Skip to main content

Digital Watermarking Schemes Using Multi-resolution Curvelet and HVS Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5703))

Abstract

In this paper, a robust non-blind watermarking scheme based on Curvelet transform is proposed. This work extends the work proposed by Leung [1] to increase the quality of watermarked image. The proposed algorithm modifies the watermark extracting rule and adds a Human Visual System (HVS model). The experimental results demonstrate that the proposed algorithm can provide great robustness against most image processing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leung, H.Y., Cheng, L.M., Cheng, L.L.: A Robust Watermarking Scheme using Selective Curvelet Coefficients. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, pp. 465–468 (2008)

    Google Scholar 

  2. Lutz, R.: Software Engineering for Safety: A Roadmap, in The Future of Software Engineering. In: Finkelstein, A. (ed.) ICSE 2000, pp. 213–224. ACM Press, New York (2000)

    Google Scholar 

  3. Sindre, G., Opdahl, A.L.: Eliciting security requirements by misuse cases. In: Proc. 37th Technology of Object-Oriented Languages and Systems (TOOLS-37 Pacific 2000), Sydney, Australia, pp. 120–131 (2000)

    Google Scholar 

  4. Hermann, D.S.: Software Safety and Reliability: Techniques, Approaches, and Standards of Key Industrial Sectors. Wiley-IEEE Computer Society Press (2000)

    Google Scholar 

  5. Fenton, N.E., Neil, M.: A strategy for improving safety related software engineering standards. IEEE Trans on Software Eng. 24, 1002–1013 (1998)

    Article  Google Scholar 

  6. Candes, E.J., Donoho, D.L.: New tight frames of curvelets and optimal repesentations of objects with C2 singularities. Communications on Pure and Applied Mathematics 57, 219–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes, E.J., Donoho, D.L.: Fast Discrete Curvelet Transform. Applied and Computational Mathmatics, California Institute of Technology, 1–43 (2005)

    Google Scholar 

  8. He, K.-f., Gao, J., Hu, L.-m., Gao, H.-y.: Watermarking for images using the HVS and SVD in the wavelet domain. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 2352–2356 (2006)

    Google Scholar 

  9. Maity, S.P., Kundu, M.K.: An ImageWatermarking Scheme using HVS Characteristics and Spread Transform. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 869–871 (2004)

    Google Scholar 

  10. Delaigle, J.F., Vleeschouwer, C.D., Macq, B.: Watermarking Algorithm Based on A Human Visual Model. Signal Processing 66, 319–335 (1998)

    Article  MATH  Google Scholar 

  11. Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. IEEE Journal on Selected Areas in Communications 16, 525–538 (1998)

    Article  Google Scholar 

  12. Hannigan, B.T., Reed, A., Bradley, B.: Digital Watermarking Using Improved Human Visual System Model. In: Proc. SPIE Electronic Image, Security and Watermarking of Multimedia Content, San Jose, CA, vol. 4314, pp. 468–474 (2001)

    Google Scholar 

  13. Taoa, P., Dexterb, S., Eskiciogluc, A.M.: Robust Digital Image Watermarking in Curvelet Domain. In: Proceedings of the SPIE, vol. 6819, pp. 68191B–68191B-12 (2008)

    Google Scholar 

  14. Xiao, Y., Cheng, L.M., Cheng, L.L.: A Robust Image Watermarking Scheme Based on A Novel HVS Model in Curvelet Domain. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, pp. 343–346 (2008)

    Google Scholar 

  15. Cornsweet, T.N.: Visual Perception, ch. 12, pp. 311–364. Academic press, London (1970)

    Book  Google Scholar 

  16. Mannos, J.L., Sarkrison, D.J.: The Effects of a Visual Fidelity Criterion on the Encoding of Images. IEEE Transactions on Information Theory 20, 525–536 (1974)

    Article  MATH  Google Scholar 

  17. Campbell, F.W., Kulikowski, J.J., Levinson, J.: Orientational Selectivity of The Human Visual System. The Journal of Physiology 187, 437–445 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leung, H.Y., Cheng, L.M., Cheng, L.L. (2009). Digital Watermarking Schemes Using Multi-resolution Curvelet and HVS Model. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds) Digital Watermarking. IWDW 2009. Lecture Notes in Computer Science, vol 5703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03688-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03688-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03687-3

  • Online ISBN: 978-3-642-03688-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics