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ABSTRACT
High Performance Analytics with the R3-cache

Ruhan Sayeed

Contemporary data warehouses now represent some of the world’s largest databases.
As these systems grow in size and complexity, however, it becomes increasingly
difficult for brute force query processing approaches to meet the performance demands
of end users. Certainly, improved indexing and more selective view materialization
are helpful in this regard. Nevertheless, with warehouses moving into the multi-
terabyte range, it is clear that the minimization of external memory accesses must be
a primary performance objective. In this thesis, we describe the R3-cache, a natively
multi-dimensional caching framework designed specifically to support sophisticated
warehouse/OLAP environments. R*-cache is based upon an in-memory version of the
R-tree that has been extended to support buffer pages rather than disk blocks. A key
strength of the R3-cache is that it is able to utilize multi-dimensional fragments of
previous query results so as to significantly minimize the frequency and scale of disk
accesses. Experimental results demonstrate significant performance improvements

relative to simpler alternatives.
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Chapter 1

Introduction

1.1 Multi-dimensional caching

OLAP (Online Analytical Processing) is becoming increasingly important in the con-
text of today’s data driven world. In fact, complex data analysis is crucial for any
long-term business plan and OLAP systems and applications provide us with effi-
cient techniques for managing and accessing the associated data stores. As with any
database system, caching has the potential to play a huge role in this context. In
particular, an efficient caching system can dramatically enhance the overall perfor-
mance of an OLAP DBMS. In data warehouses (the backing data stores for OLAP
servers), queries often take a long time to execute due to their complex structure
and the huge volume of data involved. Moreover, because of the nature of the data
warehouse environment, the same sets are queried repeatedly. This may occur when
a single user submits a batch of related queries or even when different users happen to
submit the same kinds of queries. Consequently, query response time can be greatly
improved by caching either full or partial results.

As is the case with DBMS systems in general, memory-resident caches can and

should be used to improve query response. Unlike traditional DBMS caches, however,



the fundamental structure of OLAP queries can be exploited to dramatically improve
the capabilities of the cache manager. Specifically, OLAP queries tend to be “cubic”
in nature; in other words, the most common pattern is a multi-dimensional range
query that defines a contiguous hyper-cubic region in the data space. That being the
case, existing buffer pages in OLAP-aware caches can subsume future queries that fall
within the hyper-cubic boundary. More powerfully still, new queries that spatially
overlap multiple existing pages can be dynamically transformed so as to minimize the
number of disk accesses required. Efficiently exploiting this notion of the geometric
cache is a crucial performance concern for real world OLAP servers.

A number of proposals have been put forward thus far for managing OLAP query
caches. But very few of those solutions are capable of handling OLAP/data ware-
house queries in higher dimensions (e.g., 3-7). More importantly still, when caching
methods have been proposed, they are typically associated with highly unrealistic,

over simplified test environments.

1.2 A new caching model

Previous work on OLAP caching has focused on either table level caching or query
level caching. Table level caching is suitable only for static schemes, while query level
caching can be applied to more dynamic environments. One of the major hurdles for
query level caching, however, is that it is only effective when a new query is subsumed
completely by a previous query result.

As a result of these shortcomings, Multi-dimensional OLAP (MOLAP) caching
was introduced. MOLAP, instead of using relational tuples to organize the data,

creates a multidimensional cube (e.g, an array) where attribute values serve as indexes



in the cube space. MOLAP will be discussed in detail in the next chapter. At this
point, however, we note that due to the native data structure, a MOLAP cube has the
potential to grow very large in higher dimensions, especially when large cardinalities
are encountered. So, though it works well in lower dimensions, in the absence of a
very good compression routine, it is likely to perform poorly in higher dimensions.

In this thesis, we propose instead a solution based on Relational OLAP (RO-
LAP). Specifically, we have developed the R3-cache, a mechanism based on the non-
overlapping R-tree (NOR Tree) model. Whereas R-trees generally have overlap-
ping child objects, a NOR tree consists of non-overlapping leaf node objects. This
allows us to limit the scale of the tree traversal and, consequently, to use an efficient
algorithm to search and find data-points. Our R3-cache, a cube-oriented caching
framework, supports the spatial manipulation of both full and partial query matches.
The functionality of the R3-cache is of course based upon the traditional R-tree, a
multi-dimensional disk-based indexing structure often seen in research and indus-
trial settings. The caching model is, in turn, fully integrated into the Sidera OLAP
DBMS, a fully parallelized “shared nothing” server that seeks to provide robust, high
performance analytics for today’s massive decision support environments.

We note that although functionality like insertion, deletion, searching, and node-
splitting in the R3-cache is similar to that of the R-tree, the two models differ in some
vital ways because of the non-overlapping structure of the leaf-nodes. As a simple
example, consider the node-splitting mechanism. In a R-tree data structure, the leaf
nodes can overlap one another, while in a R3-cache we must use an extended algorithm
to split the overlapping nodes in order to make them non-overlapping. This, in turns,

allows our searching mechanism to be more efficient.



In addition, we use efficient cache management techniques to replace old — and
relatively ineffective — data with new data. Cache management is a vital part of
our R3-cache solution. Because the hypercubic cache results can be both large and
complex in nature, a poorly maintained cache can degenerate into a slow, inefficient
server component if pro-active cache management is not undertaken. In this respect,
because cache size is finite, it is important to replace old, unused cache data with more
frequently used data. In fact, our cache management has two integral parts: cache
replacement and cache update. We use meta-data such as query size, frequency,
and query response time to calculate the viability of the nodes and to find the hot
spots in the cache. Based on these calculations, we perform the required replacement
and update operations. As a result, we believe our R3-cache design, in combination
with our cache management policy, makes an effective and efficient OLAP caching

model.

1.3 Experimental results

We have done extensive testing using data sets ranging in size from 100,000 to 10
million records, skew rates of 50 to 90 percent, and dimension counts in the 2-7
range. Most of the experimental results are time-based, but some are also based on
the cache hit-ratio.

As a concrete example, we conducted experiments by running 600 queries in the
data warehouse DB, first with the R3-cache, then without the cache. Our results show
query cost in the non-cached system to be three to five times more expensive relative
to the R3-cache model. For gauging the effectiveness of our cache management policy,

we ran additional tests on the R3-cache, with and without the cache update process.



In the absence of an effective cache management policy, our results show no significant
performance improvement as the cache size and query number increases. However,
with the addition of our cache management policy, query time is essentially cut in
half.

We have also performed a comparative analysis by first implementing an alter-
native MOLAP solution [10]. We used the same platform and data sets for both
systems and again executed 600 queries against the data warehouse DB, first with
the MOLAP cache, then with our own R3-cache. Though the performance in two
dimensions is nearly the same, our Relational OLAP system performed significantly

better in higher dimensions, often by a factor of three or more.

1.4 Thesis structure

The rest of the thesis is organized as follows. Chapter 2 presents an overview of the
OLAP architecture and its operation. It also provides a brief overview of Relational
OLAP, Multi-dimensional OLAP and the R-Tree. Chapter 3 contains the main con-
tribution of the thesis. It discusses the structure of the NOR-tree, as well as the
details of the larger caching framework. We also discuss the issues faced during the
implementation process and how we addressed them. Chapter 4 presents the results
of our experimental analysis. As noted, we include a comparative study of our system
relative to a MOLAP alternative. Finally, Chapter 5 provides a brief summary of the

contributions of the thesis and points to possible future work.



Chapter 2

Background Material

2.1 Introduction

Data warehousing is becoming an increasingly important focus of the database in-
dustry. One of the primary reasons behind this increased attention is OLAP, a
processing model that is capable of supporting sophisticated Decision Support Sys-
tems (DSS). Conventional database technologies like Online Transaction Processing
(OLTP), which are used for more direct database access, generally lack these capabil-
ities. However, the requirements associated with Decision Support lead to additional
constraints and demands for OLAP tools. We will discuss some of these issues in this
chapter.

We will begin with a general overview of OLAP technologies. Here, we will de-
scribe multi-dimensional data models typical of OLAP, with a particular emphasis on
Relational OLAP (ROLAP) and Multi-dimensional OLAP (MOLAP). We describe
their underlying data structures, as well as their strengths and weaknesses. Finally,
we look at the previous works carried out in the area of data warehouse caching and

discuss their strengths and weaknesses.



2.2 Decision support system

Historically, as corporations grew in scale and sophistication, so too did the size of
their stored electronic data. Data generation and analysis became more complex and
inefficient with the standard DBMS systems found in OLTP environments. Eventu-
ally, database designers realized that decision support systems should be constructed
as separate entities, independent of the front line OLTP systems. This allowed DSS
applications to provide efficient, flexible analysis of raw historical data gathered from
a variety of different sources and formats (e.g., RDBMS, text file, XML).

The DSS model can be sub-divided into three broad categories [11]. We discuss

these models below.

¢ Information Processing facilitates basic query and reporting functions. Only
the simplest forms of analysis are performed. In comparison to OLAP, IP

systems are quite limited in scope and complexity.

e OLAP is an extension of Information Processing in terms of its capabilities.
That being said, it’s quite different in its design. With IP, data is retrieved from
live databases, whereas OLAP uses data from many sources that is subsequently
consolidated into a single multi-dimensional data store. OLAP uses a data
warehouse as the underlying storage system, and then typically augments the
raw data with (i) an associated OLAP server and (ii) graphical OLAP tools
on the client computing systems through which users can analyze data from
selected, hierarchical dimensions [35]. We will discuss OLAP in greater detail

in Section 2.4.

e Data Mining is the last logical step in the data analysis process. In short, data



mining — at least in the data warehousing context — refers to the search for
patterns or trends in data across various dimensions. In contrast to user-driven

OLAP analysis, the data mining process is driven by the data itself.

2.3 Formal definition of the data warehouse

Before we delve deeper into the OLAP model, it’s important to first define the data
warehouse (DW) and it’s architecture since the data warehouse is an integral part
of virtually any OLAP system. According to Bill Inmon [19], the most accurate and
useful definition for the term is that “Data warehousing is a process, not a product,
for assernbling and managing data from various sources for the purpose of gaining
a single, detailed view of part or all of a business.” As previously noted, a data
warehouse is a separate physical entity consisting of historically consolidated data
gathered from various sources. OLAP uses the data from the data warehouse to
provide analysis across broad time frames.

In fact, in the same paper, Inmon gave a more formal definition of the data

warehouse, one that includes the following properties.

e Subject oriented. Data is organized so that all the data elements relating to

the same real-world event or object are linked together.

e Time variant. Changes in the data are tracked and recorded so that reports

can be produced, showing changes over time.

e Non Volatile. Data is never over-written or deleted, but retained for future

reporting.



e Integrated. The data warehouse contains data from most or all operational

applications of an organization, and this data is made consistent.

2.3.1 Data warehouse architecture

A data warehouse can be seen as a four-tier architecture [7]. Figure 2.1 provides a
simple illustration. At the very bottom of the “DW stack” we find all possible sources
of data such as operational databases, text files, XML, etc. Data is transmitted from
this level to the next level using a process known as ETL (Extract, Transform and
Load). Data from various sources is extracted, transformed, harmonized and then
loaded using sophisticated ETL applications [22]. The next level contains the data
warehouse proper, as well as its associated data marts (i.e., sub-divisions). This is the
point at which data in the DBMS is structured into a multi-dimensional architecture
known as a star schema or snow-flake schema. At this stage, data is amenable to
analysis and reporting. At the third level, we see the OLAP engine which further
prepares or transforms the raw data contained in the underlying warehouse. Core
OLAP functionality including slicing, dicing, roll up, drill down, and pivot would
be supported here. Finally, at the highest level, we find various end user tools that

managers and decision makers can use to perform complex decision making queries.

2.3.2 Schema

There are two primary database schemes that are commonly used for logical repre-

sentation of the OLAP tables.

e Star Schema. Figure 2.2 shows the logical representation of the Star Schema.

In a Star Schema, there are two kinds of tables — Fact tables and Dimension
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Figure 2.1: The data warehouse architecture

tables. Typically there is one fact table in a given Star Schema, with the
remainder being dimension tables. A fact table consists of all the primary
keys from each of the dimension tables, referred to as feature attributes, along
with one of more measure attributes. A measure attribute is a “process of
interest” such as Total Sales or Average Revenue. By contrast, Dimension tables
consist of a series of descriptive attributes that define some characteristic of the
Dimension (e.g., Customer Name, Phone Number). In practice, fact tables tend
to be relatively “narrow” but extremely large, with many fields redundantly
recorded throughout the table. This process of allowing redundant data is
called de-normalization. While normalization is ordinarily performed in OLTP
systems, so as to eliminate redundancy, OLAP systems explicitly encourage

de-normalized tables as it improves performance by minimizing expensive joins.
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Figure 2.2: Star Schema

e Snowflake Schema. A Snowflake Schema is similar to a Star Schema but it
does allow normalization for some dimension tables. In those cases, the fact
table joins with the normalized table which, in turn, joins with the additional
tables. For example, in Figure 2.3, the Product dimension is normalized so as

to create a new table called Category.

2.4 OLAP

Large corporations have, over the years, accumulated vast amounts of data in the
form of databases, text files and various other external resources. This data can be
processed and analyzed to gather knowledge and find historical trends. OLAP differs
from OLTP systems in this regard, because whereas OLTP systems are generally used
for day-to-day detail-level transactions, OLAP systems are used to analyze data and

trends across a much broader time frame. In addition, OLTP systems tend to deal
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Figure 2.3: Snow-flake Schema

with a large number of small queries, while OLAP systems typically support a small
number of very complex queries. This of course implies that the requirements and

functionality of an OLAP system are much different than those of an OLTP system.

2.4.1 Formal definition of OLAP

The term “OLAP” was first used by E.F. Codd in 1992. In a paper entitled “Providing
OLAP (on-line analytical processing) to user-analysts: An IT mandate” [19], Codd

proposed 12 basic features that should be found in any OLAP application.

1. For a system to qualify as a relational database management system (RDBMS),

that system must use its relational facilities (exclusively) to manage the database.

2. All information in the database is to be represented in one and only one way,

namely by values in column positions within rows of tables.
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. All data must be accessible with no ambiguity. This rule is essentially a re-
statement of the fundamental requirement for primary keys. It says that every
individual scalar value in the database must be logically addressable by speci-
fying the name of the containing table, the name of the containing column and

the primary key value of the containing row.

. The DBMS must allow each field to remain null (or empty). Specifically, it must
support a representation of missing information and inapplicable information
that is systematic, distinct from all regular values (for example, distinct from
zero or any other number, in the case of numeric values), and independent of
data type. It is also implied that such representations must be manipulated by

the DBMS in a systematic way.

. The system must support an online, inline, relational catalog that is accessible
to authorized users by means of their regular query language. That is, users
must be able to access the database’s structure (catalog) using the same query

language that they use to access the database’s data.

. The system must support at least one relational language that (a) has a linear
syntax (b) can be used both interactively and within application programs (c)
supports data definition operations (including view definitions), data manipula-
tion operations (update as well as retrieval), security and integrity constraints,

and transaction management operations (begin, commit, and rollback).
. All views that are theoretically updatable must be updatable by the system.

. The system must support set-at-a-time insert, update, and delete operators.
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This means that data can be retrieved from a relational database in sets con-
structed of data from multiple rows and /or multiple tables. This rule states that
insert, update, and delete operations should be supported for any retrievable

set rather than just for a single row in a single table.

9. Changes to the physical level (how the data is stored, whether in arrays or linked

lists etc.) must not require a change to an application based on the structure.

10. Changes to the logical level (tables, columns, rows, and so on) must not require
a change to an application based on the structure. Logical data independence

is more difficult to achieve than physical data independence.

11. Integrity constraints must be specified separately from application programs
and stored in the catalog. It must be possible to change such constraints as and

when appropriate without unnecessarily affecting existing applications.

12. The distribution of portions of the database to various locations should be invis-
ible to users of the database. Existing applications should continue to operate
successfully: (a) when a distributed version of the DBMS is first introduced and

(b) when existing distributed data are redistributed around the system.

13. If the system provides a low-level (record-at-a-time) interface, then that inter-
face cannot be used to subvert the system, for example, bypassing a relational

security or integrity constraint.

2.4.2 OLAP functionality

Below we list the most basic capabilities of an OLAP system, what we sometimes

refer to as Five Function OLAP.
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e Pivot: By doing a Pivot, a user can view the multi-dimensional data structure
from different axes. In Figure 2.4, we see an example of a pivot operation on a

simple three-dimensional OLAP cube.

e Roll-up: Roll-up helps the user to get a coarser summary along a particular
dimension hierarchy. In Figure 2.5, we can see an example of a roll-up (and
drill-down) operation on an OLAP cube. Figure A shows the full cube, with a

roll-up operation on Figure A producing Figure B.

e Drill-down: A Drill-down gives the user a more detailed summary along a
dimension hierarchy. In Figure 2.5, a drill-down operation on Figure B produces

Figure C.

e Slice: Slicing allows a user to extract a segment of the original cube along
a particular dimension. This helps to narrow down the focus of interest. In
Figure 2.6, Figure A represents the full cube. After a user runs a Slice query,

we are left with the sliced cube in Figure B.

e Dice: A Dice allows a user to slice the data set along more than one dimension.
In Figure 2.7, Figure A again represents the full cube. The diced cube is shown

in Figure B.

2.4.3 Physical model

In terms of physical OLAP models, there are two basic forms — ROLAP (Relational
OLAP) and MOLAP (Multi-dimensional OLAP). The decision as to which to use
often depends on the objectives of the user and the scale or capacity of the data

warehouse.



Figure 2.4: The Pivot function
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Figure 2.5: Roll-up and Drill-down functions
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Figure 2.6: The Slice function

Figure 2.7: The Dice function

18



19

Figure 2.8: A two-dimensional MOLAP cube

e MOLAP (Multi-dimensional OLAP). MOLAP is the more widely used
model in commercial settings. Here, data is basically stored in a multi-dimensional
array. As shown in Figure 2.8, the length of an array in a given dimension is
equivalent to the cardinality of the OLAP dimension associated with that axis.
So, for example, if an attribute Date is represented by the x-axis of the array,
then the size of the x-axis will be 30 because the cardinality of the Date dimen-
sion is 30 (in this example). Now, if we associate the attribute Product with
the y-axis and we subsequently need to query the Sales table for the product
“food” purchased on date “5”, all we need to do is to look up the result at index

position [5, 2].

Advantages of MOLAP
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~ Query performance is very fast due to its implicit multidimensional index-
ing.
— Storage is quite efficient for low dimension data sets.

Disadvantages of MOLAP

— Data loading and conversion from relational DWs can be expensive for

large input sets.

— Storage becomes prohibitively expensive with higher dimension counts and

large cardinalities since empty cells are stored by default

e ROLAP (Relational OLAP). As the name suggests, ROLAP organizes the
data in standard relational structures. Since traditional RDBMS systems use
the same structure for tables and relations, ROLAP can easily be used with the

standard Star Schema.

Advantages of ROLAP

-~ In comparison with MOLAP, ROLAP tends to scale more gracefully since

it only includes records that are actually in the database.

— It loads much faster than MOLAP since RDBMS systems uses the same

relational mappings.

— Any SQL tool can access the ROLAP data warehouse directly, which makes

it a lot more administrator-friendly than MOLAP
Disadvantages of ROLAP

— Because SQL is used for querying, performance may be limited by the

constraints of the SQL language itself.
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Figure 2.9: 4D-Lattice

— Performance is less impressive, particularly in lower dimensions.

— Explicit multi-dimensional indexing is required.

2.4.4 Data cube

Data warehouse users are generally mid-level or high-level managers who are most
comfortable working in an intuitive, graphical environment. In this context, data
is represented as a multidimensional data cube whose 2-D, 3-D, or even higher-
dimensional sub cubes can be explored in an interactive fashion. As previously noted,
cube attributes can be of two types — features and measures. In Figure 2.8, the Date
and Location fields are feature attributes, while Sales Price is the measure.

If a data warehouse has n dimensions, the number of possible sub-cubes or cuboids

is exactly 2". In short, these 2" cuboids represent all possible combinations of feature
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attribute in the cube space. Put another way, each of these summary views provides a
different perspective on the measure value being studied. Often, we represent the full
set of cuboids in what is known as the Cube Lattice. The important point to note
about the lattice is that a given child view in the lattice can always be computed
from a parent view since the parent essentially represents a slightly more detailed
aggregation of the same data. In the lattice depicted in Figure 2.9, the relationship
between these cuboids can be seen quite clearly (each letter represents a dimension).
Here, we have a four-dimensional space. At the top of the lattice, the base cuboid
ABCD contains the most detailed information. At the bottom is the cuboid with the

most aggregation (i.e., just a single total value).

2.5 Caching for DSS environments

The interest in OLAP as a research pursuit grew out of the seminal data cube paper
by Gray et al [15]. Subsequently, researchers focused on fundamental construction
algorithms for OLAP cubes, with a particular emphasis on the efficient generation of

all 2¢ cuboids in the d-dimensional space [5, 2].

2.5.1 Static versus Dynamic Caching

More recently, data warehouse caching has been a subject of some interest among aca-
demics. A number of the previous solutions can be classified in two general categories

— Static pre-computed caching and dynamic pre-computed caching.

e Static pre-computed caching uses an upfront algorithm to pre-compute ag-
gregate data in anticipation of future user queries. In this case, the decision

as to which cube is to be pre-computed does not depend on the eventual user
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queries themselves.

In [13], an algorithm is presented that is used to create an initial query execution
plan. It then selects the most frequently used nodes for pre-computation. An
aggregation lattice is also employed in order to identify the best cost saving
ratio in terms of additional node storage. Because the node count in this model

is bounded as O (n?), heuristics are used to reduce the size of the lattice.

Dynamic pre-computed caching tries to adapt to user queries by dynam-
ically optimizing the pre-computed aggregates. In [32], the authors present a
dynamic caching scheme based on relational OLAP. They describe a cache man-
ager model that can dynamically decide which results need to be cached and
which results need to be removed from the existing cache. The manager can
search the cache for either an exact-match query or queries that subsume the

entire searching query.

When a new query is executed, the cache manager at first looks for an exact-
match set in the existing cache. If the exact-match is not found, a “Split”
algorithm is run on the query to produce a transformed query. Subsequently,
the existing cache is searched for an exact match or for previous query results
that may subsume the transformed query. If more than one such entry is found
in the cache, then the one with the minimum query response time is chosen.
A query attachment graph is maintained to store the relationship between the

transformed query and the selected result set.

Figure 2.10 provides a graphical snapshot of the cache manager. The Split

Algorithm divides the Query @ into two queries ()1 and Q2. In this case, Q1 is



Figure 2.10: Basic architecture

Figure 2.11: BASE Query and SLICE query
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Figure 2.12: The Lattice

the base cuboid for the query @, while Q2 is essentially just the original ). For
example, as shown in Figure 2.11, @1 would be the BASE Query and 2 would
be the SLICE query. If the BASE query @1 has already been materialized in

the cache, then the query @2 can be answered directly from the cache.

But if the BASE query has not yet been materialized, then the query must be
answered from the least costly ancestor cuboid. Using the lattice defined in
Figure 2.12, if a query is made on the Course-Semester-Student cube but the
base query for this cube has not yet been materialized, then any of the parent

views for the cube can be used to calculate the query result.

Since caches are stored in memory, their size is quite limited relative to the disk
resident data warehouse. To deal with this fact, the authors of the Split Algo-
rithm introduce a comprehensive cache replacement and admission algorithm
to maintain the cache so that only the most queried regions are stored in the

cache. They do this using a complex formula that exploits the number of hits
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and a least recently used (LRU) cache policy . A “profit” value is associated
with each of the stored cache objects which are then stored in the query at-
tachment graph. Depending on the profit value, queries are either removed or

inserted into the cache system.

The Split Algorithm approach improves on a number of previously proposed
ROLAP based caching solutions [36, 20, 31, 8, 1, 9]. For example, [31] sup-
ports subsumption query caching without support for aggregate level caching.
This severely restricts the effectiveness of the technique. [8, 1, 9] support some
aggregation during caching but their supporting algorithms are very costly in

practice.

That being said, the biggest weakness of the Split Algorithm is the absence of
partial caching. The mechanism only supports exact query matching and sub-
sumption query matching, but it has no mechanism to search for partial results.
Partial query searching is especially useful in higher dimensions. Moreover, as
the dimension count grows, the probability of subsumption by an existing query
drops as well. Finally, the efficiency and effectiveness of the system depends on
the BASE cuboid being fully materialized in the cache. This might be okay for
low dimensions and small spaces. However, it can be extremely costly in more

realistic OLAP environments.

2.5.2 Physical models

In addition to the static versus dynamic distinction, we can also classify caching
solutions with respect to their physical structure. Here, we can consider table based,

query based and chunk based (MOLAP) options. We briefly discuss the first two,
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then turn to a more detailed discussion of chunk based caching, a model that we use

for comparative evaluation.

e Query level partitioning schemes cache the data in a relational data for-
mat(ROLAP). Very few OLAP caching solutions have been proposed using
query level partitioning. The few that have been proposed have been quite
limited. For example, in [32] and [33], query results must either be an exact
match or must be completely subsumed by the existing cache. It was argued
in [10] that solutions lacking the partial match feature eventually end up using
the same data in many different queries which, of course, results in significant

storage waste.

e Table based scheme [18, 16] cannot be partitioned to generate additional cubes
and therefore they are classified as table-based partitioning. All the summary
tables are defined without restriction so it’s not possible to perform OLAP
functionalities like Slice and Dice over the summary tables. This restriction

makes this method quite inflexible.
Chunk based caches

Chunk based partitioning schemes cache the data in some form of multi-dimensional
array. As opposed to table based schemes, a chunk based model caches smaller
and smaller cubes within its physical store. Deshpande and Naughton, for example,
implemented data warehouse caching using chunks [10]. To date, this is the most
comprehensive implementation of its type.

At a high level, a chunk based cache can be described as follows:
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e Chunks are carved out of a multi-dimensional array. As previously noted, the
cardinalities of each dimension in a multi-dimensional data structure form an
inclusive range along each dimension. A subset of values along each dimension
forms a chunk. In effect, a chunk is just a sub-cube extracted from the larger
space. Figure 2.14 illustrates a chunk defined in three dimensions — Course,

Student and Semester.

e Query results are stored in chunks when a new query is issued. Subsequent
queries are then divided into two sets. One set consists of the queries that need
to be retrieved from the data warehouse and the other set represents queries
that are already in the cache. Figure 2.13 illustrates this division. Here queries
Q1 and Q3 are retrieved from the database, while Q2 is retrieved from the

Cache itself.

Not surprisingly, the idea for chunk based caching comes from the more general
MOLAP (multi-dimensional OLAP) model, where multi-dimensional data is stored
in an array format. In contrast to the relational or query based schemes, where data
is stored in a row major format, the chunking systems divide data into sub-cubes and
store them in an array. Formally, we can define the size of a chunk as C =[], D;,
where n is the number of dimensions and D; € D, with D being the set of ranges for
all the dimensions. Figure 2.14 illustrates the basic chunk storage structure.

Chunks being moved to/from the data warehouse need be computed efficiently.
However, conversion from a chunk based structure to relational format can be partic-
ularly time consuming. To achieve greater efficiency, a comprehensive chunk based
file organization is proposed for the data warehouse backend. In practice, backend

storage may either be natively chunked, or based upon standard relational tuples that



Figure 2.13: Chunked Query
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Figure 2.14: Chunked cube
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Figure 2.15: 2-D Chunk

are re-arranged according to the chunked data format. In addition, a chunk index
needs to be created for each chunk-file so that, given a chunk number, all the tuples
associated with that chunk can be retrieved using the chunk index. We note that no
such commercial system actually exists.

