Skip to main content

Geodesics in Shape Space via Variational Time Discretization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

A variational approach to defining geodesics in the space of implicitly described shapes is introduced in this paper. The proposed framework is based on the time discretization of a geodesic path as a sequence of pairwise matching problems, which is strictly invariant with respect to rigid body motions and ensures a 1-1 property of the induced flow in shape space. For decreasing time step size, the proposed model leads to the minimization of the actual geodesic length, where the Hessian of the pairwise matching energy reflects the chosen Riemannian metric on the shape space. Considering shapes as boundary contours, the proposed shape metric is identical to a physical dissipation in a viscous fluid model of optimal transportation. If the pairwise shape correspondence is replaced by the volume of the shape mismatch as a penalty functional, for decreasing time step size one obtains an additional optical flow term controlling the transport of the shape by the underlying motion field. The implementation of the proposed approach is based on a level set representation of shapes, which allows topological transitions along the geodesic path. For the spatial discretization a finite element approximation is employed both for the pairwise deformations and for the level set representation. The numerical relaxation of the energy is performed via an efficient multi–scale procedure in space and time. Examples for 2D and 3D shapes underline the effectiveness and robustness of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhu, L., Yang, Y., Haker, S., Allen, T.: An image morphing technique based on optimal mass preserving mapping. IEEE T. Image Process 16(6), 1481–1495 (2007)

    Article  MathSciNet  Google Scholar 

  2. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision (to appear, 2009)

    Google Scholar 

  3. Miller, M.I., Younes, L.: Group actions, homeomorphisms and matching: a general framework. International Journal of Computer Vision 41(1-2), 61–84 (2001)

    Article  MATH  Google Scholar 

  4. Schmidt, F.R., Clausen, M., Cremers, D.: Shape matching by variational computation of geodesics on a manifold. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 142–151. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comp. Phys. 127, 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. 3, 253–271 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G.: Three-dimensional elasticity. Elsevier Science Publisers B. V., Amsterdam (1988)

    MATH  Google Scholar 

  8. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5, 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Monographs in Computer Science. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  11. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics 5(1), 1–58 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, I., Pons, J., Tong, Y., Kuo, C., Desbrun, M.: Generalized surface flows for mesh processing. In: Eurographics Symposium on Geometry Processing (2007)

    Google Scholar 

  13. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miller, M.I., Younes, L.: Group actions, homeomorphisms and matching: a general framework. Technical report, John Hopkins University, Maryland (1999)

    Google Scholar 

  16. Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE T. Pattern Anal. 26(3), 372–383 (2004)

    Article  Google Scholar 

  17. Dupuis, D., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics 56, 587–600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, M., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4, 375–405 (2002)

    Article  Google Scholar 

  19. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Sobolev active contours. International Journal of Computer Vision 73(3), 345–366 (2007)

    Article  MATH  Google Scholar 

  20. Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Transactions on Graphics 26(64), 1–8 (2007)

    Google Scholar 

  21. Droske, M., Rumpf, M.: Multi scale joint segmentation and registration of image morphology. IEEE Trans. Pattern Anal. 29(12), 2181–2194 (2007)

    Article  Google Scholar 

  22. Ball, J.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh 88A, 315–328 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Charpiat, G., Maurel, P., Pons, J.P., Keriven, R., Faugeras, O.: Generalized gradients: Priors on minimization flows. Int. J. Comput. Vision 73(3), 325–344 (2007)

    Article  Google Scholar 

  24. Kornprobst, P., Deriche, R., Aubert, G.: Image sequence analysis via partial differential equations. Journal of Mathematical Imaging and Vision 11, 5–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Black, M.J., Anandan, P.: A framework for the robust estimation of optical flow. In: Fourth International Conference on Computer Vision, ICCV 1993, pp. 231–236 (1993)

    Google Scholar 

  26. Kapur, T., Yezzi, L., Zöllei, L.: A variational framework for joint segmentation and registration. In: IEEE CVPR - MMBIA, pp. 44–51 (2001)

    Google Scholar 

  27. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  28. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  29. Bornemann, F., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Num. Math. 75(2), 135–152 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wirth, B., Bar, L., Rumpf, M., Sapiro, G. (2009). Geodesics in Shape Space via Variational Time Discretization. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics