Skip to main content

Abstract

A random walk on a graph is a process that explores the graph in a random way: at each step the walk is at a vertex of the graph, and at each step it moves to a uniformly selected neighbor of this vertex. Random walks are extremely useful in computer science and in other fields. A very natural problem that was recently raised by Alon, Avin, Koucky, Kozma, Lotker, and Tuttle (though it was implicit in several previous papers) is to analyze the behavior of k independent walks in comparison with the behavior of a single walk. In particular, Alon et al. showed that in various settings (e.g., for expander graphs), k random walks cover the graph (i.e., visit all its nodes), Ω(k)-times faster (in expectation) than a single walk. In other words, in such cases k random walks efficiently “parallelize” a single random walk. Alon et al. also demonstrated that, depending on the specific setting, this “speedup” can vary from logarithmic to exponential in k.

In this paper we initiate a more systematic study of multiple random walks. We give lower and upper bounds both on the cover time and on the hitting time (the time it takes to hit one specific node) of multiple random walks. Our study revolves over three alternatives for the starting vertices of the random walks: the worst starting vertices (those who maximize the hitting/cover time), the best starting vertices, and starting vertices selected from the stationary distribution. Among our results, we show that the speedup when starting the walks at the worst vertices cannot be too large - the hitting time cannot improve by more than an O(k) factor and the cover time cannot improve by more than min {k logn,k 2} (where n is the number of vertices). These results should be contrasted with the fact that there was no previously known upper-bound on the speedup and that the speedup can even be exponential in k for random starting vertices. Some of these results were independently obtained by Elsässer and Sauerwald (ICALP 2009). We further show that for k that is not too large (as a function of various parameters of the graph), the speedup in cover time is O(k) even for walks that start from the best vertices (those that minimize the cover time). As a rather surprising corollary of our theorems, we obtain a new bound which relates the cover time C and the mixing time mix of a graph. Specifically, we show that \(C=O(m \sqrt{\mathrm{mix}}\log ^2n)\) (where m is the number of edges).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many Random Walks Are Faster Than One. ArXiv e-prints 705 (May 2007), http://arxiv.org/abs/0705.0467

  2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs (1999), http://www.stat.berkeley.edu/aldous/RWG/book.html

  3. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: 20th Annual Symposium on Foundations of Computer Science (FOCS), San Juan, Puerto Rico, October 29-31, 1979, pp. 218–223. IEEE Computer Society Press, Los Alamitos (1979)

    Chapter  Google Scholar 

  4. Ajtai, M., Komlós, J., Szemerédi, E.: Deterministic simulation in LOGSPACE. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing (STOC), New York City, May 25-27, 1987, pp. 132–140 (1987)

    Google Scholar 

  5. Barnes, G., Feige, U.: Short random walks on graphs. In: STOC, pp. 728–737 (1993)

    Google Scholar 

  6. Broder, A.Z., Karlin, A.R.: Bounds on the cover time. Symposium on Foundations of Computer Science, 479–487 (1988)

    Google Scholar 

  7. Broder, A.Z., Karlin, A.R., Raghavan, P., Upfal, E.: Trading space for time in undirected s-t connectivity. In: STOC, pp. 543–549 (1989)

    Google Scholar 

  8. Frieze, A., Cooper, C., Radzik, T.: Multiple random walks in random regular graphs. In: ICALP (2009)

    Google Scholar 

  9. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R.: The electrical resistance of a graph captures its commute and cover times. In: STOC 1989: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pp. 574–586. ACM, New York (1989)

    Chapter  Google Scholar 

  10. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random walks. In: ICALP (2009)

    Google Scholar 

  11. Feige, U.: A spectrum of time-space trade-offs for undirected s-t connectivity. J. Comput. Syst. Sci. 54(2), 305–316 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halperin, S., Zwick, U.: An optimal randomised logarithmic time connectivity algorithm for the erew pram. J. Comput. Syst. Sci. 53(3), 395–416 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karger, D.R., Nisan, N., Parnas, M.: Fast connected components algorithms for the EREW PRAM. SIAM J. Comput. 28(3), 1021–1034 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty 2, 353–398 (1996)

    Google Scholar 

  15. Levin, D.A., Wilmer, E., Peres, Y.: Markov Chains and Mixing Times. Oxford University Press, Oxford

    Google Scholar 

  16. Matthews, P.: Covering problems for markov chains. The Annals of Probability 16(3), 1215–1228 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sinclair, A.: Improved bounds for mixing rates of markov chains and multicommodity flow. Combinatorics, Probability and Computing 1, 351–370 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Efremenko, K., Reingold, O. (2009). How Well Do Random Walks Parallelize?. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics