, G., Descombes, X., Zerubia, J.: A non-Bayesian model for tree crown extraction using marked point processes. Research Report 5846, INRIA, France (February 2006)

    Google Scholar 

  17. Welch, B.L.: The generalization of Student’s problem when several different population variances are involved. Biometrika 34, 28–35 (1947)

    MathSciNet  MATH  Google Scholar 

  18. Green, P.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perrin, G., Descombes, X., Zerubia, J.: Adaptive simulated annealing for energy minimization problem in a marked point process application. In: Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), St Augustine, Florida, USA (November 2005)

    Google Scholar 

  20. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Stat. Society. Series B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Celeux, G., Chauveau, D., Diebolt, J.: On stochastic versions of the EM algorithm. Research Report 2514, INRIA (March 1995)

    Google Scholar 

  22. Besag, J.: Some methods of statistical analysis for spatial data. Bulletin of the International Statistical Institute 47, 77–92 (1977)

    MathSciNet  Google Scholar 

  23. Besag, J., Milne, R., Zachary, S.: Point process limits of lattice processes. Journal of Applied Probability 19, 210–216 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Møller, J., Waagepetersen, R.: Statistical inference and simulation for spatial point processes. Chapman and Hall/CRC, Boca Raton (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatelain, F., Descombes, X., Zerubia, J. (2009). Parameter Estimation for Marked Point Processes. Application to Object Extraction from Remote Sensing Images. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics