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Abstract

An important research thread in algorithmic game theory studies the design of efficient truthful
mechanisms that approximate the optimal social welfare. A fundamental question is whether an
α-approximation algorithm translates into an α-approximate truthful mechanism. It is well-known
that plugging an α-approximation algorithm into the VCG technique may not yield a truthful
mechanism. Thus, it is natural to investigate properties of approximation algorithms that enable
their use in truthful mechanisms.

The main contribution of this paper is to identify a useful and natural property of approx-
imation algorithms, which we call loser-independence; this property is applicable in the single-
minded and single-parameter settings. Intuitively, a loser-independent algorithm does not change
its outcome when the bid of a losing agent increases, unless that agent becomes a winner. We
demonstrate that loser-independent algorithms can be employed as sub-procedures in a greedy
iterative packing approach while preserving monotonicity. A greedy iterative approach provides a
good approximation in the context of maximizing a non-decreasing submodular function subject
to independence constraints. Our framework gives rise to truthful approximation mechanisms for
various problems. Notably, some problems arise in online mechanism design.
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1 Introduction

Algorithmic aspects of mechanism design have become an important area of research in recent years.
A central research theme focuses on the design of efficient mechanisms for algorithmic problems in
strategic settings. These mechanisms must take into account both standard computational efficiency
considerations and strategic behavior of the participants. The latter goal commonly correlates with
the development of truthful mechanisms, namely, mechanisms that are robust against manipulation
by the participants. The primary technique of mechanism design, i.e., VCG mechanisms [42, 18, 26],
is known to be truthful for optimizing social welfare. Unfortunately, implementing VCG is compu-
tationally intractable in many (even simple) settings of interest since the underlying optimization
problem that needs to be solved is NP-Hard. An important research thread in algorithmic game
theory, starting with the work of Nisan and Ronen [38], focussed on designing efficient truthful
mechanisms that approximate the optimal social welfare. A fundamental question is whether an
α-approximation algorithm translates into an α-approximate truthful mechanism. It is well-known
that plugging an α-approximation algorithm into the VCG mechanism may not yield a truthful
mechanism [32, 39]. Thus, it is natural to investigate properties of approximation algorithms that
enable their use in truthful mechanisms.

The problem of combinatorial auctions has gained the status of the paradigmatic problem in
the field of algorithmic mechanism design. For a detailed overview, see [11]. In the context of
single-minded agents, Lehmann, O’Callaghan and Shoham [32] established that an approximation
algorithm can support a truthful mechanism if it satisfies a monotonicity property. Consequently,
monotone approximation algorithms and techniques have been developed for various combinatorial
optimization problems that underlie special cases of combinatorial auctions such as multi-unit auc-
tions [35, 12]. One interesting set of techniques, devised by Mu’alem and Nisan [35], enables one
to combine approximation algorithms while preserving monotonicity. In particular, they identified a
special case of monotonicity, which they name bitonicity, and demonstrated that bitonic algorithms
may be combined via the “max” operation.

1.1 Our results

The main contribution of this paper is to identify a useful and natural property of approximation
algorithms, which we name loser-independence. Intuitively, a loser-independent algorithm does not
change its outcome when the bid of a losing agent increases, unless that agent becomes a winner.
We demonstrate that loser-independent algorithms can be employed as sub-procedures in a greedy
iterative packing approach while preserving monotonicity. A greedy iterative approach provides
good approximation in the context of maximizing a non-decreasing submodular function subject
to independence constraints such as matroid constraints [36, 23, 25]. There are various interesting
problems that can be cast as special instances of this family (see, e.g., [14, 43]). We note that our
loser-independence property is somewhat orthogonal to the notion of composability presented by
Aggarwal and Hartline [1]. Intuitively, a composable algorithm does not change its outcome when
the bid of a winning agent varies above its critical winning bid. Moreover, combining our property
with the composability property yields, in the current setting, the stability condition suggested by
Dobzinski and Sundararajan [20]. This condition states that if the bid of an agent changes but its
allocation stays the same then the allocations to all other agents also do not change.

Our framework gives rise to efficient truthful approximation mechanisms for several problems.
Notably, some of these problems arise in online mechanism design. We view the framework and
the identification of the loser-independence property as the key contribution, and hence, we focus

1



on those rather than the improvements for specific problems. We illustrate the applicability of the
framework by briefly outlining two representative results that we derive.

An offline setting. A truthful (2 + ǫ)-approximate mechanism for the multiple knapsack problem
among single-minded agents. This result improves and generalizes a 6-approximation mechanism for
a special case of multiple knapsack among single-parameter agents [4]. In addition, we show that an
almost identical mechanism attains an approximation ratio of 2 + ǫ for the generalized assignment
problem among single-parameter agents. This is the first non-trivial approximate truthful mechanism
for this problem when the number of knapsacks is part of the input; a monotone PTAS exists for
this problem when the number of knapsacks is a fixed constant [12].

An online setting. A truthful 2-competitive mechanism for the online problem of dynamic auction
with expiring items. This mechanism is essentially identical to the mechanism devised by Hajiaghayi
et al. [28]. Furthermore, we achieve a truthful (2 + ǫ)-competitive mechanism for the generalization
of the problem in which the underlying auction in each time-slot is a multi-item auction among
single-minded agents rather than a single-item auction.

1.2 Related work

It is widely known that many common techniques that are broadly used by approximation algorithms
cannot be used in a strategic setting since they violate certain monotonicity properties which are
imperative for truthfulness. Correspondingly, recent years have seen an ever-growing line of work
addressing the development of monotone algorithmic alternatives. Mu’alem and Nisan [35] seem to
have been the first to pay attention to this issue. They presented sufficient conditions for compos-
ing monotone algorithms via two basic operators, namely “max” and “if-then-else”. Briest, Krysta
and Vöcking [12] devised a general approach to transform a pseudo-polynomial algorithm into a
monotone FPTAS, and demonstrated that primal-dual greedy algorithms may be used to derive
truthful mechanisms. Lavi and Swamy [31] designed a general technique to convert approximation
algorithms in packing domains to randomized approximation mechanisms that are truthful in expec-
tation. Babaioff, Lavi and Pavlov [8] presented a method that translates any given algorithm to a
truthful mechanism in single parameter domains. However, their method degrades the performance
guarantee of the resulting mechanism by a factor of O(log ρ), where ρ denotes the ratio between
the largest and smallest valuations. Recently, Azar and Gamzu [4] presented a monotone partition
framework for approximating packing integer programs.

Focusing on the previously-mentioned representative problems from a purely algorithmic point
of view, the multiple knapsack problem is known to admit a PTAS by the work of Chekuri and
Khanna [15], while the generalized assignment problem is known to be approximable within a factor
that is slightly better than e/(e − 1) ≈ 1.582 by the work of Feige and Vondrák [22]. The dynamic
auction with expiring items problem is equivalent to online scheduling of unit-length jobs on a
single machine to maximize weighted throughput. The best known deterministic online algorithm
for this problem has a competitive ratio of about 1.828 [21] (see also [33]), while it is known that
no deterministic online algorithm can achieve a competitive ratio better than φ ≈ 1.618 [27, 17, 2].
Turning to the randomized setting, the best online algorithm attains a ratio of e/(e−1) [9, 16], while
it is known that no online algorithm can attain a ratio better than 1.25 [17]. This problem can be
solved optimally in the offline setting.
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2 The General Setting

In this section, we study the truthfulness properties of an iterative packing approach for a general
class of maximizing assignment problems with packing constraints. We illustrate our ideas by re-
stricting attention to the separable assignment problem [24]. In Section 4, we discuss our approach
in the context of maximizing a non-decreasing submodular function subject to independence con-
straints. Note that the separable assignment problem is an instance of maximizing a non-decreasing
submodular function over a partition matroid [24, 14].

An instance of the single-parameter variant of the separable assignment problem consists of a
collection B of m bins and a set U of n items. Each bin j ∈ B has a separable independence system
Ij ⊆ 2U , representing the subsets of items that may be packed in that bin1. Each item i ∈ U has a
positive value vi, which is gained by assigning the item to one of the bins. The objective is to find
a maximum value subset of items S ⊆ U , along with an assignment of these items to the bins, so
that all the items in S can be simultaneously placed in their designated bins, while preserving the
constraints induced by the independence systems. In particular, the set of items assigned to bin j,
namely, Sj, must satisfy Sj ∈ Ij . In the game theoretic version of this problem there are n strategic
single parameter agents, each of which controls an item, and may be untruthful about its value.

We consider the following iterative packing approach for approximately solving the mentioned
problem: assume the existence of an α-approximation oracle for the single bin sub-problem, and
build a solution by iteratively packing each of the bins (without backtracking) using the oracle.
More precisely, the single bin sub-problem corresponding to bin j is to find a maximum value subset
Sj that satisfies Sj ∈ Ij , and the iterative packing approach utilizes the approximation oracle to
generate a packing S1 ⊆ U for the first bin, then it is used to generate a packing S2 ⊆ U \ S1

for the second bin, and so on. In what follows, we investigate the truthfulness properties of the
iterative packing approach. Specifically, we focus on the approximation oracle, and establish a
sufficient condition which guarantees that the iterative approach will lead to a monotone algorithm,
and hence, a truthful mechanism.

2.1 Preliminaries

We introduce some notation and terminology that will be used throughout the paper, and describe a
characterization that links monotone algorithms with truthful mechanisms. The reader is encouraged
to refer to [37, 11] for a more comprehensive overview of the underlying concepts.

We will mainly concentrate on two types of agents: single-parameter and single-minded. Single-
parameter agents have private data that consists of a single number, namely, their value. Single-

minded agents [32, 12] have private data which consists of a pair (o, v), where o is an object that
the agent is interested in and v is the valuation of the agent for attaining o. Remark that the
interpretation of the object o depends on the problem at hand. For example, an object may represent
a bandwidth demand of an agent (as in network routing), and it might stand for a set of items that
an agent wants (as in combinatorial auctions). The valuation function of an agent whose data is
(o, v) is a step function with respect to o. Specifically, if the agent obtains the object o or any object
that extends it then its valuation is v; otherwise, its valuation is 0. We use the notation õ � o to
indicate that object o extends object õ. Again, the interpretation of the term extension depends on
the problem at hand. For instance, if the object õ represents bandwidth demand then the object o

1An independence system I ⊆ 2U is a family of subsets that is downward closed, that is, A ∈ I and B ⊆ A implies
that B ∈ I . Note that the packing constraints are implicit from the independence systems which guarantee that if
some subset of items is feasible for a bin then any subset of it is also feasible.
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extends it if it represents a higher bandwidth demand, and if the object õ stands for a set of items
then the object o extends it if it stands for a superset of the items.

We now present the notion of monotonicity for single-minded agents, and then turn to describe a
characterization that reduces the goal of designing truthful mechanisms to that of designing monotone
algorithms. Note that similar definitions can be made for single-parameter agents by refining the
monotonicity property and the characterization theorem. Specifically, both of them need to be
defined only with respect to the value of every agent, and the objects-related terms need to be cast
off. We say that an agent is a selected if it is assigned the object o or any object that extends it.

Definition 2.1. An algorithm A is said to be monotone with respect to the bid of an agent if it
satisfies the following property: if algorithm A selects the agent when its bid is (o, v) then it selects
the agent when its bid is (õ, ṽ), where õ � o and ṽ ≥ v, and the bids of all the other agents are fixed.

Theorem 2.2. ([12]) If algorithm A is monotone with respect to the bid of every agent then there

exists a corresponding truthful mechanism which can be efficiently computed using algorithm A.

2.2 A motivating example

Let us consider the single-parameter variant of the multiple knapsack problem. This problem is a
special case of the separable assignment problem, where the single bin sub-problem is the knapsack

problem. Specifically, an instance of the multiple knapsack problem consists of a collection B of m
bins, and a set U of n items. Each bin j ∈ B has a capacity Wj, and each item i ∈ U is characterized
by a pair (wi, vi), where wi is the size of the item and vi is its positive value. The goal is to select
a maximum value subset of items S ⊆ U , along with an assignment of these items to the bins,
so that all the items in S can be simultaneously placed in their designated bins while preserving
the capacities of the bins. Note that the single bin sub-problem that corresponds to bin j is to
find a maximum value subset of items whose overall size does not exceed Wj . Also notice that the
independence system of bin j is Ij = {S ∈ 2U :

∑

i∈S wi ≤Wj}.

Algorithm 1 MaxGreedy

Input: A set of items U , and the capacity of the bin W
Output: A set of items S to be assigned to the bin

1: U1 ← U , U2 ← U , S1 ← ∅, S2 ← ∅

2: while U1 6= ∅ do
3: remove the item i that has a maximum value from U1

4: if
∑

ℓ∈S1
wℓ + wi ≤W then add i to S1

5: end while

6: while U2 6= ∅ do
7: remove the item i that has a maximum profit density from U2

8: if
∑

ℓ∈S2
wℓ + wi ≤W then add i to S2

9: end while

10: return the maximum value allocation between S1 and S2

We focus on algorithm MaxGreedy, formally described above, which approximately solves the
knapsack problem. This algorithm initially computes two assignments: one based on a greedy
approach with respect to the values of the items, and another based on a greedy approach with
respect to the profit density ratio of the items, that is, a value to size ratio. Then, it returns the
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assignment having maximum value. This algorithm was considered by Mu’alem and Nisan [35], who
proved that it is monotone with respect to the value, and that it achieves 2-approximation. Due to
its monotone properties, it may seem natural to use this algorithm as the single bin approximation
oracle in the iterative approach attending to the multiple knapsack problem. Unfortunately, as the
following theorem states, the resulting iterative algorithm fails to be monotone.

Theorem 2.3. The iterative packing approach that employs algorithm MaxGreedy as the single bin

approximation oracle is not monotone.

Proof. Suppose we are given an input instance that consists of two unit-capacity bins, and the
following set of items U = {(1/2, 1 + ǫ), (1/2, 1 + ǫ), (3/4, 3/2), (1/4, 1/2), (1, 2 − ǫ), (1, 2− ǫ)}, where
ǫ < 1/6. Notice that the first two items have profit density of 2 + 2ǫ, the next two items have profit
density of 2, and the last two items have profit density 2− ǫ. Also note that the last two items have
maximum value. One can validate that the iterative packing approach returns an allocation in which
the first bin consists of the pair of items whose profit density is 2+ 2ǫ and the second bin consists of
the pair of items whose profit density is 2. Particularly, the single bin oracle returns the allocation
generated by the greedy approach with resect to profit density ratio for both bins. This solution is
schematically described in Figure 1(a). Now, suppose that the value of the selected item (1/4, 1/2)
increases to 1/2 + ǫ, while the values of all other items are fixed. Notice that the profit density ratio
of that item increases to 2 + 4ǫ. If the iterative packing approach was monotone, this item would
still be allocated. Unluckily, this is not the case. One can verify that the iterative packing approach
returns an allocation in which the two maximum value items are packed in the bins, as schematically
illustrated in Figure 1(b).
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Figure 1: The outcome of the iterative packing approach with respect to the input instances described
in the proof. The (w, v) pair inscribed in each block corresponds to the size and value of the item.

It is worth noting that algorithm MaxGreedy is not only monotone, but also bitonic with respect
to the value [35]. Informally, an algorithm is bitonic if its outcome value as a function of the value
of any single agent i has the pattern that it does not increase as long as agent i is not selected,
and it does not decrease as long as agent i is selected. This implies that both monotonicity and
bitonicity of the single bin approximation oracle are not sufficient to ensure the monotonicity of the
corresponding iterative packing approach.
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2.3 A sufficient condition

In the following, we establish a sufficient condition for the single bin approximation oracle. This
condition guarantees that the iterative packing approach, which employs the oracle as the single bin
sub-procedure, will satisfy monotonicity. We present the condition for single-minded agents, and an
analogous condition for single-parameter agents can be derived in a similar manner.

We briefly motivate the sufficient condition by using the algorithm and the multiple knapsack
instance described in the previous subsection. Recall that monotonicity guarantees that if a selected
agent improves its bid then it continues to be selected. In particular, the monotonicity of algorithm
MaxGreedy implies that if an agent that is selected for the first bin increases its value then it continues
to be selected for that bin. However, the key difficulty appears when we consider an agent that was
selected in a later bin, say the second one. In this case, when that agent increases its value then
(from the perspective of the first bin) it is like a non-selected agent increases its value. Consequently,
no guarantees can be made with respect to the assignment generated for the first bin. As a result,
the agent that increased its value may compete against a different set of agents for the second bin,
and may not be selected. One way to deal with this difficulty is to restrict the set of algorithms that
may be employed by the iterative packing approach to those that are loser-independent, as formally
defined below. Intuitively, a loser-independent algorithm does not disturb an assignment when the
value of a losing agent increases, unless that agent becomes a winner. Note that this requirement is
satisfied by any optimal (1-approximation) algorithm.

Definition 2.4. An algorithm A is said to be loser-independent with respect to the bid of an agent
if it satisfies the following property: if algorithm A generates the solution a in which the agent is not
selected when its bid is (o, v) then algorithm A either generates the same solution a or selects the
agent when its bid is (õ, ṽ), where õ � o and ṽ ≥ v, and the bids of all the other agents are fixed.

Theorem 2.5. If algorithm A is loser-independent and monotone with respect to the bid of every

agent then the iterative packing approach, which employs it as the single bin oracle, is monotone with

respect to the bid of every agent.

Proof. Consider an agent i that is selected to the j-th bin by the algorithm when its bid is (o, v).
Now, suppose that i improves its bid to (õ, ṽ) such that õ � o and ṽ ≥ v, and the bids of all the other
agents are fixed. For the sake of monotonicity, we need to prove that the iterative packing approach
selects i to some bin in the latter case. If i is selected in one of the first j − 1 packing iterations
of the algorithm, that is, the iterations that pack the first j − 1 bins, then we are clearly done.
Otherwise, let us focus on the j-th iteration. Notice that during the first j − 1 packing iterations,
the same set of agents are selected. This follows from the loser-independent property of algorithm A,
which guarantees that none of the assignments of the first j−1 bins was disturbed. Accordingly, the
same set of agents remain to compete for bin j, which implies, in conjunction with the monotonicity
property of algorithm A, that agent i must be selected in the j-th iteration.

The above characterization can be easily extended for a collection of algorithmsA = {A1, . . . , Am}
that are loser-independent and monotone. Specifically, one can prove that if each algorithm Aj is
loser-independent and monotone with respect to the bid of every agent then the iterative packing
approach, which employs Aj as the oracle of bin j, is monotone with respect to the bid of every
agent. We defer the details to the full version of this paper.
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2.4 Applications

The domain of problems for which the mentioned characterization is useful is broad. Essentially,
one may take any single-minded or single-parameter version of a social welfare maximization packing
problem π, and design a new “multiple” variant of this problem via the separable assignment problem
paradigm. In what follows, we demonstrate the applicability of the characterization by utilizing it
in the context of several well-known or highly-motivated problems. Note that the characterization
reduces the task of designing a monotone algorithm for the “multiple” variant of π to that of designing
a loser-independent and monotone algorithm for π.

We begin by pointing out two known approximation properties of the iterative packing approach.
We will utilize these properties when analyzing the approximation ratio of the iterative approach
for problems under consideration. The first property states that given an α-approximation oracle
for the single bin sub-problem of the separable assignment problem, the iterative packing approach
has an approximation ratio of at most α + 1 [23, 13, 25]. The second property pertains to the
special case of the separable assignment problem in which all the separable independence systems
are identical, that is, I1 = · · · = Im. In this case, it is known that given an α-approximation oracle
for the single bin sub-problem, the iterative packing approach achieves approximation ratio of at
most e1/α/(e1/α− 1) [36, 25]. Note that these properties are additional motivation for our use of the
iterative packing approach as they show that the approximation ratio of the iterative approach for
the “multiple” variant problem degrades by constants with respect to that of the single bin oracle.
For purpose of self-containment, formal proofs of these properties appear in Appendix A.1.

The multiple knapsack and generalized assignment problems. In the following, we consider
the single-minded variant of the multiple knapsack problem, and the single-parameter variant of
the generalized assignment problem. Both problems are special cases of the separable assignment
problem, where the single bin sub-problem is the knapsack problem. The single-minded variant of
multiple knapsack generalizes the single-parameter variant presented in Subsection 2.2 by allowing
each agent i to be dishonest about the pair (wi, vi), that is, it may by untruthful about both the size
and the value of the corresponding item. The single-parameter variant of the generalized assignment

problem extends the single-parameter variant of multiple knapsack by characterizing each item i with
a pair (wi, vi), where wi is a vector of length m which represents the size that item i occupies in
each of the bins, and vi is its positive value. Note that the private data of agent i consists only of
the value vi, while the vector wi is public knowledge.

We demonstrate the utility of the new condition via these problems. We begin by designing a
relatively simple 2-approximate algorithm for the knapsack problem that may be utilized as the single
bin oracle. It is instructive to measure our algorithm against algorithm MaxGreedy as our algorithm
is loser-independent. Algorithm HalfGreedy, formally described below, begins by computing two
assignments: one which consists only of the maximum value item, and another that is based on a
greedy approach with respect to the profit density ratio. Note that profit density greedy approach in
our algorithm has three key differences from the profit density greedy approach applied by algorithm
MaxGreedy. The first is that it only considers small items, namely, items whose size is no more
than half the capacity of the bin; the second is that it stops adding items to the assignment once
their overall size is at least half of the capacity of the bin; and the third is that it defines the value
of the assignment, marked by V2, to be the overall value of the items that fill exactly half of the
capacity of the bin (unless the overall size of all small items is less than that). Particularly, in the
former case, only a portion of the value of the last item included in the assignment is taken into
account. This portion corresponds to the portion of the size of the item contained before the half-
way mark of the bin. Note that V2 is a lower bound on the overall value of the items in the profit
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density greedy assignment. Then, the algorithm returns the assignment corresponding to a greater
assignment value.2

Algorithm 2 HalfGreedy

Input: A set of items U , and the capacity of the bin W
Output: A set of items S to be assigned to the bin

1: U1 ← U , U2 ← {i ∈ U : wi ≤W/2}, S1 ← ∅, S2 ← ∅

2: let S1 be the singleton set that consists of the maximum value item of U1

3: let V1 be the value of the single item in S1

4: while
(
∑

ℓ∈S2
wℓ < W/2 and U2 6= ∅

)

do

5: remove the item i that has a maximum profit density from U2

6: add i to S2

7: end while

8: let i1, . . . , ik be the items selected to S2 according to their inspection order.
9: let V2 =

∑k−1

ℓ=1
viℓ + vik/wik ·min{wik ,W/2−

∑k−1

ℓ=1
wiℓ}

10: if V1 ≥ V2 then return S1 else return S2

For purposes of analyzing the monotonicity and loser-independent properties of the algorithm,
we consider two input instances that are identical with the exception that in the first instance the
bid of agent i is (w, v) and in the second instance its bid is (w̃, ṽ) such that w̃ ≤ w and ṽ ≥ v. We
denote the assignments and corresponding assignment values that algorithm HalfGreedy generates
for the first instance by S1, S2 and V1, V2, respectively. Similarly, we mark the assignments and
corresponding values generated for the second instance by S̃1, S̃2 and Ṽ1, Ṽ2. We begin by proving
the following lemma, which plays an instrumental role in establishing the mentioned properties.

Lemma 2.6. Consider an index k ∈ {1, 2}. The corresponding assignment values satisfy Ṽk ≥ Vk.

Furthermore, if Ṽk > Vk then i ∈ S̃k, and if Ṽk = Vk then either i ∈ S̃k or S̃k = Sk.

Proof. Recall that V1 is the value of the maximum value item. It is clear that this value can only
increase when any item increases its value. Thus, Ṽ1 ≥ V1. Moreover, if Ṽ1 > V1 then i must be
the maximum value item, and hence, i ∈ S̃1. Lastly, consider the case Ṽ1 = V1. We assume that
possible ties are broken according to some fixed ordering on the set of items. This implies that the
assignment could not have changed, unless i increased its value to V1, become part of the group of
maximum value items, and was selected.

Let us turn to the profit density greedy approach. Recall that this approach packs the most
profitable small items in terms of value to size, and sets the assignment value to be the overall value
of the items that fill exactly half of the capacity of the bin. The only exception is if the overall size
of all small items is less than half of the capacity of the bin, and then, the assignment value is the
overall value of all the small items. We begin by considering the simple case in which the overall
size of all the small items in the second instance, denoted by Ũ2, is less than half the capacity of
the bin. In this case, S̃2 = Ũ2. Notice that the set of small items in the first instance, namely, U2,
satisfies U2 ⊆ Ũ2. This follows by recalling that the only difference between both instances is that
the bid of i changed such that its size may have decreased. Hence, S2 ⊆ U2 ⊆ Ũ2 = S̃2, which implies
that Ṽ2 ≥ V2. Let us now consider the case that the overall size of all the small items in the second

2There are high-level similarities between algorithm HalfGreedy and algorithm AK of [1]; however, the properties
for which the algorithms designed for are quite different. We thank Tim Roughgarden for pointing out [1].
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instance is at least half of the capacity of the bin. The claim that Ṽ2 ≥ V2 follows by observing that
if we place the items of S̃2 in the first half of the bin according to an non-increasing profit density
ratio then any point in this packing has a profit density ratio that is at least as large as the profit
density ratio of that point in the corresponding packing according to S2. Here, the profit density
ratio of a point is the profit density ratio of the item the contains it. For the purpose of proving
the two additional properties, notice that if i /∈ S̃2 then i /∈ S2. This results since the algorithm is
greedy with respect to profit density ratio, and i has better profit density ratio (and smaller size) in
the second instance. In turn, this implies that if i /∈ S̃2 then the assignments and the corresponding
assignment values generated for both instances should be identical as i plays no role in any of them.
Consequently, if Ṽ2 = V2 and i /∈ S̃2 then S̃2 = S2. In addition, if Ṽ2 > V2 then i ∈ S̃2.

We are now ready to prove the main properties of our algorithm.

Theorem 2.7. Algorithm HalfGreedy achieves 2-approximation and maintains monotonicity and

loser-independence with respect to the bid of every agent.

Proof. We begin by proving the approximation guarantee of the algorithm. Let S∗ = {i∗1, . . . i
∗
ℓ} be

the set of items packed in the optimal solution ordered according to a non-increasing size, and let
OPT =

∑ℓ
j=1

vi∗j be the overall value of the items in S∗. We consider two cases, depending whether
S∗ contains a big item or not, and demonstrate that in both cases the approximation ratio of the
algorithm is 2. An item is big if its size is more than half the capacity of the bin.

Case I: S∗ consists of a big item. Notice that S∗ can consist of only one big item, that is, i∗1. In
addition, the overall size of all the other (necessarily small) items is less than half the capacity of
the bin. This implies that V2 ≥

∑ℓ
j=2

vi∗j . Moreover, it is clear that V1 ≥ vi∗
1
. Hence,

max(V1, V2) ≥
1

2
(V1 + V2) ≥

1

2

ℓ
∑

j=1

vi∗j =
1

2
OPT .

Case II: S∗ only consists of small items. Recall that the profit density greedy approach generates an
assignment in which either all small items are packed or at least half of the bin is packed with the
most profitable small items in terms of value to size. Thus, it follows that

max(V1, V2) ≥ V2 ≥
1

2

ℓ
∑

j=1

vi∗j =
1

2
OPT .

We turn to prove that the algorithm is monotone with respect to the bid of every agent. For this
purpose, we utilize the previously mentioned input instances, and argue that if agent i is selected
by the algorithm with respect to the first instance then i must be selected with respect to the
latter instance. In what follows, we establish the claim for the case that V1 ≥ V2, noting that the
complementary case can be proved by using nearly identical arguments. Note that i ∈ S1. We
consider two cases, depending on the assignment values attained by the algorithm for the second
instance, and demonstrate that in both of them i is selected:

• Case I: Ṽ1 ≥ Ṽ2. Notice that Lemma 2.6 guarantees that in any case either i ∈ S̃1 or S̃1 = S1.
Nevertheless, since i ∈ S1, it follows that i ∈ S̃1.

• Case II: Ṽ2 > Ṽ1. Observe that Ṽ2 > Ṽ1 ≥ V1 ≥ V2, where the second inequality results from
Lemma 2.6. This implies, in conjunction with Lemma 2.6, that i ∈ S̃2.
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We now establish that the algorithm is loser-independent with respect to the bid of every agent.
Similarly to before, we utilize the aforementioned input instances, and claim that if agent i is not
selected by the algorithm with respect to the first instance then it is either selected with respect to
the latter instance or the algorithm generates the same assignment. In the following, we prove the
claim for the case that V2 > V1, noting that the complementary case can be proved by using nearly
identical arguments. Note that i /∈ S2. We consider two cases, depending on the assignment values
obtained by the algorithm for the second instance:

• Case I: Ṽ1 ≥ Ṽ2. Notice that Ṽ1 ≥ Ṽ2 ≥ V2 > V1, where the second inequality results from
Lemma 2.6. This implies, in conjunction with Lemma 2.6, that i ∈ S̃1.

• Case II: Ṽ2 > Ṽ1. Lemma 2.6 guarantees that in any case either i ∈ S̃2 or S̃2 = S2.

Theorem 2.7, Theorem 2.5 and the previously mentioned approximation properties, which are
formally stated in Lemma A.1 and Lemma A.2, imply the following corollaries.

Corollary 2.8. There is a truthful 3-approximation mechanism for the generalized assignment prob-

lem among single-parameter agents.

Corollary 2.9. There is a truthful 3-approximation mechanism for multiple knapsack among single-

minded agents. This mechanism attains an approximation ratio of e1/2/(e1/2 − 1) ≈ 2.541 when bin

capacities are identical.

As we are interested in better performance guarantees, we turn to study the monotone FPTAS for
the knapsack problem, developed by Briest, Krysta and Vöcking [12]. We prove that this algorithm is
loser-independent, and thus, may be employed by an iterative packing approach. A formal description
of this algorithm, referred to as algorithm MonotoneFPTAS, is given below.3 Algorithm MonotoneF-

PTAS enumerates over a collection of O(log(n/ǫ)) algorithms. Each of these algorithms scales the
values of the items in a different fashion, and then applies the well-known pseudo-polynomial time
algorithm for knapsack, referred to as PseudoPack, which computes an optimal assignment with
respect to the scaled values. Finally, the algorithm returns the maximum value assignment with
respect to the de-scaled values. Note that if several assignments have the same maximum value then
it is assumed that this tie is broken according to the index k.

Theorem 2.10. Algorithm MonotoneFPTAS is a fully polynomial time approximation scheme that

maintains monotonicity and loser-independence with respect to the bid of every agent.

Proof. The approximation guarantee and the monotonicity of the algorithm are established in [12].
Hence, we are left to prove that the algorithm is loser-independent. Essentially, this is accomplished
using a similar line of argumentation as exhibited in the proofs of Lemma 2.6 and Theorem 2.7.

Consider two input instances that are identical with the exception that in the first instance the
bid of agent i is (w, v) and in the second instance its bid is (w̃, ṽ), where w̃ ≤ w and ṽ ≥ v. Let K
be the collection of scaling indices used by the algorithm with respect to the first instance, namely,
the algorithm employs the parameterized sub-procedure Scalek, for every k ∈ K. Moreover, let Sk

and Vk be the assignment and corresponding value that the algorithm generates by employing Scalek
with respect to the first instance. Specifically, Sk is the assignment that Scalek generates and Vk is

3Note that MonotoneFPTAS differs from the algorithm presented in [12] with respect to the collection of the scaling
algorithms it employs. Particularly, our algorithm considers a superset of scaling algorithms. This modification does
not alter any of the properties proved in [12], but simplifies the analysis of the loser-independence property.
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Algorithm 3 MonotoneFPTAS

Input: A set of items (v,w), where v and w are value and weight vectors of the items
Output: A set of items s to be assigned, where s is a {0,1}-assignment vector of the items

1: s← 〈0, . . . , 0〉, best← 0
2: Let V be the maximum value of an item
3: for k ← ⌈log(nVǫ )⌉, . . . , ⌈log(V )⌉ − log( n

1−ǫ)− 1 do

4: (s̃, ṽ)← Scalek(v,w)
5: if s̃ · ṽ > best then
6: s← s̃, best← s̃ · ṽ
7: end if

8: end for

9: return s

10: procedure Scalek(v,w)
11: α← n

ǫ·2k

12: let v̄ be the truncated values vector in which each v̄i = min{vi, 2
k}

13: let v′ be the scaled values vector in which each v′i = ⌊αk · v̄i⌋
14: let ṽ be the de-scaled values vector in which each ṽi = v′i/αk

15: return (PseudoPack(v′, w), ṽ)
16: end procedure

the value of this assignment according to the de-scaled values. In a similar manner, let S̃k and Ṽk

be the assignment and corresponding value attained by Scalek with respect to the second instance.
Recall that Scalek computes an optimal assignment with respect to the scaled values. Moreover,

notice that the scaling process is independent of the values of the items and only depends on the
parameter k. This implies, in conjunction with the fact that the bid of i improves in the latter
instance, that Ṽk ≥ Vk. In addition, one can verify that the optimality of Scalek and the properties
of the scaling process ensure that if Ṽk > Vk then i ∈ S̃k, and if Ṽk = Vk then either i ∈ S̃k or S̃k = Sk.
We are now ready to argue that if agent i is not selected by the algorithm with respect to the first
instance then it is either selected with respect to the second instance or the algorithm generates the
same assignment. Suppose the algorithm returns the assignment Sk∗ when it is applied to the first
instance. We consider three cases, depending on the assignment returned by the algorithm for the
second instance:

• Case I: the algorithm returns S̃k∗. The above-mentioned argument guarantees that in any case
either i ∈ S̃k∗ or S̃k∗ = Sk∗ .

• Case II: the algorithm returns S̃k′ such that k′ 6= k∗ and k′ ∈ K. We prove that Ṽk′ > Vk′ .
Consequently, the above-mentioned argument ensures that i ∈ S̃k′ . Assume by contradiction
that Ṽk′ = Vk′ . This implies that all the inequalities in the chain Ṽk′ ≥ Ṽk∗ ≥ Vk∗ ≥ Vk′ must
be satisfied with equality. However, this contradicts the assumption that ties are broken in a
consistent way.

• Case III: the algorithm returns S̃k′ where k′ /∈ K. Notice that this case may only happen if
the value of i becomes strictly greater than the value of the maximum value item in the first
instance, henceforth denoted by V , and in consequence, the collection of scaling algorithms
changed. In particular, k′ must be greater than all the indices in K, that is, k′ > ⌈log(nVǫ )⌉.
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Let us focus on the scaling of all the items except i by Scalek′ . Each such item has a value of
at most V , and thus, it must be scaled to 0. This implies that the sole reason that S̃k′ was
returned by the algorithm is that i ∈ S̃k′.

Corollary 2.11. There is a truthful (2+ǫ)-approximation mechanism for the generalized assignment

problem among single-parameter agents.

Corollary 2.12. There is a truthful (2+ ǫ)-approximation mechanism for multiple knapsack among

single-minded agents. This mechanism attains an approximation ratio of e/(e− 1) + ǫ ≈ 1.582 when

bin capacities are identical.

Additional applications. In what follows, we briefly list several additional packing problems whose
“multiple” variant can be solved by exploiting the characterization. In particular, we identify the
corresponding loser-independent algorithms.

Combinatorial auctions. The multi-unit combinatorial auction problem (see, e.g., [3, 10]) is a natural
generalization of the celebrated combinatorial auction problem in which each good has several copies.
One may interpret the “multiple” variant of this problem as adding group constraints to the basic
problem. Specifically, in this variant, each good is associated with a group, and goods from different
groups cannot be used to form a bundle satisfying an agent. One can demonstrate that the algorithm
for single-minded combinatorial auction [32], and the algorithms for the single-minded multi-unit
version [12, 5] maintain loser-independence.

The single value combinatorial auction problem is a special case of the combinatorial auction
problem in which the valuation of each agent is represented by a single value. Particularly, each
(multi-minded) agent is interested in several different bundles, but obtains the same value from
any non-zero outcome. It is clear that our characterization is not applicable since the agents are
multi-minded. Still, if the agents are known, that is, all their data besides their values is publicly
known, then one can establish that the characterization is still suitable. Essentially, this follows from
the observation that truthfulness in known agents setting reduces to value monotonicity. Similarly
to before, one may interpret the “multiple” variant of this problem as adding group constraints to
the basic problem, and may prove that the algorithm for single value combinatorial auction among
known multi-minded agents [7] maintains loser-independence.

Advertisement space auctions. The theme of selling advertisement space on a newspaper page can
be modelled by packing convex figures in a plane. One may interpret the “multiple” variant of
this problem as increasing the advertisement space to several pages, and may demonstrate that the
algorithms presented in [6] maintain loser-independence.

Network routing. The task of routing in networks is commonly modelled using the unsplittable flow
problem. One may interpret the “multiple” variant of this problem as adding wavelength constraints
to the basic problem. These constraints prevent serving requests across different wavelengths. One
can verify that the algorithms presented in [12, 5] maintain loser-independence.

3 The Online Setting

In this section, we extend our results for an online environment in which agents arrive and leave
dynamically over time and there is uncertainty about the set of decisions to be made in the future.
We illustrate our ideas by considering the online version of the separable assignment problem. In
this variant, bins are aligned with discrete time slots, and items arrive and depart dynamically. In
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particular, an item is not known prior to its arrival and cannot be assigned after its departure. The
goal is to generate a maximum value assignment of items to bins in an online fashion. Specifically,
any assigned item must be packed in a bin that corresponds to a time slot between its arrival and
departure times. In the game theoretic version of this problem, each agent controls an item, and
may be untruthful about its value, arrival time, and departure time. In adherence with previous
results in an online setting [41, 28], we assume no early-arrival and no late-departure misreports.
That is, agents cannot report an arrival time earlier than their true arrival time or a departure time
later than their true departure time. Note that Lavi and Nisan [30] considered the special case of
separable assignment problem in which any bin can only accommodate a single item, and proved
that it is impossible to attain bounded competitive ratio without restricting the misreports.

Our approach to solve this online variant is identical to before. Namely, we assume the existence
of an α-approximation oracle for the single bin sub-problem, and build a solution by iteratively
employing it to generate an assignment for each of the bins. Notice that a single bin oracle optimizes
with respect to a current state of agents and does not take into account the global system-wide view,
and hence, if bins are considered according to their time order then the iterative approach constitute
an online algorithm.

3.1 A sufficient condition

In what follows, we reformulate the sufficient condition for the single bin approximation oracle,
exhibited in Subsection 2.3, for online environments. We begin by presenting revised definitions of
single-minded agents and monotonicity for an online setting. Remark that the forthcoming definitions
can be refined for single-parameter agents in a similar manner to before. Additionally, we encourage
the reader to refer to [40] for a more detailed overview of online mechanisms.

The private data of single-minded agent in an online setting consists of a quadruple (o, v, a, d),
where o is an object that the agent is interested in, v is the valuation of the agent for attaining o,
and a and d are the arrival and departure times of the agent, respectively.

Definition 3.1. An online algorithm A is said to be monotone with respect to the bid of an agent
if it satisfies the following property: if algorithm A selects the agent when its bid is (o, v, a, d) then
algorithm A selects the agent when its bid is (õ, ṽ, ã, d̃), where õ � o, ṽ ≥ v, ã ≤ a and d̃ ≥ d, and
the bids of all the other agents are fixed.

Theorem 3.2. ([40]) If online algorithm A is monotone with respect to the bid of every agent then

there exists a corresponding truthful mechanism which can be computed using algorithm A.

We are ready to prove that an online iterative packing approach, which employs a monotone
and loser-independent oracle as the single bin sub-procedure, satisfies monotonicity. Note that the
monotonicity and loser-independence of the oracle are with respect to the non-temporal part of the
bid, that is, the object-value pair (o, v).

Theorem 3.3. If algorithm A is loser-independent and monotone with respect to the non-temporal

bid of every agent then the online iterative packing approach, which employs it as the single bin

oracle, is monotone with respect to the bid of every agent.

Proof. Consider an agent i that is selected to bin j by the algorithm when its bid is (o, v, a, d).
Note that j ∈ {a, . . . , d}. Now, suppose that i improves its bid to (õ, ṽ, ã, d̃) such that õ � o, ṽ ≥ v,
ã ≤ a and d̃ ≥ d, and the bids of all the other agents are fixed. Notice that j ∈ {ã, . . . , d̃}. For the
sake of monotonicity, we need to prove that the online iterative packing approach selects i to one of
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the bins {ã, . . . , d̃} in the latter case. If i is selected to one of the bins {ã, . . . , j − 1} then we are
clearly done. Otherwise, let us focus on bin j. Notice that the same set of agents are selected to the
first j − 1 bins. This follows from the loser-independence property of algorithm A which guarantees
that none of the assignments of the first j − 1 bins was disturbed. It seems worthy to emphasize
that if i competes in time slots that it did not compete in the former instance, e.g., when ã < a, one
may interpret its prior non-attendance as if it was not selected. Accordingly, the same set of agents
remain to compete for bin j, which implies, in conjunction with the monotonicity of algorithm A,
that agent i must be selected to bin j.

3.2 Applications

Similarly to the offline setting, the domain of problems for which the mentioned characterization is
useful is broad. Basically, one may take any single-minded or single-parameter version of a social
welfare maximization packing problem, and design an online variant of this problem via the online
separable assignment problem paradigm. Several straightforward examples are the problems pre-
sented in Subsection 2.4. Note that the online iterative packing approach achieves a competitive
ratio of at most α + 1, assuming an α-approximation oracle for the single bin sub-problem. This
claim can be established by using nearly identical arguments to the ones presented in Lemma A.1.

An additional interesting application is the problem of dynamic auction with expiring items.
This problem is a special case of the online separable assignment problem, where the single bin sub-
problem is a single-item auction. An instance of this problem consists of a collection of unit-capacity
bins, each associated with a distinct time-slot. An additional ingredient of the input is an online
sequence of unit-size items, each of which is characterized by a triple (v, a, d), where v is its positive
value, a is its arrival time, and d is its departure time. The objective is to generate a maximum value
assignment of items to bins in an online fashion. In particular, this assignment should place at most
one item in each bin, and each assigned item must be placed in a bin that corresponds to a time slot
between its arrival and departure times. Focusing on the single bin sub-problem, one can notice that
it admits a trivial optimal algorithm which places the most valuable item in a bin. As previously
mentioned, any optimal algorithm is monotone and loser-independent. Hence, the characterization
and the claimed approximation property imply the following corollary.

Corollary 3.4. There is a truthful 2-competitive mechanism for dynamic auction with expiring items

among single-parameter agents.

Interestingly, this simple online iterative packing algorithm is identical to the algorithm presented
by Hajiaghayi et al. [28], and it is best possible [28, 19]. Specifically, no deterministic truthful
mechanism can obtain a competitive ratio better than 2. A natural generalization of this problem
can be obtained by replacing the single bin sub-problem of single-item auction with multi-item

auction. We refer to this problem as dynamic auction with expiring multi-items. It is well-known
that the combinatorial optimization problem that underlie multi-unit auction among single-minded
agents is the knapsack problem. In correspondence with previous results, we yield the following
corollary.

Corollary 3.5. There is a truthful (2+ ǫ)-competitive mechanism for dynamic auction with expiring

multi-items among single-minded agents.
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4 Additional Applications via Submodular Function Maximization

As mentioned before, the greedy iterative approach provides good approximation in the context
of maximizing a non-decreasing submodular function subject to independence constraints. More
formally, let f : 2N →R+ be a non-decreasing submodular function on a finite ground set N , and let
(N,I) be an independence family. In other words, I ⊆ 2N is a family of subsets that is downward
closed, that is, A ∈ I and B ⊆ A imply B ∈ I. The optimization problem is then maxS∈I f(S).
Interesting independence families are matroids, intersection of a small number k of matroids, and
somewhat more general notions such as k-independence and k-extendible systems (see [29, 34, 14]).
The greedy approach is then simple; start with an empty set, and incrementally build a solution
by greedily adding an element that (approximately) improves the current solution the most while
maintaining its independence. It is known that the greedy approach gives a (kα+1)-approximation
for the above problem if there is an α-approximation for picking the element that most improves the
current solution [23] (see [25, 14] for recent and more easily available proofs).

When the underlying optimization problem of mechanism design, in particular the winner de-
termination problem, can be cast as a special case of submodular function maximization subject to
independence constraints, one may be able to use the greedy approach. In this case, if the (approxi-
mation) algorithm employed by the greedy incremental step is monotone and loser-independent then
one can show that the overall greedy approach is monotone. We remark that the greedy approach
here is somewhat different from the one presented in Section 2 for separable assignment problems;
for the latter case, we employed a local greedy approach which considers the bins according to an
arbitrary ordering and packs each bin with the approximate best solution. However, a global greedy
approach would have considered all empty bins in each step and then pack the bin that most im-
proves the solution. We note that the local greedy approach works for partition matroids [23], and
is essential for the applications in online settings. Still, more general independence constraints re-
quires the global greedy approach. As we remarked, loser-independence is still applicable. We give
a concrete application to illustrate it.

Consider the multiple knapsack problem (or the generalized assignment problem), and suppose
we add a constraint that at most m′ < m of the bins can be used in the packing. The resulting
optimization problem becomes a submodular function maximization problem subject to a laminar
matroid constraint (as observed in [14]). In this setting, the global greedy approach needs to pick in
each step the best bin to pack by trying all remaining bins. One can easily extend Theorem 2.5 to
this setting, and prove that if the single bin algorithm is monotone and loser-independent then the
greedy approach is monotone. Details are deferred to the full version of this paper. We hope that
additional applications to mechanism design problems will be found by using the above high-level
approach.

Acknowledgments: The authors thank Yossi Azar, Jason Hartline, Tim Roughgarden and Jan
Vondrák for useful discussions and comments on topics related to this paper.
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A The General Setting

In this section, we present, for completeness, some details omitted from Section 2 of the paper.
See [36, 15, 24, 13, 25] for results and proofs on greedy for multiple knapsack, generalized and
separable assignment problems, and submodular function maximization subject to matroid and in-
dependence constraints.

A.1 The performance guarantees of the iterative approach

In this subsection, we prove the claimed performance guarantee properties of the iterative packing
approach. For ease of presentation, we introduce the following notation:

• Let S∗ denote the set of items packed in the optimal solution, and let S be the set of items
packed in the solution generated using the iterative packing approach. Furthermore, let S =
S1∪· · ·∪Sm be the partition of the items in S into m disjoint sets according to their assignment
in the solution of the iterative approach. Specifically, Sj consists of all the items of S that were
assigned to bin j in that solution.
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• Let v(T ) =
∑

i∈T vi denote the overall value of items in T . Particularly, we let OPT = v(S∗)
and ALG = v(S) be the value of the optimal solution and the solution generated using the
iterative packing approach, respectively.

Lemma A.1. The iterative packing approach achieves approximation ratio of at most α + 1 given

an α-approximation oracle for the single bin sub-problem.

Proof. Let T = S∗ \ S be the set of items that are packed in the optimal solution, but not packed
by the solution of the iterative packing approach. Moreover, let T = T1 ∪ · · · ∪ Tm be the partition
of the items in T into m disjoint sets according to their assignment in the optimal algorithm. Now,
if v(T ) ≤ α/(α + 1) ·OPT then we are clearly done since

ALG = v(S) ≥ v(S∗)− v(T ) ≥
1

α+ 1
OPT .

Otherwise, notice that v(Sℓ) ≥ 1/α · v(Tℓ). This follows by the α-approximation guarantee of
the oracle, and the fact that Tℓ was a feasible solution for the oracle when it considered bin ℓ.
Consequently, we get that

ALG = v(S) =

m
∑

ℓ=1

v(Sℓ) ≥
1

α

m
∑

ℓ=1

v(Tℓ) =
1

α
v(T ) >

1

α+ 1
OPT ,

where the last inequality follows from the assumption that v(T ) > α/(α + 1) ·OPT.

Lemma A.2. The iterative packing approach has approximation ratio of at most e1/α/(e1/α − 1)
given an α-approximation oracle for the single bin sub-problem, when the separable independence

systems are identical.

Proof. We begin by claiming that v(Sj) ≥ 1/(αm) · (OPT − v(
⋃j−1

ℓ=1
Sℓ)), for every j ∈ [m]. For this

purpose, notice that a simple counting argument proves that there is a set of items T ⊆ S∗ \
⋃j−1

ℓ=1
Sℓ

that is assigned to a single bin by the optimal algorithm and has v(T ) ≥ 1/m · (OPT − v(
⋃j−1

ℓ=1
Sℓ)).

Now, the claim follows by observing that T was feasible for the α-approximation oracle when it
considered bin j since all the separable independence systems are identical.

We turn to prove that OPT− v(
⋃j

ℓ=1
Sℓ) ≤ (1− 1/(αm))j ·OPT, for every j ∈ {0, . . . ,m}. This

is achieved by induction on j. It is clear that this argument holds when j = 0. Now, notice that

OPT− v

(

j
⋃

ℓ=1

Sℓ

)

≤

(

1−
1

αm

)

(

OPT− v

(

j−1
⋃

ℓ=1

Sℓ

))

≤

(

1−
1

αm

)j

OPT ,

where the first inequality follows from the above-mentioned claim, and the last inequality results from
the induction hypothesis. In particular, this implies that OPT−v(

⋃m
ℓ=1

Sℓ) ≤ (1−1/(αm))m ·OPT ≤
e−1/α ·OPT. Consequently, we get that

ALG = v

(

m
⋃

ℓ=1

Sℓ

)

≥

(

e1/α − 1

e1/α

)

OPT .
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