
The Glauber dynamics for colourings of bounded degree trees

B. Lucier∗ M. Molloy† Y. Peres‡

April 12, 2009

Abstract

We study the Glauber dynamics Markov chain for k-colourings of trees with maximum degree ∆.
For k ≥ 3, we show that the mixing time on every tree is at most nO(1+∆/(k log ∆)). This bound is
tight up to the constant factor in the exponent, as evidenced by the complete tree. Our proof uses a
weighted canonical paths analysis and a variation of the block dynamics in which we exploit the differing
relaxation times of blocks.

∗Dept of Computer Science, University of Toronto, blucier@cs.toronto.edu.
†Dept of Computer Science, University of Toronto, molloy@cs.toronto.edu.
‡Microsoft Research, peres@microsoft.com.

0

1 Introduction

The Glauber dynamics is a Markov chain over configurations of spin systems on graphs, of which k-
colourings is a special case. Such chains have generated a great deal of interest for a variety of reasons.
For one thing, counting k-colourings is a fundamental #P-hard problem, and Markov chains that sample
colourings can be used to obtain an FPRAS to approximately count them. For another, k-colourings
are equivalent to the antiferromagnetic Potts model from statistical physics, and there is a large body
of research into Markov chains for this and similar models.

The Glauber dynamics has received a very large part of this interest (see eg. [12]). It is particularly
appealing because it is a natural and simple algorithm and it underlies more substantial procedures
such as block dynamics and systematic scan (see [12, 5]). It is also commonly used in practice, eg. in
simulations of physical systems. Furthermore, it is very closely related to other important areas such
as infinite-volume Gibbs distributions[2, 10, 14]. It is generally conjectured that the Glauber dynamics
mixes in polynomial time on every graph of maximum degree ∆ so long as k ≥ ∆ + 2. Vigoda[19] has
shown polynomial mixing time for k ≥ 11

6 ∆.
The focus of this paper will be the performance of the Glauber dynamics on trees. Of course, the

task of sampling a k-colouring of a tree is not particularly difficult, and there are much easier ways to do
so. Nevertheless, people have studied the the Glauber dynamics on trees as a means of understanding
how the chain performs on more general graphs, and because the performance on trees is particularly
relevant to related areas such as Gibbs distributions. Berger et al. [1] showed that the Glauber dynamics
mixes in polynomial time on complete trees of maximum degree ∆, and Martinelli et al. [14] showed
that this polynomial is O(n log n) so long as k ≥ ∆ + 2.

Hayes, Vera and Vigoda [7] showed that it mixes in polytime for all planar graphs if k ≥ C∆/ log ∆
for a particular constant C. They remarked that this was best possible, up to the value of C: The chain
takes superpolynomial time on every tree when k = o(∆/ log n), and hence trees with ∆ ≥ nǫ provide
lower-bound examples for any constant ǫ. They asked whether such examples exist for smaller values of
∆; in particular, is the mixing time superpolynomial for the complete (∆ − 1)-ary tree with k = 3 and
∆ = O(1)?

Proposition 2.5 of Berger et al. [1] shows that the mixing time is in fact polynomial for every
constant k ≥ 3 and ∆ ≥ 2 (in fact, it shows this for general particle systems on trees for which the
Glauber dynamics is ergodic, of which proper colouring is a special case). Independently, Goldberg,
Jerrum and Karpinski [6] and Lucier and Molloy [13] showed a lower bound of nΩ(1+∆/k log ∆) on the
mixing time for the case of the complete tree. Goldberg, Jerrum and Karpinski also showed an upper
bound of nO(1+∆/ log ∆) for complete trees and constant ∆.

Our main result is an upper bound for every tree. Our upper bound is asymptotically tight, in that
it matches the lower bound for complete trees up to a constant factor in the degree.

Theorem 1.1. For k ≥ 3, the Glauber dynamics on k-colourings of any tree with maximum degree ∆
mixes in time at most nO(1+∆/k log ∆).

Thus, for every k ≥ 3 and ∆ = O(1), we have polytime mixing on every tree. But if ∆ grows with
n, no matter how slowly, then on some trees (eg. complete trees) we require the Ω(∆/ log ∆) colours for
polytime mixing that Hayes, Vera and Vigoda noted were required at ∆ = nǫ.

Let us give some intuition into the difficulties that occur when k = o(∆/ log ∆). A bound of k ≥ ∆+2
is natural since it ensures that no vertex will ever be frozen; i.e. there will always be at least one colour
that it can switch to. (It is also a natural bound because it corresponds to the threshold for unique
infinite-volume Gibbs distributions[10].) Much of the difficulty in showing rapid mixing for smaller
values of k is in dealing with the frozen variables. From this perspective, k ≥ C∆/ log ∆ for C > 1
becomes another natural threshold: if the neighbours of a vertex are assigned independently random
colours (e.g. in the steady state distribution) then we expect that the vertex will not be frozen. But if
k < (1− ǫ)∆/ log ∆, then even in the steady state distribution the vast majority of the degree ∆ vertices
on a tree will be frozen. This creates most of our difficulties.

If the children of a vertex u change colours enough times, then eventually u will become unfrozen
and change colours. Roughly speaking, this allows vertices to unfreeze, level by level, much like in the
level dynamics of [7]. Of course, this is a slow process: the number of times that the children of u have
to change before u is unfrozen is (roughly) exponential in ∆/k. However, this value is manageable for

1

∆ = O(1). It takes a long time for this process to reach the top level, but the running time works
out to be a high degree polynomial rather than superpolynomial. For balanced trees, it is very helpful
that there are only O(log n) levels. For taller trees, this proof doesn’t work and we have to take a more
complicated approach.

The proofs of our main theorems make use of a variation of the well-known block dynamics which
takes account of differing mixing times amongst the blocks. To the best of our knowledge, this is the
first time that such a variation has been used.

In order to apply the block dynamics, we need to analyze the mixing time of the Glauber dynamics
on subtrees which have colours on their external boundaries fixed. This is equivalent to fixing the colours
on some leaves of a tree. Markov chains on trees with the colours of leaves fixed are well-studied. In the
case where every leaf is fixed, Martinelli, Sinclair and Weitz [14] proved rapid mixing for k ≥ ∆ + 2; at
k ≤ ∆ + 1 the chain might not be ergodic. In our setting, k may be much smaller and so we have to
bound the number of fixed leaves. Our proof of Theorem 1.1 extends to show:

Theorem 1.2. For any k ≥ 4, the Glauber dynamics on k-colourings of any tree with maximum degree
∆ and with the colours of any b ≤ k − 2 leaves fixed mixes in time nO(1+b+∆/k log ∆).

We cover preliminary material in Section 2, then present the weighted block dynamics in Section 3.
We prove Theorem 1.1 in Section 4. in Appendix A we sketch a proof of Theorem 1.2.

Remark 1.3. Our arguments can be extended to prove analogous upper bounds for a wide range of
other instances of the Glauber dynamics, including the Ising model. Details will appear in a full version
of the paper.

2 Preliminaries

2.1 Graph Colourings
Let G = (V,E) be a finite graph, and let A = {0, 1, . . . , k − 1} be a set of k colours. A proper colouring
of G is an assignment of colours to vertices such that no two vertices connected by an edge are assigned
the same colour. Define Ω ⊂ AV to be the set of proper colourings of G. Given σ ∈ Ω and x ∈ V , we
write σ(x) to mean the colour of vertex x in σ. Given S ⊆ V , we write σ(S) to refer to the assignment
of colours to S in σ; that is, σ(S) is σ restricted to S.

Given some S ⊆ V , Ωσ
S is the set of proper colourings of G that are fixed to σ at all vertices not in S.

We can think of Ωσ
S as being equivalent to the set of proper colourings of S with boundary configuration

σ. However, technically speaking, an element of Ωσ
S will be viewed as a colouring of the entire graph G.

2.2 Glauber dynamics
The Glauber dynamics for k-colourings of G is a Markov process over the space Ω of proper colourings.
We make use of the continuous-time Metropolis version of the Glauber dynamics. (Standard methods,
eg. [3, 17], show that our theorems also hold for the heat-bath version.) Informally, the behaviour of
this process is as follows: each vertex has an associated (rate 1) poisson clock. When the clock for vertex
v rings, a colour a is chosen uniformly from A. The colour of v is set to a if a does not appear on any
neighbour of v, otherwise the colouring remains unchanged.

More formally, recall that a continuous-time Markov process is defined by generator L. We can
think of L as a |Ω| × |Ω| matrix, whose non-diagonal entries represent the jump probabilities between
colourings (and diagonal entries are such that all rows sum to 0). For σ 6= η, we will write K[σ → η] to
denote the (σ, η) entry in this matrix. Under this framework, the jump probabilities for the Metropolis
version of the Glauber dynamics are given by

K[σ → η] =

{

1
k if σ, η differ on exactly one vertex

0 otherwise

Note that this process is symmetric and, for k ≥ 3, ergodic on all trees (see eg. [1]).
In many applications we are interested in the discrete analog of the Glauber dynamics. This Markov

chain is given by transition matrix P = I + 1
nL. We can therefore think of K[σ → η] as being the

probability of moving from colouring σ to colouring η in the discrete Markov chain, scaled by a factor

2

of n. The mixing time for the discrete chain is precisely n times the mixing time for the corresponding
continuous process (see eg. [1]). Therefore the bounds on mixing time given in this paper apply to the
discrete setting as well as the continuous setting.

We will additionally be interested in a variant of the Glauber dynamics, L2, that can also recolour
pairs of adjacent vertices. That is, on each step of L2, a connected subgraph S ⊆ T of size at most
2 is chosen uniformly at random. If the initial configuration is η, then the subgraph S is recoloured
according to the uniform distribution on Ωη

S .

2.3 Mixing Time
Given probability distributions π and µ over space Ω, the total variation distance between π and µ is
defined as

||µ − π||TV =
1

2

∑

x∈Ω

|µ(x) − π(x)|.

Now suppose L is the generator for an ergodic markov process over Ω. Then there is a unique
measure π on Ω that satisfies πL = π. We say that π is the stationary distribution for L. For example,
if L is the generator for the Glauber dynamics, it is well-known that π is the uniform distribution over
Ω (since the Glauber dynamics is reversible).

Suppose L is ergodic with stationary distribution π. Given any σ ∈ Ω, denote by µt
σ the measure on

Ω given by running the process with generator L for time t starting from colouring σ. Then the mixing
time of the process, M(L), is defined as

M(L) = min

{

t : sup
σ∈Ω

||µt
σ − π||TV ≤

1

4

}

.

Now recall that L is a |Ω| × |Ω| matrix. We define the spectral gap of L, Gap(L), to be the second-
largest eigenvalue of −L. The relaxation time of L, denoted τ(L), is defined as the inverse of the spectral
gap. We will use the following standard bound (see eg. [17]):

M(L) ≤ τ(L) log(|Ω|) ≤ (n log k)τ(L) since |Ω| ≤ kn. (1)

2.4 Colourings of Trees
Consider a (not necessarily complete) tree G = (V,E) with maximum degree ∆. A subtree T of G is a
connected induced subgraph of G. We shall write ∂T to mean the set of vertices that forms the exterior
boundary of T in G, and ∂T for the interior boundary of T . That is, ∂T = {x ∈ V \T : N(x) ∩ T 6= ∅}
and ∂T = {x ∈ T : N(x) ∩ ∂T 6= ∅}. Note that for each x ∈ ∂T there is a unique y ∈ ∂T adjacent to x.

We will analyze the Glauber dynamics over a subtree T of G with boundary configuration σ. The
following simple claims analyze the ergodicity of the Glauber dynamics and 2-path Glauber dynamics
on trees; their proofs are deferred to the appendix.

Claim 2.1. Let T be a subtree of G and suppose k ≥ max{3, |∂T | + 2}. Then the Glauber dynamics is
ergodic over Ωσ

T for all σ ∈ Ω, with uniform stationary distribution.

Claim 2.2. Suppose k = 3 and let T be a subtree of G with |∂T | ≤ 2. Then the 2-path Glauber dynamics
is ergodic over Ωσ

T for all σ ∈ Ω, with uniform stationary distribution.

3 Weighted Block Dynamics

In this section we present a generalization of the well-known block dynamics for local spin systems. We
prove the result for the Glauber dynamics acting on a finite graph G = (V,E). Our statement of the
block dynamics actually applies to a more general setting, holding for all local update chains, including
the 2-path Glauber dynamics defined above. We avoid a statement in full generality for succinctness.
See [12] for a general treatment of local spin systems.

Suppose D = {V1, . . . , Vr} is a collection of subsets of V with V = ∪iVi. For each 1 ≤ i ≤ r and
σ ∈ Ω, let Lσ

Vi
be the generator for the Glauber dynamics (or 2-path Glauber dynamics) restricted to Vi

with boundary configuration σ. In other words, Lσ
Vi

is a variant of the Glauber dynamics on V in which
colours can change only for nodes in Vi. Recall that although we can think of Lσ

Vi
as being equivalent to

3

the behaviour of the Glauber dynamics acting on Vi with boundary configuration σ, the states of this
process are formally considered to be colourings of the entire graph.

Suppose that Lσ
Vi

is ergodic for each i and σ. Let πσ
Vi

denote the stationary distribution of Lσ
Vi

. For
each i, define gi := infσ∈Ω Gap(Lσ

Vi
), the minimum spectral gap for Lσ

Vi
over all choices of boundary

configurations. The block dynamics is a continuous-time Markov process with generator LD defined by

KD[σ → η] =

{

πσ
Vi

[η] if there exists i such that η ∈ Ωσ
Vi

0 otherwise.

Note that KD[σ → η] > 0 precisely when η and σ differ only within a single block Vi. Informally, we
think of the weighted block dynamics as having a poisson clock of rate 1 for each block Vi. When clock
i rings, the colouring of Vi is replaced randomly according to πσ

Vi
, where σ is the previous colouring.

Using τVi
= 1/gi to denote the maximum relaxation time of Lσ

Vi
over all choices of boundary config-

urations, Proposition 3.4 of Martinelli [12] is:

Proposition 3.1. τ(LV) ≤ τ(LD) × (max1≤i≤r τVi
) × supx∈V |{i : x ∈ Vi}| .

We are now ready to define the weighted block dynamics corresponding to D. This is a continuous-
time Markov process whose generator L∗

D is given by

K∗
D[σ → η] =

{

giπ
σ
Vi

[η] for all η,i such that η ∈ Ωσ
Vi

0 otherwise.

The weighted block dynamics is similar to the block dynamics, but the transition probabilities for block
Vi are scaled by a factor of gi. Informally, we can still think of the weighted block dynamics as having
poisson clocks that signal uniform recolouring of the blocks, but now the clock for block Vi will have
rate gi as opposed to 1. The main result for this section is the following variant of Proposition 3.1:

Proposition 3.2. τ(LV) ≤ τ(L∗
D) × supx∈V |{i : x ∈ Vi}|.

The proof of Proposition 3.2 is a simple modification to the proof of Proposition 3.1 [12]. The details
are given in the appendix. It is worth noting the difference between Proposition 3.2 and the original
block dynamics, Proposition 3.1. In the original version, the block dynamics Markov process can be
thought of as having a poisson clock of rate g for each block, where g is the minimum over all gi. In
other words, each block is chosen with the same rate, that being the worst case over all blocks. On
the other hand, in the modified version each block is chosen with the rate corresponding to that block.
The original version yields a simpler Markov process, but a looser bound on the gap of the original
process. In particular, applying the original block dynamics to our main result yields a mixing time of
nO(1+∆/k) for general trees, while the modified block dynamics given here tightens the mixing time to
nO(1+∆/k log ∆) (see Remark 4.8).

We next show that the weighted block dynamics is equivalent to a related process on a subgraph of
T . Informally, we wish to “collapse” each block to its set of internal boundary nodes. We will assign
colours to these boundary nodes according to the probability such a boundary configuration would occur
in the block dynamics. More formally, suppose D = {V1, . . . , Vm} is a set of blocks of vertices of T . Let
B = ∪m

i=1∂Vi. That is, B contains all internal boundary nodes for the blocks in D.
We now define a Markov process LB on ΩB , which simulates the behaviour of LD restricted to the

nodes in B. Given distribution π over ΩT , S ⊆ T , and η ∈ ΩS , we will write πT [η′ : η′(S) = η(S)]
to denote

∑

η′:η′(S)=η(S) πT [η′], the total probability that the configuration of S agrees with η. Then
process LB is defined by

KB [σ → η] =

{

giπ
σ
Vi

[η′ : η′(Vi ∩ B) = η(Vi ∩ B)] if σ and η differ only on Vi ∩ B

0 otherwise.
(2)

In other words, a configuration η is chosen according to the probability that η appears as the colours on
B after a step of the block dynamics on Vi. Our claim is that the relaxation times of L∗

D and LB are
the same. This Claim is similar to Claim 2.9 due to Berger et al [1]; the proof is in the Appendix.

Proposition 3.3. τ(L∗
D) = τ(LB).

4

4 An Upper Bound for General Trees

We now begin our proof of Theorem 1.1. Our approach is to decompose a tree into smaller subtrees,
apply the block dynamics to the resulting subgraphs, and then use induction to bound the mixing time
of the entire tree. Implicitly, this yields an iterative decomposition of the tree into smaller and smaller
subtrees. How should we decompose a tree? A first idea is to root the tree, then take each subtree
of the root as a block (with each subtree being rooted at a child of the root). A nice property of this
decomposition is that each subtree has at most one boundary node, which must be adjacent to its root.
In this case there will be h levels of recursion in the induction, where h is the height of tree T , and we
will obtain a bound of the form ch, where c = c(∆, k) is the mixing time for an instance of the block
dynamics. This method works for complete trees (and indeed was used in Berger et al. [1] in their
analysis of complete trees), since they have logarithmic height. However, the height of a general tree
could be much greater; in fact, it could be n. This leads to a super-polynomial bound on the mixing
time.

Instead, we will partition the tree in a manner that guarantees each block has size at most half the
size of the tree. This ensures that our recursion halts after logarithmically many steps, and yields a
polynomial mixing time. To obtain such a partition, we choose a central node x and conceptually split
the tree by removing x, obtaining at most ∆ subtrees plus {x}.

There are some difficulties with the above approach that must be overcome. First, since we no
longer split trees at their roots, a subtree T may have multiple boundary nodes, which complicates the
behaviour of the block dynamics. We will limit this complication by making our choice of x carefully,
so that subtree boundaries are of size at most 2. Second, for non-complete trees we might have blocks
of vastly differing sizes, which makes a tight analysis of the block dynamics more difficult. We therefore
use the weighted version of the block dynamics to perform our analysis.

In this section we describe our choice of blocks for the block dynamics. We then show that the upper
bound of Theorem 1.1 holds, given a bound on the relaxation time of the block dynamics. The details
of analyzing the block dynamics are encapsulated in Lemma 4.2, which is proved in Section 4.1.

Let T be any tree with maximum degree ∆. Suppose |T | = n and |∂T | ≤ 2 (that is, T has at most
two external boundary nodes). Let σ be a boundary configuration for T . If k ≥ 4, then let L denote
the Glauber dynamics on T with k colours and boundary configuration σ. If k = 3, then take L to be
the 2-path Glauber dynamics on T with boundary configuration σ. Either way, since |∂T | ≤ 2, Claims
2.1 and 2.2 imply that L is ergodic. Let τσ

T denote the relaxation time for L. We wish to consider the
maximum relaxation time over all boundary configurations and trees of a certain size. To this end, we
define

τT := max
σ∈Ω

τσ
T and τi(n) := max

T :|T |≤n
|∂T |≤i

τT .

We will prove Theorem 1.1 by showing the slightly stronger result that τ2(n) = nO(1+∆/k log ∆). What
we will show is that, for some fixed constant c and some 2 ≤ i ≤ ∆,

τ2(n) ≤ ci2
(

k − 1

k − 2

)i+1

τ2 (⌊n/i⌋) . (3)

First let us show how (3) implies Theorem 1.1 when k ≥ 4. By induction on n, (3) implies that
τ2(n) ≤ nd(1+∆/k log ∆) for some constant d (since we can assume k ≤ 2∆, as otherwise the result is
known [7]). Then, by (1), the mixing time of the Glauber dynamics satisfies M(L) ≤ (n log k)τG ≤
(n log k)τ2(n) = nO(1+∆/k log ∆) as required. For k = 3, (3) implies that the 2-path Glauber dynamics
mixes in time nO(1+∆/k log ∆). The result of Theorem 1.1 for k = 3 then follows from Lemma 4.1 below.

Lemma 4.1. Let L1 denote the Glauber dynamics with k = 3 colours, and L2 denote the 2-path Glauber
dynamics again with k = 3 colours. For any T with |∂T | ≤ 1 and boundary configuration ξ, τ(Lξ

1) ≤

nO(∆/ log ∆)τ(Lξ
2).

Proof (sketch). We wish to apply the comparison method of Diaconis and Saloff-Coste [3]. We note that
this application is not immediate, since a step of L2 cannot always be simulated by a small number of
steps of L1. We therefore consider an intermediate process, which performs a cyclic shift of all colours of

5

a subtree of T in one step. It is easy to see that such a process can be used to simulate a step of L2. To
compare with L1, we simulate a rotation step by changing the colours of nodes in a bottom-up fashion.
If these changes are ordered carefully, one can simulate a rotation of colours in O(n) steps of L1, where
each step has a congestion of nO(∆/ log ∆). The term nO(∆/ log ∆) derives from a bound on the number
of siblings of ancestors of a given node. Additional proof details can be found in the Appendix.

We now turn to proving (3). The following Lemma will be the workhorse for our proof.

Lemma 4.2. Suppose k ≥ 3 and let T be a subtree of a tree G with |∂T | ≤ 2 and let σ ∈ Ω be a boundary
condition for T . Choose v ∈ T and let Dv = {{v}, V1, . . . , Vt} be a partition of T into disjoint connected
subtrees, where 1 ≤ t ≤ ∆. Suppose |∂Vi| ≤ 2 for each Vi. Then there exists constant c such that

τσ
T ≤ c max

1≤i≤t
i2

(

k − 1

k − 2

)i

τVi
.

We will prove Lemma 4.2 in Section 4.1. First, let us show how it implies (3). We will first consider
trees with boundaries of size one, then trees with boundaries of size two.

Claim 4.3. For some 2 ≤ i ≤ ∆, we have τ1(n) ≤ ci2
(

k−1
k−2

)i

τ2 (⌊n/i⌋).

Proof. Let T be a subtree of G with |∂T | ≤ 1. It is well-known that we can find a vertex x ∈ T such
that if Dx = {{x}, V1, . . . , Vt}, we will have |Vi| ≤ ⌊n/2⌋ for all 1 ≤ i ≤ t (see eg. [11]). We will choose
our indices so that |V1| ≥ |V2| ≥ . . . ≥ |Vt|. Note that since |∂T | ≤ 1, we will have |∂Vi| ≤ 2 for all i. By

Lemma 4.2, τT ≤ ci2
(

k−1
k−2

)i

τVi
for some 1 ≤ i ≤ t. We now consider two cases for the value of i.

If i ≥ 2, we get τVi
≤ τ2(|Vi|) ≤ τ2(⌊n/i⌋), since the Vi are given by increasing size. Thus τT ≤

ci2
(

k−1
k−2

)i

τ2 (⌊n/i⌋) for some 2 ≤ i ≤ t as required. If i = 1, then we recall that |V1| ≤ ⌊n/2⌋ by our

choice of x. Hence τT ≤ c
(

k−1
k−2

)

τV1
< c(2)2

(

k−1
k−2

)2

τ2 (⌊n/2⌋) as required.

Claim 4.4. For some 2 ≤ i ≤ ∆, τ2(n) ≤ c2i2
(

k−1
k−2

)i+1

τ2(⌊n/i⌋).

Proof. Let T be a subtree with |T | = n and |∂T | = 2, say ∂T = {z1, z2}. Choose x as in Claim 4.3,
with x separating T into subtrees of size at most ⌊n/2⌋. We will call the unique path in G from z1 to
z2 the boundary path for T . Suppose x is on the boundary path for T . Let Dx = {{x}, V1, . . . , Vt} be a
partition into disjoint connected subtrees, indexed so that |V1| ≥ . . . ≥ |Vt|; note that |∂Vi| ≤ 2 for all i.
We then apply Lemma 4.2 as in Claim 4.3 and obtain the desired result.

Now suppose that x is not on the boundary path for T . Consider T to be rooted at some r ∈ ∂T .
Let y be the least ancestor of x that lies on the boundary path. Consider Dy = {{y}, V1, . . . , Vt}. Since
x separates T into subtrees of size at most ⌊n/2⌋, in particular the subtree containing y must have size
at most ⌊n/2⌋. This implies that the subtree separated by y that contains x must contain at least ⌊n/2⌋
nodes, and is therefore V1, the largest subtree separated by y. Also, all the subtrees separated by y have
boundary of size at most 2 (since y is on the boundary path for T). Lemma 4.2 applied to Dy yields:

τT ≤ ci2
(

k − 1

k − 2

)i

τVi

for some i. If i > 1 then we obtain the desired result since |Vi| ≤ ⌊n/i⌋. If i = 1, then note that |V1| < n
and V1 has boundary of size 1 (namely, ∂V1 = {y}, by our choice of y). Therefore Claim 4.3 yields:

τT ≤ c

(

k − 1

k − 2

)

τ1(|V1|) ≤ c

(

k − 1

k − 2

)

τ1(n)

≤ c2i2
(

k − 1

k − 2

)i+1

τ2 (⌊n/i⌋) for some 2 ≤ i ≤ ∆.

We have now derived (3), completing the proof of Theorem 1.1.

6

4.1 Proof of Lemma 4.2
We now proceed with the proof of Lemma 4.2, whose goal is to bound the relaxation time on a tree
with respect to the relaxation times for subtrees. Our approach is to use a canonical paths argument to
bound the behaviour of the block dynamics. Indeed, there is a simple canonical path to move from some
configuration σ to another configuration η: modify the configuration of each Vi to an intermediate state
so that v is free to change colour to η(v), make that change to η(v), then set the configuration of each
Vi to η(Vi). The block dynamics paired with this path yields a bound on the relaxation time. However,
that bound is not tight enough to imply the mixing rate we desire; indeed, it only implies a mixing time
of nO(∆). We therefore apply the following sequence of improvements to the above approach.

1. We explicitly describe an intermediate configuration for the neighbours of v, in order to balance
congestion over all start and end configurations. This improves the bound on the mixing time to
nO(log ∆+log k+∆/k).

2. Rather than move to and from our intermediate configuration directly, our path shifts between 3
different intermediate configurations to maximize the dependency on the start and end configura-
tions at each step. This improves our bound to nO(log ∆+∆/k).

3. We apply the weighted block dynamics, so that we can differentiate between large and small
subtrees. In our paths, we always change configurations of blocks in order of subtree size. This
improves our bound to nO(log ∆+∆/k log ∆). See Remark 4.8.

4. We apply weights to our canonical path to discount the congestion on smaller subtrees. The net
effect is that the presence of many small subtrees does not influence the congestion of our paths.
This improves our bound to nO(1+∆/k log ∆). See Remark 4.7.

We now describe our full construction, elaborating on each of the above refinements.

4.1.1 The Block Dynamics

Recall now the conditions of Lemma 4.2. Suppose k ≥ 3 and let T be a tree with |∂T | ≤ 2 and let σ ∈ Ω
be a boundary condition for T . Choose v ∈ T and consider D = {{v}, V1, . . . , Vt}, where 1 ≤ t ≤ ∆.
Suppose we choose v so that |∂Vi| ≤ 2 for each Vi. We will think of T as being rooted at v; then let ui

denote the root of Vi (ie. the neighbour of v in Vi).
To simplify our argument, we will make the assumption that ui 6∈ ∂T for all i. At the conclusion of

our proof we will discuss the (simple) extension to handle the case that ui ∈ ∂T for some i.
Let L∗

D be the generator for the weighted block dynamics corresponding to D and boundary config-
uration σ. Let τσ

D denote the relaxation time for this instance of the weighted block dynamics. Since no
vertex lies in more than one block, Proposition 3.2 implies τσ

T ≤ τσ
D.

Next recall the definition of graph B and dynamics LB from Proposition 3.3. In this context, we
can view LB as a version of LD wherein each block is treated like a single vertex. That is, B is a star
with internal node v; we will refer to u1, . . . , ut as the leaf nodes of B. When such a leaf node, say
ui, is chosen by the dynamics, its colour updates with probability corresponding to the probability of
seeing that colour as the root of Vi in LD. By Proposition 3.3, τ(Lσ

D) = τ(Lσ
B). It is therefore sufficient

to bound τ(Lσ
B). Note that this is true even for the special case of k = 3, as Lσ

B depends only on the
ergodicity of L (the 2-path Glauber dynamics) and its stationary distribution, which is uniform. The
following simple Lemma will allow us to bound the transition probabilities of Lσ

B ; its proof can be found
in the appendix.

Lemma 4.5. Choose S ⊆ T with |∂S| ≤ 2 and boundary configuration ξ, and suppose x ∈ ∂S. Choose

c ∈ A and suppose there exists some η ∈ Ωξ
S with η(x) = c. Then πξ

S [ω : ω(x) = c] ≥ 1/k.

The following corollary is now immediate from Lemma 4.5 and the definition of LB .

Corollary 4.6. Suppose α, ω ∈ Ωσ
B, KB [α → ω] > 0, and α(ui) 6= ω(ui). Then KB [α → ω] ≥ (kτσ

Vi
)−1.

4.1.2 Defininition of Intermediate Configurations

Choose two colourings α, η ∈ ΩB . Our goal is to define a sequence of steps of LB that begins in state α
and ends in state η. If α(v) = η(v) this sequence is simple: the colours of nodes u1, . . . , ut are changed
from α to η one at a time. If α(v) 6= η(v), our strategy is to first change the colours of u1, . . . , ut so that
none have colour η(v), then change the colour of v to η(v), and finally set the colours of the ui nodes
to match η. The obvious way to do this requires two “passes” of changes over the leaf nodes, but this

7

method generates too much congestion (defined below) for our desired bound. We therefore introduce a
slightly more complex path that uses three passes. To describe this path formally, we will need to define
some colours.

If α(v) 6= η(v) then for each 1 ≤ i ≤ t we will define three colours, ai, bi, and ci, that depend on α
and η. The first two colours are easy to define:

ai =

{

α(ui) if α(ui) 6= η(v)

α(v) otherwise
bi =

{

η(ui) if η(ui) 6= α(v)

η(v) otherwise

That is, (a1, . . . , at) are the colours of the children of v in α, except that any occurrences of η(v) are
replaced with α(v). Note that, our assumption that ui is not adjacent to the external boundary of T
ensures that there exists a colouring of T in which ui has colour ai. Colour bi is defined in the same
way, but with the roles of α and η reversed.

The definition of colour ci is more involved. These will be the colours to which we set the leaf nodes,
in order to allow v to change from α(v) to η(v). Rather than only modify leaves that have colour η(v),
we will potentially change the colours of all leaves to better distribute congestion. In particular, we will
apply a function f that will map the colours (α(u1), . . . , α(ut)) to a vector of colours (c1, . . . , ct) such
that for all i, ci 6∈ {α(v), η(v)}. We want f to satisfy the following balance property: for all 1 ≤ i ≤ t,

#{(x1, . . . , xt) : (xj = α(uj) ∀j > i) ∧ (f(x1, . . . , xt)j = cj ∀j ≤ i)} ≤

⌈

(

k − 1

k − 2

)i
⌉

. (4)

That is, for any 1 ≤ i ≤ t, if we are given c1, . . . , ci and α(ui+1), . . . , α(ut), there are at most
⌈

(

k−1
k−2

)i
⌉

possibilities for α(u1), . . . , α(ut). We defer the construction of f to Appendix B.4.

4.1.3 The Path Definition

Let Γ be the transition graph over ΩG with (ω, β) ∈ Γ if and only if KB [ω → β] > 0. We are now ready
to define a path γ(α, η) of transitions of Γ. If α(v) = η(v), our path simply changes the colour of each
ui from α(ui) to η(ui), one at a time. If α(v) 6= η(v), we use the following path:

1. For each ui in increasing order: recolour from α(ui) to bi, then to ci.
2. Recolour v from α(v) to η(v).
3. For each ui in decreasing order: recolour from ci to η(ui), then to ai.
4. For each ui in increasing order: recolour from ai to η(ui).
The reader is encouraged to verify that all steps of this path are valid transitions according to Lσ

B .
The number of changes to the colour of each ui seems excessive, but we define our path this way to
maintain an important property: each change is from a colour derived from α to a colour derived from
η, or vice-versa. This will be important in our analysis of the path congestion, defined below.

4.1.4 Analysis of Weighted Path Congestion

We will now define the weighted congestion of our choice of paths. For each (ω, β) ∈ Γ, we will define a
weight w(ω, β) > 0. Set w(ω, β) = 1 if ω and β differ on the colour of v, and set w(ω, β) = i−2 if ω and β
differ on the colour of vertex ui. We define the weight of a path by w(γ(α, η)) =

∑

(ω,β)∈γ(α,η) w(ω, β).

Then note that for all γ(α, η), w(γ(α, η)) ≤ 1+5
∑t

i=1 i−2 < 1+5
(

π2

6

)

< 10. For each edge (ω, β) ∈ Γ,

define the weighted congestion of that edge, ρw(ω, β), as

ρw(ω, β) :=
1

w(ω, β)





∑

γ(α,η)∋(ω,β)

π[α]π[η]w(γ(α, η))

π[ω]KB [ω → β]



 .

The weighted congestion for our set of paths is ρw := supω,β ρw(ω, β). Then the weighted canonical paths
bound is τσ

D ≤ ρw. We note that this bound and its proof are implicit in [4] (see their Remark on page
38). Note that the standard use of canonical paths comes from taking w(ω, β) = 1 for all (ω, β) ∈ Γ. Our
choice of a different weight function will allow us to tighten the bound we obtain on τσ

D. In particular,

8

our approach obtains a bound of nO(1+∆/k log ∆), whereas the standard canonical paths bound would
only give a bound of nO(log ∆+∆/k log ∆) (see Remark 4.7).

Our result now follows from bounding ρw(ω, β). Using the uniformity of π, note that

ρw(ω, β) ≤ 10

(

1

w(ω, β)
× |{γ(α, η) ∋ (ω, β)}| ×

1

(k − 1)t+1KB [ω → β]

)

. (5)

We now consider cases depending on the nature of the transition (ω, β).
Case 1: ω and β differ on the colour of v. Note that w(ω, β) = 1. Also, from the definition

of LB , we have KB [ω → β] = infσ∈Ω gap(Lσ
{v})π

ω
{v}[φ : φ(v) = β(v)]. But note that gap(Lσ

{v}) = 1 for
all boundary conditions, since this is the set of proper colourings on a single vertex which mixes in a
single step. Also, πω

{v} is the uniform distribution over Ωω
{v}, which is the set of at most k − 1 colours

not appearing on ∂{v} in ω. We conclude

KB [ω → β] ≥
1

k − 1
. (6)

We now consider the number of paths γ(α, η) that use (ω, β). This transition is used once for each
α, η such that α(v) = ω(v) and η(v) = β(v), and in which α(ui) = ω(ui) for all ui.

Consider the possibilities for colouring η. Configuration β determines η(v), and there are (k − 1)t

choices for η given η(v) (consider choosing the colours for u1, . . . , ut, which cannot be η(v)). Now consider
α: the colour α(v) is determined by ω, as are (c1, . . . , ct). Thus by (4) there are at most ⌈(k−1

k−2)∆⌉
possibilities for (α(u1), . . . , α(ut)), which determines α. Putting this together, the total number of

colourings α and η that satisfy (ω, β) ∈ γ(α, η) is at most (k − 1)t

⌈

(

k−1
k−2

)t
⌉

. Substituting this and (6)

into (5), we conclude

ρw(ω, β) ≤ 10(1)(k − 1)t

⌈

(

k − 1

k − 2

)t
⌉

k − 1

(k − 1)t+1
≤ 20

(

k − 1

k − 2

)t

.

Case 2: ω and β differ on the colour of ui for some i. In this case, w(γ(α, η)) = i−2. Also,
since there exists a colouring of Vi in which ui has colour β(ui) (recalling our assumption that ui 6∈ ∂T),
Corollary 4.6 implies

KB [ω → β] ≥ (kτVi
)−1. (7)

How many paths in γ(α, η) use the transition (ω, β)? We consider subcases for α and η. We give
only one subcase here; the remaining 5 cases (which are very similar) are described in the Appendix.

Subcase: α(v) 6= η(v) and (ω, β) is the first change to ui in γ(α, η). That is, (ω, β) is the first
change in Step 1 of the canonical path description. In this case we know α(v) = ω(v), α(uj) = ω(uj)
for all j ≥ i, bi = β(ui), and cj = β(uj) for all j < i. How many α,η satisfy these conditions?

First consider η. There are at most k − 1 possibilities for η(v), since η(v) 6= α(v) = ω(v). Given
η(v), there are k − 1 possibilities for η(uj) for each j 6= i. Note that β determines bi, from which η(v)
determines η(ui). Thus the total number of possibilities for η is (k − 1)t.

Next consider α. Note that ω determines α(v) and also α(uj) for all j ≥ i. Also, β determines cj

for all j < i. By (4), the number of possibilities for α(u1), . . . , α(ut) is at most

⌈

(

k−1
k−2

)i−1
⌉

. The total

number of α and η is therefore at most

⌈

(

k−1
k−2

)i−1
⌉

(k − 1)t. This completes the subcase.

In each subcase, the number of possibilities for α and η is at most

⌈

(

k−1
k−2

)i
⌉

(k − 1)t. Summing up

over all subcases, we get that the total number of possibilities for α and η, given that (ω, β) is a change

in the colouring of ui, is at most 12
(

k−1
k−2

)i

(k − 1)t. Substituting this and (7) into (5), we have

ρw(ω, β) ≤ 120i2
(

k − 1

k − 2

)i

(k − 1)t

(

τVi
k

(k − 1)t+1

)

≤ 180i2
(

k − 1

k − 2

)i

τVi
.

9

This concludes our case analysis. Cases 1 and 2 (and the fact that τVt
≥ 1) yield that ρw ≤

max1≤i≤t 180i2
(

k−1
k−2

)i

τVi
. Applying the canonical paths bound and Proposition 3.2 we conclude that

τσ
T ≤ τσ

D ≤ 180 max
1≤i≤t

i2
(

k − 1

k − 2

)i

τVi
. (8)

4.1.5 Removing restrictions on boundary nodes

Recall that in the analysis above we assumed that no ui was in ∂T . We now sketch the method for
removing this assumption; additional details appear in Appendix B.6. We made use of the assumption
ui 6∈ ∂T in our use of the colours ai, bi, ci: this assumption allowed us to assume that there existed
colourings of Vi in which the colour of ui was ai (or bi, or ci). If ui ∈ ∂T , it’s possible that one or more
of these colours will conflict with the boundary configuration, and the block dynamics we described
might not be ergodic (when k = 3).

We will modify our selection of blocks to guarantee that no leaf of B is adjacent to the boundary of
T . Specifically, we replace block {v} with a block R ⊆ T that contains v and any neighbouring nodes
in ∂T . Note |R| ≤ 3. Our new set of blocks D will contain R and all subtrees separated by R. The net
effect is that B (from Proposition 3.3) will no longer be a star, but rather a tree with at most 3 internal
nodes. We then bound the relaxation time of LB as before, extending our set of canonical paths in the
natural way. For path γ(α, η), modify the leaf colours to allow the nodes of R to change from α to η,
make this change to R in one step, then modify the leaf colours again to agree with η. The congestion
analysis for this new set of canonical paths is very similar to the original, and we obtain the same result
up to a constant factor.

Remark 4.7. We note the effect of using the weighted version of the canonical paths bound in our
proof of Lemma 4.2. If we had used the standard canonical paths bound, then we would replace the
factor of i2 in (8) by the maximum length of a path, which is 5∆ + 1. Our final bound would then be of

the form τσ
T ≤ c∆max1≤i≤t

(

k−1
k−2

)i

τVi
. However, this would lead to a bound of nO(log ∆+∆/k log ∆) on

the mixing time of the Glauber dynamics, which is weaker than nO(1+∆/k log ∆) when k >> ∆/ log2 ∆.

Remark 4.8. We also note the effect of using the weighted block dynamics. If we had applied Propo-
sition 3.1 instead of Proposition 3.2, the bound in (7) would become KB [ω → β] ≥ (kτ)−1, where

τ = maxi τVi
. This would lead to a final bound of τσ

T ≤ ct2
(

k−1
k−2

)t

max1≤i≤t τVi
for Lemma 4.2. With

this modified Lemma, the bound in (3) would become τ2(n) ≤ ct2
(

k−1
k−2

)t

τ2 (⌈n/2⌉) . This would yield

an upper bound of nO(1+∆/k), which is weaker than nO(1+∆/k log ∆).

5 Open Problems

Our results raise some natural questions about the Glauber dynamics on planar graphs of bounded
degree. As described in the introduction, Hayes, Vera and Vigoda [7] noted that when ∆ ≥ nη for any
η > 0 then certain trees require k ≥ c∆/ log ∆ for polytime mixing, where c is an absolute constant.
The same is true for any ∆ that grows with n [13]. But for ∆ = O(1), Theorem 1.1 shows that there
are no trees that require k > 3. Is there a constant K such that for every k ≥ K and constant ∆, the
Glauber dynamics mixes in polytime on k-colourings of every planar graph with maximum degree ∆?

Another question is how far Theorem 1.2 can be extended. In other words, how many leaves can we
fix and still guarantee polytime mixing? It is easy to fix the colours of k − 1 neighbours of each of two
adjacent vertices u, v so that the chain is not ergodic, so the answer lies between k − 2 and 2k − 2.

Acknowledgements

We thank Nayantara Bhatnagar, Jian Ding, Thomas Hayes, Juan Vera and Eric Vigoda for some helpful
discussions.

10

References

[1] N. Berger, C. Kenyon, E. Mossel and Y. Peres. Glauber dynamics on trees and hyperbolic graphs.
Prob. Th. Related Fields 131, 311 - 340 (2005).

[2] G. Brightwell and P. Winkler. Random colorings of a Cayley tree. In Contemporary Combinatorics.
Bolyai Society Mathematical Studies, vol 10. B. Bollobás (Ed .), 247- -276 (2002).

[3] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains. Ann. Appl.
Prob. 3, 696 - 730 (1993).

[4] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Prob.
1, 36 - 61 (1991).

[5] M. Dyer, L. Goldberg and M. Jerrum. Systematic scan for sampling colorings. Ann. Appl. Prob.
18, 185 - 230 (2006).

[6] L. Goldberg, M. Jerrum and M. Karpinski. The mixing time of Glauber dynamics for colouring
regular trees. Available at arXiv:0806.0921v1 (2008).

[7] T. Hayes, J. Vera and E. Vigoda. Randomly coloring planar graphs with fewer colors than the
maximum degree. Proceedings of STOC 2007.

[8] M. Jerrum. A very simple algorithm for estimating the number of k-colourings of a low-degree graph.
Rand. Struct. Alg. 7, 157 - 165 (1995).

[9] M. Jerrum and A. Sinclair. Approximating the permanent. Siam. Jour. Comput. 18, 1149 - 1178
(1989).

[10] J. Jonasson. Uniqueness of uniform random colourings of regular trees. Stat. & Prob. Letters 57,
243 - 248 (2002).

[11] C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math. 70, 185 - 190 (1869).
[12] F. Martinelli. Lectures on Glauber dynamics for discrete spin models. Lecture Notes in Mathematics,

vol 1717 (2000).
[13] B. Lucier, M. Molloy. The Glauber dynamics for colourings of bounded degree trees. Submitted to

journal (2008).
[14] F. Martinelli, A. Sinclair and D. Weitz. Fast mixing for independent sets, colorings and other models

on trees. Rand. Struc. & Alg. 31, 134 - 172 (2007).
[15] M. Molloy. Very rapidly mixing Markov Chains for (2∆)-colourings and for independent sets in a

4-regular graph. Rand. Struc. & Alg. 18, 101 - 115 (2001).
[16] E. Mossel and A. Sly. Gibbs Rapidly Samples Colourings of G(n, d/n). Available at Arxiv

http://front.math.ucdavis.edu/0707.3241 (2007).
[17] D. Randall. Mixing. Proceedings of FOCS 2003.
[18] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Combi-

natorics, Probability and Computing, 1:351 - 370 (1992).
[19] E. Vigoda. Improved bounds for sampling colorings. J. Math. Physics, 41, 1555 - 1569 (2000).

A Extending to general boundary conditions

In the proofs of Theorem 1.1 and Lemma 4.2, we were careful to consider only subtrees with at most 2
boundary vertices. This was enough to prove Theorem 1.1 and simplified our arguments. However, this
restriction can be relaxed when k > 4. Indeed, all that is required by our technique is that |∂T | ≤ k− 2.

Theorem 1.2 is a variant of Theorem 1.1 that uses this relaxation. We will prove it by making use
of the following variant of Lemma 4.2.

Lemma A.1. Suppose k ≥ 3 and let T be a subtree of a tree G with b := |∂T | ≤ k − 2 and let σ ∈ Ω
be a boundary condition for T . Choose x ∈ T and consider Dx = {{x}, V1, . . . , Vt}, where 1 ≤ t ≤ ∆.
Suppose |∂Vi| ≤ b for each Vi. Then, for some constant c,

τσ
T ≤ cb2b max

1≤i≤t
i2

(

k − 1

k − 2

)i

τVi
.

Before proving Lemma A.1, we will discuss how it implies Theorem 1.2. Indeed, this implication
follows the deduction of Theorem 1.1 from Lemma 4.2 almost exactly. Define τb(n) as in Section 4.1.

11

Then the argument from Claim 4.3 yields

τb−1(n) ≤ cb2b max
1≤i≤t

i2
(

k − 1

k − 2

)i

τb(⌊n/i⌋). (9)

To bound τb(n), we proceed as in Claim 4.4. Define the boundary tree of T to be the union of the paths
between vertices of ∂T in T . Note that this is, indeed, a subtree of T . Choose a vertex x ∈ T that
separates T into subtrees with at most n/2 vertices, then let y be the vertex that is the least ancestor
of x that is in the boundary tree. Just as in Claim 4.4 we can apply Lemma A.1 with v = y, then use
(9), to obtain the bound

τb(n) ≤ c2b222b max
1≤i≤t

i2
(

k − 1

k − 2

)i+1

τb(n/i).

Induction then implies that τb(n) ≤ nd(1+b+∆/k log ∆) for some sufficiently large constant d. This follows
in precisely the same way that (3) implies Theorem 1.1 in Section 4.

It remains to give the proof of Lemma A.1, which mirrors the proof of Lemma 4.2 with two changes.
First, we require the following more general version of Lemma 4.5.

Lemma A.2. Choose S ⊆ T with b := |∂S| ≤ k− 2 and boundary configuration ξ, and suppose x ∈ ∂S.

Choose c ∈ A and suppose there exists some η ∈ Ωξ
S with η(x) = c. Then πξ

S [ω : ω(x) = c] ≥ 1/(b + 1)k.

Proof. Think of x as the root of S and consider choices of colours top-down. Then for any colour c,
since |∂S| = b, (k − 1)n−2(k − b + 1) ≤ |{η ∈ Ωξ

S : η(x) = c}| ≤ (k − 1)n−1, as long as there is at least
one colouring in which x has colour c. Thus

πξ
S [η : η(x) = c] =

|{η ∈ Ωξ
S : η(x) = c}|

|Ωξ
S |

≥
(k − 1)n−2(k − b + 1)

(k − 1)n−1(k − 2) + (k − 1)n−2(k − b + 1)

=
1

1 + (k−2)(k−1)
k−b+1

≥
1

(b + 1)k

as required.

This change to Lemma 4.5 affects (5), adding a factor of (b + 1) to our analysis.
Second, recall our discussion of the case that ui ∈ ∂T at the end of the proof of Lemma 4.5. We will

handle this case in a different way. For each 1 ≤ i ≤ t we will define colours a′
i, b′i, and c′i. If there exists

a colouring of Vi in which ui has colour ai, then set a′
i = ai. Otherwise it must be that ui ∈ ∂T , and

in this case we set a′
i to be any other colour not in {α(v), η(v)}. We define b′i and c′i in a similar way.

We think of a′
i, b′i, and c′i as “fixed” versions of the original colours. We then use a′

i, b′i, and c′i in the
definition of our canonical paths instead of colours ai, bi, and ci.

How does this affect our analysis? When we compute the number of (α, η) such that (ω, β) ∈ γ(α, η),
we must reconstruct aj , bj , and/or cj from their fixed versions. If uj 6∈ ∂T then the fixed and original
colours are the same. When uj ∈ ∂T , there will be at most two possibilities for each of these colours
(ie. either aj = a′

j or aj is the colour that conflicts with the boundary configuration, and similarly for

bj and cj). Since there are at most b nodes uj in ∂T , this adds a factor of at most 2b to our analysis.
We conclude that the analysis for Lemma 4.2 leads to the same result, with an extra factor of (b+1)2b.

This gives Lemma A.1 as required.

B Missing Proofs

B.1 Proofs from Section 2
Proof of Claim 2.1. It is sufficient to show irreducibility; ergodicity and the uniformity of the stationary
distribution then follow since the Glauber dynamics is aperiodic and reversible. Let Lσ

T be the generator
for the Glauber dynamics on T with boundary condition σ, with jump probabilities denoted Kσ

T . Take
Γ to be the transition graph over Ωσ

T , where (η, ω) is an edge in Γ if and only if Kσ
T [η → ω] > 0. We

need to show that Γ is connected. That is, we need to show that for any two colourings η and ω that

12

differ only in T , we can move from η to ω by changing one vertex of T at a time, so that at each step
we have a proper colouring.

Choose η, ω ∈ Ωσ
T ; we will generate a path from η to ω in Γ. We begin by choosing a root node

r ∈ T . If |∂T | ≥ 1, we arbitrarily choose some v ∈ ∂T and let r be the unique vertex in T adjacent to v.
Otherwise, r is chosen arbitrarily. We now proceed by induction on the height of the resulting rooted

tree. If the height is 1 then V (T) = {r}, and hence η = ω
η(r)
r . We conclude (η, ω) ∈ Γ and we are done.

Now suppose the tree has height h. Let z be a child of r, and consider the subtree T ′ of T rooted at
z. If |∂T | = 0 then ∂T ′ = {r}, and otherwise |∂T ′| ≤ |∂T |. We conclude that k ≥ |∂T ′| + 2. Also, T ′

has height at most h−1, and its root z is adjacent to r ∈ ∂T ′. Thus by induction the Glauber dynamics
restricted to T ′ is ergodic for any boundary condition, and in particular for η. Since k ≥ |∂T ′|+2, there
is a colouring β ∈ Ωη

T ′ such that β(z) 6∈ {η(r), ω(r)}. We can find such a β since at most |∂T ′| colours
can be forbidden for z due to the boundary configuration η, leaving 2 possible colours; at most one of
those colours is ω(r), leaving one more. Since the Glauber dynamics is ergodic on T ′ with boundary
condition η, there is a path from η to β in Γ.

Similarly, we can change the colours of all children of r so that none are ω(r). There is therefore a
colouring α ∈ Ωσ

T in which ω(r) does not appear in the neighbourhood of r, and there is a path from η

to α in Γ. But this implies (α, α
ω(r)
r) ∈ Γ. Let γ = α

ω(r)
r . Finally, it is possible to change the colouring

of each subtree T ′ rooted at a child of r from γ(T ′) to ω(T ′) without changing any colours outside of T ′,
again by the induction hypothesis. We have thus found a path from η to ω in Γ and we are done.

Proof of Claim 2.2. Write Lσ
2 (T) for the 2-path Glauber dynamics on subtree T . We first show that

Lσ
2 (T) is ergodic whenever |∂T | ≤ 1. Choose any η1, η2 ∈ Ωσ

T . Choose any x ∈ T such that ∂T ⊆ {x},
and consider x to be the root of T . We proceed by induction on the height of this rooted tree. For any
v ∈ T , write T (v) for the subtree of T rooted at v. Then for each child y of x, |∂T (y)| ≤ 1, and y is the
unique node of T (y) such that ∂T (y) ⊆ {y}. Then, by induction, L2(T (y)) is ergodic for any boundary
condition. The configuration of T (y) can therefore be changed to that the colour of y is not η2(x), while
the colour of x does not change from η1(x). We repeat this process for all children of x, then change
the colour of x to η2(x). Finally, for each child y of x, we can recolour T (y) to agree with η2, again by
ergodicity of T (y) by induction. We have then reached configuration η2 on T , as required.

We next show that Lσ
2 (T) is ergodic when |∂T | = 2. Choose some r ∈ ∂T and consider r to be the

root of T . Let P be the path in T connecting the vertices in ∂T . Note that since ∂T ⊆ P , |P | ≥ 2. We
now proceed by induction on |P |. Choose any η1, η2 ∈ Ωσ

T . We will construct a sequence of configurations
that move from η1 to η2 using valid transitions of Lσ

2 .
Suppose first that |P | = 2. For each x ∈ P , let y be a child of x that is not in P . Then |∂T (y)| ≤ 1,

so L2(T (y)) is ergodic. We can therefore recolour T (y) so that y has a colour other than σ(x) and η(x)
(note that such a colouring exists, since y 6∈ P implies y 6∈ ∂T). We can perform a similar recolouring
operation for each child of x, for each x ∈ P . We then change the colour of both nodes in P to agree
with η in a single move, as they form a 2-path. Finally, we recolour each subtree of each node in P to
agree with η, again making use of ergodicity for boundary-size 1.

More generally, if |P | > 2, then recall that r ∈ ∂T is the root of T . Let y be the neighbour of r in
P and note y 6∈ ∂T . Let c be some colour such that c 6∈ {σ(z), η(z)}. Note that there is a colouring of
T (y) in which y has c, since y 6∈ ∂̄T . Also, ∂T (y) = 2. By induction, we can recolour T (y) so that y has
colour c, without changing the colour of z. We can then recolour all other subtrees of z so that their
roots have colour c, by ergodicity over single-boundary trees. At this point z can be recoloured to η(z).
Finally, T (y) and the other subtrees of z can be recoloured to η again by induction and ergodicity for
single-boundary trees.

B.2 Proofs from Section 3
Proof of Proposition 3.2. We begin with some necessary background from the field of functional analysis.
Recall that we use K[σ → η] to denote the entries of L as a matrix. Then the operation of L as a generator
over functions f : Ω → R can be expressed as

L(f)(σ) =
∑

η∈Ω

K[σ → η](f(η) − f(σ)).

13

Given a function f : Ω → R, the Variance of f with respect to L is given by

Var(f) =
∑

σ,η∈Ω

π[σ]π[η](f(σ) − f(η))2.

The Dirichlet form of function f with respect to L is given by

ξ(f, f) =
∑

σ,η∈Ω

π[σ]K[σ → η](f(σ) − f(η))2.

It is known that the spectral gap of the generator L satisfies

gap(L) = inf
f

ξ(f, f)

Var(f)

where the infimum is over all non-constant functions f : Ω → R.
We are now ready to proceed with the proof.
Note that L∗

D is ergodic and reversible with respect to distribution πV . Let Var∗D and ξ∗D denote the
variance and dirichlet form for L∗

D. Note that since L∗
D and LV have the same stationary distributions,

Var∗D(f) = VarV (f) for all functions f .
For each x ∈ V , let Nx = |{i : x ∈ Vi}| and let N = maxx∈V Nx. We now bound ξ∗D(f, f) with

respect to N and ξV (f, f), as follows.

ξ∗D(f, f) =
1

2

∑

σ,η∈Ω

π[σ]K∗
D[σ → η](f(σ) − f(η))2

=
1

2

∑

σ∈Ω

π[σ]

r
∑

i=1

gi

∑

η∈Ωσ

Vi

πσ
Vi

[η](f(σ) − f(η))2

=
1

2

∑

σ∈Ω

π[σ]

r
∑

i=1

giVarσ
Vi

(f)

≤
1

2

∑

σ∈Ω

π[σ]

r
∑

i=1

ξσ
Vi

(f, f)

=
1

2

∑

σ∈Ω

π[σ]

r
∑

i=1

∑

η∈Ωσ

Vi

πσ
Vi

[η]
∑

x∈Vi

∑

a∈A

K[η → ηa
x](f(η) − f(ηa

x))2

≤
1

2

∑

η∈Ω

π[η]
∑

x∈V

Nx

∑

a∈A

K[η → ηa
x](f(η) − f(ηa

x))2

≤ NξV (f, f)

for all functions f . Note that in the second-last inequality we used the fact that choosing σ ∈ Ω and
then choosing η ∈ Ωσ

Vi
is equivalent to choosing η ∈ Ω. But now

gap(LV) = inf
f

ξV (f, f)

VarV (f)
≥ inf

f

ξ∗D(f, f)

Var∗D(f)
N−1 = gap(L∗

D)N−1

as required.

Proof of Proposition 3.3. Given dynamics L on configuration space Ω and function f : ΩV → R, we will

write T (L, f) = V ar(f)
ξ(f,f) . We recall that

τ(L) = sup {T (L, f) : π[f] = 0} (10)

14

where the maximum is over non-constant functions. From the definition of LB , we have that

LB(σ′, η′) =
∑

σ:σ′=σ|B

∑

η:η′=η|B

L∗
D(σ, η). (11)

Now suppose we have functions f on ΩB and g on ΩT . Suppose further that

f(σ) = g(η) for all σ, η such that η|B = σ. (12)

Then we will have

T (L∗
D, g) =

V ar∗D(g)

ξ∗D(g, g)

=

∑

σ,η∈ΩT
π∗

D(σ)π∗
D(η)(g(σ) − g(η))2

∑

σ,η∈ΩT
π∗

D(σ)P ∗
D(σ, η)(g(σ) − g(η))2

=

∑

σ′,η′∈ΩB
πB(σ′)πB(η′)(f(σ′) − f(η′))2

∑

σ′,η′∈ΩB
πB(σ′)PB(σ′, η′)(f(σ′) − f(η′))2

=
V arB(f)

ξB(f, f)

= T (LB , f)

(13)

where we used (2) and (11) in the third equality.
Suppose the supremum in (10) for LD occurs at a function g1. That is, g1 : ΩV → R satisfies

π[g1] = 0 and τ(LD) = T (LD, g1)). Then g1 must be an eigenfunction of LD, so g1 = LD(g1). Choose
σ, η ∈ ΩV such that σ(B) = η(B); then (LD(g1))(σ) = (LD(g1))(η) from the definition of LD, and
hence g1(σ) = g1(η). We can therefore define function f1 : ΩB → R as follows: for each α ∈ ΩB , f1(α)
will be the (unique) value of g1(η) for all η with η|B = α. Thus f1 and g1 satisfy (12), so (13) implies
τ(LD) = T (LD, g1) = T (LB , f1) ≤ τ(LB).

Next suppose that the supremum in (10) for LB occurs at a function f2. Then we can define function
g2 by g2(σ) = f2(σ|B), from which (13) and (10) imply τ(LB) = T (LB , f2) = T (LD, g2) ≤ τ(LD). We
therefore conclude τ(LB) = τ(LD), as required.

B.3 Proofs from Section 4
Proof of Lemma 4.1. We describe an intermediate dynamics, LR, the rotate dynamics. Take T to be
rooted, with any external boundary adjacent to the root. For x ∈ T we will write T (x) for the subtree
rooted at x and P (x) for the parent of x. Informally, LR performs a cyclic shift of the colours on a
subtree of T at each step. That is, on each step of LR, a node v and integer 0 ≤ t < k are chosen
uniformly. We consider the configuration in which each node of T (v) has its colour incremented by t,
mod k. This will be the new configuration if it forms a proper colouring, otherwise the configuration
will not change.

A simple application of the comparison method of Diaconis and Saloff-Coste [3] shows that τ(Lξ
2) ≤

c∆τ(Lξ
R) for some constant c (as any step of L2 can be simulated by O(∆) steps of LR). We now wish

to apply the comparison method to show τ(Lξ
R) ≤ nO(∆/ log ∆)τ(Lξ

1). This amounts to showing how to

simulate a step of Lξ
R using steps of Lξ

1, then bounding the congestion of such a simulation.
We will use the following recursive simulation of a move of LR. In tree T , consider sibling nodes to

be ordered by subtree size, with larger subtrees on the left. Suppose (σ, η) is a step of LR, with node v
and integer t. Let u1, . . . , uℓ be the children of v. We implement this step as follows:

1. For each ui with σ(ui) = η(v), from left to right, rotate T (ui) by t.
2. Change the colour of v to η(v).
3. For each ui with σ(ui) 6= η(v), from right to left, rotate T (ui) by t.

We note that every step of this simulation is a proper colouring, since if σ(ui) = η(v) then η(ui) 6= σ(v),
as σ and η are defined by a cyclic shift over an odd number of colours. Also, simple induction shows that

15

at most O(n) steps of the Glauber dynamics are used in the above implementation. It remains to show
that each possible step of the Glauber dynamics occurs in at most nO(∆/ log ∆) such implementations;
the desired result then follows from the comparison method.

Suppose (α, ω) is a step of the Glauber dynamics, with α(z) 6= ω(z) for some z ∈ T . Let us count
the number of rotate operations (σ, η) this step may appear in; we do so by attempting to reconstruct σ
and η. There are at most n choices for the vertex v being rotated, and t is determined by α(z) and ω(z).
What remains to be determined is which nodes in T (v) have yet been rotated at the time of step (α, ω)
within the simulation of (σ, η), and which have not. It is enough to determine this for the children,
ancestors, and siblings-of-ancestors of z, as one of these nodes has been rotated if and only if all nodes
in its subtree have been as well.

Consider the ancestors of z. There are two possibilities for v: either it has been rotated or it has
not. If v = z then we are done, otherwise we now claim that we can determine which of the remaining
ancestors of z up to v have been rotated. First consider the child of v that is an ancestor of z, say y.
We have two cases, depending on whether or not v has been rotated.

Case 1: v has not been rotated. Then σ(v) = α(v) and η(v) = σ(v)+t mod k. In this case, since
we are rotating T (y) before changing the colour of v, it must be that σ(y) = η(v) (from the definition
of γ(σ, η)). Thus if α(y) = η(v) then y has not yet been rotated, otherwise it has.

Case 2: v has been rotated. Then η(v) = α(v) and σ(v) = η(v) − t mod k. In this case, since
we changed the colour of v before rotating T (y), it must be that σ(y) 6= η(v) (from the definition of
γ(σ, η)). That is, σ(y) is the one colour not in {σ(v), η(v)}, say c. Thus if α(y) = c then y has not yet
been rotated, otherwise it has.

In either case, given that we know whether v has been rotated, we can determine whether y has been
rotated. Repeating this argument top-down from v to z, we can determine precisely which ancestors of
z have been rotated. We also note that, for any ancestor y of z (including z itself), the right siblings of
y are either all rotated or all not rotated, and they are all rotated if and only if P (y) has been rotated.

The only remaining unknowns are the children of z and the left siblings of the ancestors of z. How
many such nodes can there be? There are at most ∆ children of z. Let zi be the ancestor of z at depth
i, and let ki be the number of left siblings of zi. We wish to find an upper bound on

∑

i ki. Recall
that siblings are ordered from largest subtree to smallest, so |T (zi)| ≤ |T (zi−1)|/(ki + 1) for all i. This
implies

∏

i(ki +1) ≤ |T (z1)| = n. Since ki ≤ ∆−1 for each i, convexity implies that
∑

i ki is maximized
when log∆−1 n values of ki are equal to ∆ − 1. That is,

∑

i ki ≤ (∆ − 1) log∆−1 n. We conclude that
there are at most O(∆ log∆ n) nodes x that are children of z or left siblings of ancestors of z. Hence the
number of possibilities for their subtrees being rotated or not is at most 2O(∆ log

∆
n) = nO(∆/ log ∆).

We conclude that (α, ω) can appear in at most (2n)(nO(∆/ log ∆)) = nO(∆/ log ∆) different rotate
operations, as required.

Proof of Lemma 4.5. Think of x as the root of S and consider choosing a configuration for S by choosing
a colour for each node, top-down. Since x ∈ ∂T , there are at most k − 1 choices for the colour of x.
Given any such choice, there are k− 1 choices for each subsequent node, except possibly for any node in
∂T for which there will be either k − 1 or k − 2 choices. Since |∂T | ≤ 2, there can be at most one node

beside x in ∂T . Thus, for any c ∈ A, (k − 1)n−2(k − 2) ≤ |{η ∈ Ωξ
S : η(x) = c}| ≤ (k − 1)n−1, as long as

there is at least one colouring in which x has colour c. Thus

πξ
S [η : η(x) = c] =

|{η ∈ Ωξ
S : η(x) = c}|

|Ωξ
S |

≥
(k − 1)n−2(k − 2)

(k − 1)n−1(k − 2) + (k − 1)n−2(k − 2)
=

1

k

as required.

B.4 A balanced mapping function
We now present the mapping function f used in the proof of Lemma 4.2, which satisfies (4). We will
actually prove the existence of f in the following, equivalent, arena.

Lemma B.1. For all k ≥ 3 and 1 ≤ t ≤ ∆, there is a function f : [k − 1]t → [k − 2]t such that for all

16

y ∈ [k − 2]t, z ∈ [k − 1]t, and 1 ≤ i ≤ t,

|{x : (xj = zj ∀j > i) ∧ (f(x)j = yj ∀j ≤ i)}| ≤

⌈

(

k − 1

k − 2

)i
⌉

.

Proof. Given x ∈ [k − 1]t, interpret x as the representation of an integer d in base k − 1. Let y be the
representation of d mod (k − 2)t in base k − 2. Then we define f to be the function mapping x to y.

To see that f satisfies the required property, fix some 1 ≤ i ≤ t. Consider the image of f on all
z ∈ [k − 1]t such that xj = zj for all j > i, in lexicographic order. This image is simply a sequence
of (k − 1)i consecutive integers, modulo (k − 2)t, in base k − 2. In particular, each pattern of i least

significant digits occurs once every (k − 2)i values, and hence occurs at most

⌈

(

k−1
k−2

)i
⌉

times over the

sequence of integers. This is therefore a bound on the size of the preimage of f restricted to this set, as
required.

B.5 Full Subcase Analysis from Lemma 4.2
Case 2.1: α(v) = η(v). Recall that in this case a special, simple canonical path is used. We know
α(v) = η(v) = ω(v). Also, we know α(uj) = ω(uj) for all j ≥ i, and η(uj) = β(uj) for all j ≤ i. So for
all j < i there are (k− 1) possibilities for α(Vj), and for all j > i there are (k− 1) possibilities for η(Vj).
The total number of possibilities for α and η is therefore at most (k − 1)t−1.

Case 2.2: α(v) 6= η(v) and (ω, β) is the first change to ui in γ(α, η). That is, (ω, β) is the first
change in Step 1 of the canonical path description. In this case we know α(v) = ω(v), α(uj) = ω(uj)
for all j ≥ i, bj = β(uj), and cj = β(uj) for all j < i. We wish to count the number of colourings α and
η that satisfy these conditions.

First consider η. There are at most k − 1 possibilities for η(v), since η(v) 6= α(v) = ω(v). Given
η(v), there are k − 1 possibilities for η(uj) for each j 6= i. Note that β determines bi, from which η(v)
determines η(ui). Thus the total number of possibilities for η is (k − 1)t.

Next consider α. Note that ω determines α(v) and also α(uj) for all j ≥ i. Also, β determines cj for

all j < i. Then (4) implies that the number of possibilities for α(u1), . . . , α(ut) is at most

⌈

(

k−1
k−2

)i−1
⌉

.

We conclude that for this subcase the total number of possibilities for α and η is at most

⌈

(

k − 1

k − 2

)i−1
⌉

(k − 1)t.

Case 2.3: α(v) 6= η(v) and (ω, β) is the second change to ui in γ(α, η). This is the second
change in Step 1 of the canonical paths description. This case is nearly identical to Case 2.2; the only
difference is that for node ui we know bi = ω(ui) and ci = β(ui).

The only effect that this has on the analysis is that now ci is determined instead of α(ui). Given ci

(instead of α(ui)), the factor due to (4) becomes ⌈(k−1
k−2)i⌉. We conclude that the number of possibilities

for α and η is at most
⌈

(

k − 1

k − 2

)i
⌉

(k − 1)t.

Case 2.4: α(v) 6= η(v) and (ω, β) is the third change to ui in γ(α, η). This is the first change
in Step 3 of the canonical paths description. We know that η(v) = ω(v), cj = ω(uj) for all j < i, and
aj = β(uj) for all j > i. Further, ci = ω(ui) and η(ui) = β(ui).

Note first that ω determines c1, . . . , ci and β determines ai+1, . . . , at. Consider possibilities for η:
β determines η(v) and η(ui). For each j 6= i, there are (k − 1) possibilities for η(uj). The number of
possibilities for η is thus at most (k − 1)t−1.

Now consider α. There are at most k − 1 possibilities for α(v). Recall that colours ai+1, . . . , at and
colours c1, . . . , ci are determined. But then α(ui+1), . . . , α(ut) can be recovered (using α(v)) and by
(4) there are at most ⌈(k−1

k−2)i⌉ possibilities for (α(u1), . . . , α(ut)). The number of possibilities for α is

17

therefore at most (k − 1)

⌈

(

k−1
k−2

)i
⌉

. We conclude that for this subcase the total number of possibilities

for α and η is at most
⌈

(

k − 1

k − 2

)i
⌉

(k − 1)t.

Case 2.5: α(v) 6= η(v) and (ω, β) is the fourth change to ui in γ(α, η). This is the second
change in Step 3 of the canonical paths description. This case is nearly identical to Case 2.4; the only
difference is that for block ui we know η(ui) = ω(ui) and ai = β(ui).

The only effect that this has on the analysis is that now ai is determined instead of ci. This causes
the factor due to (4) to become ⌈(k−1

k−2)i−1⌉. We conclude that the number of possibilities for α and η is
at most

⌈

(

k − 1

k − 2

)i−1
⌉

(k − 1)t.

Case 2.6: α(v) 6= η(v) and (ω, β) is the fifth change to ui in γ(α, η). This is the change in Step
4 of the canonical paths description. In this case we know η(v) = ω(v), aj = ω(uj) for all j > i, and
η(uj) = β(uj) for all j < i. For ui, we know ai = ω(ui) and η(ui) = β(ui).

In this case there are at most (k − 1) choices for α(v). The colours ai, . . . , at plus η(v) are deter-
mined by ω. From these colours (plus α(v)) the colours α(ui), . . . , α(ut) are determined. Furthermore,
η(u1), . . . , η(ui) are determined from β.

From this point onward the analysis is identical to that of Case 2.1. Taking into account the k − 1
possibilities for α(v), we conclude that the number of possible options for α and η is at most (k − 1)t.

B.6 A full treatment of the case ui ∈ ∂T
We now modify the proof of Lemma 4.2 to handle the case that there exist i such that ui ∈ ∂T . Note
first that if ui ∈ ∂T , then ui can be adjacent to only one node in ∂T , since |∂Vi| ≤ 2 and v ∈ ∂Vi.

We used the assumption ui 6∈ ∂T when defining our canonical paths with colours ai, bi, ci: this
assmption allowed us to assume that there existed colourings of Vi in which the colour of ui was ai (or
bi, or ci). If ui ∈ ∂T , it’s possible that one or more of these colours will conflict with the boundary
configuration, so it may not be possible to use these colours in the construction of our canonical path.

We proceed by altering our choice of blocks for the block dynamics. Let us define a small subgraph
R ⊆ T . Informally, R is the smallest subgraph containing v whose external boundary doesn’t intersect
the internal boundary of T . More formally, begin by taking R0 = {v}. Let R1 = R0 ∪ (∂R0 ∩ ∂T), and
let R2 = R1 ∪ (∂R1 ∩∂T). Then we note that |R2| ≤ 3, and ∂R1 ∩∂T = ∅ (since |∂T | ≤ 2). Set R = R2.

Now think of T as being rooted at v, and consider the subtrees generated by removing R from T . In
a slight abuse of notation, label these subtrees V1, . . . , Vt, with roots u1, . . . , ut, where t ≤ 3∆. Choose
labels so that |V1| ≥ . . . ≥ |Vt|, and note that |Vi| ≤ n/2 for all i (as the subtrees of v have this property).
We will write P (ui) for the parent of ui, which lies in R. Let D be the set of blocks {R, V1, . . . , Vt}.
Define L∗

D and LB as before. Note that B is either a tree with at most 3 internal nodes, or the union of
two stars. For simplicity of presentation we will assume the former case, so that B = R ∪ {u1, . . . , ut};
the proof is very similar for the latter case.

We now construct a set of canonical paths for LB . Choose α, η ∈ ΩB . For each ui, define colours ai,
bi, and ci as before, replacing instances of v with P (ui). Our path γ(α, η) will now be as follows:

1. For each ui in increasing order: recolour from α(ui) to bi, then to ci.
2. Recolour R from α(R) to η(R).
3. For each ui in decreasing order: recolour from ci to η(ui), then to ai.
4. For each ui in increasing order: recolour from ai to η(ui).

This path is precisely the same as the one used in Lemma 4.2, except that we now recolour all of R in
a single step (rather than just a single node v).

We note that γ(α, η) uses only valid steps of LB . What is the congestion of this set of steps? We
perform a weighted paths congestion analysis that is very similar to the one in Lemma 4.2; we only
outline the differences here. We set the weight of any change to nodes in R to be 1, and the weight of a

18

change to node ui to be i−2. We then obtain the following variant of (5), with the term t + |R| deriving
from the size of B.

ρw(ω, β) ≤ 10

(

1

w(ω, β)
× |{γ(α, η) ∋ (ω, β)}| ×

1

(k − 1)t+|R|KB [ω → β]

)

.

We must then count the number of choices for (α, η) given a move (ω, β) of a path. There are two
main cases:

Case 1: (ω, β) is a change to vertices in R. We then know both α(R) or η(R). We can
then reconstruct α(u1), . . . , α(ut) from ω, β, and α(R). There are at most (k − 1)t possibilities for
η(u1), . . . , η(ut).

Case 2: (ω, β) is a change to ui. We then know either α(R) or η(R), and there are at most
(k − 1)|R| possibilities for the other. We then apply a subcase analysis as in the proof of Lemma 4.2 to

show how to reconstruct α and η on the leaves. There will be at most d
(

k−1
k−2

)i

(k − 1)t−1 ways to do

this for some constant d (as before), for a total of d
(

k−1
k−2

)i

(k − 1)t+|R|−1 possibilities.

We conclude that, in either case, there are at most d
(

k−1
k−2

)i

(k − 1)t+|R|−1 possibilities for η and α

for some i and some constant d. Plugging this bound into our weighted canonical paths equation, we
end up with a final bound of

τσ
T ≤ τσ

D ≤ c max
1≤i≤t

i2
(

k − 1

k − 2

)i

τVi

for some constant c, which matches (8) from the proof of Lemma 4.2 up to a constant factor. This
implies the desired result of Lemma 4.2.

19