The solution proposed by Deshpande and Jeffrey Naughton is much more efficient
relative to previous solutions. It is much better at minimizing the storage space
required for the cache as it does not duplicate storage for overlapping query results.
Such redundancy effectively reduces the size of the available memory for the cache
and consequently reduces the hit ratio.

Since chunking can be done at different aggregation levels, the system has good
closure properties, implying that chunks at lower levels can be used to obtain the
result of the chunks at higher levels. Using Figure 2.15 as an example, we can see
that if we want to find the CGPA for “Student A” in “Fall 08”, we can simply combine
the results of all the courses for “Student A” in “Fall 08” from Figure 2.14 to find
the result for higher aggregation levels.

As promising as this solution is, however, a number of unresolved issues remain.
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One of these is scalability. The MOLAP form of data storage generally works well
in lower dimensions, but it falters in higher dimensions. Recall that the number
of possible aggregation combinations for a d-dimensional space is exponential in the
number of dimensions. So for our example in Figure 2.14, there would be 23 = 8
different cubes. For a 10 dimensional space, there would be 2!® = 1024 aggregation
levels. More importantly, for an n dimensional MOLAP cube, with a cardinality set
bounded as K = (ki, ks, k3.....k,) for each of the dimensions, the size of the most
detailed cube will be S =[], K;. For 5-dimensional cube, if all the dimensions have
an average cardinality of 100, the size of the cube — and the potential search space —
will be 1005 = 10000000000. While the cache only physically materializes part of this
space, it is important to recognize that much of this volume will be extremely “sparse”.
In other words, there will be a great many null values in any given query region. For
MOLAP-style storage or caching models, this can be extremely problematic as the
representation of dead space greatly reduces the effectiveness of the cache.

A second issue with the chunk cache is that its authors suggest that optimal
performance is achieved when the cache is large enough to store the entire base
table/cuboid in memory. In fact a number of their experimental results exploit this
feature. We find this assumption to be highly improbable in that data warehouse size
generally scales into the Tera byte range. Moreover, caching the entire base table in
memory would dramatically improve the performance of any caching system.

We conclude this section with a brief review of the pros and cons of the chunk

based approach.
¢ Advantages:

— It works very well with lower dimensions and lower cardinalities.
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— Since it is a MOLAP model, it has a natural indexing advantage.

— It uses an aggregation technique that is very useful for aggregating from

lower level hierarchies.

e Disadvantages:

Its bit-wise indexing scheme used for keeping track of each chuck at the

group-by level is quite expensive.

It doesn’t scale as well in higher dimensions, especially those with high

cardinalities.
— Full caching of the base cuboid is impractical.

— An expensive conversion operation is needed during loading if the under-

lying data warehouse is a relational server.

2.6 Conclusions

In this chapter, we have systematically discussed much of the background information
required to understand the research presented in the remainder of this thesis. We
began with a general introduction to data warehouse systems, including their reliance
on the common Star and Snowflake schema. We then discussed the importance of
OLAP in the current data driven world. We described decision support systems
and their main components, including the ROLAP and MOLAP physical models.
We also looked at few of the more important research contributions in this area. We
classified the solutions in terms of the degree of dynamic computation, as well as their
physical architecture. Finally, we reviewed the chunk based caching of Deshpande and

Naughton in some detail. As noted, we will return to this proposal later in the thesis.



Chapter 3

ROLAP based data warehouse
caching

3.1 Introduction

In today’s business world, decision support systems have become an integral part
of the decision making and planning process. Given the central role of OLAP in
DSS systems, researchers have become increasingly interested in the topic. As noted,
however, the requirements of decision support systems are significantly different than
those of OLTP systems, leading to both new constraints and new opportunities for
those working on novel OLAP applications and architectures. This is certainly the
case in the context of multidimensional OLAP caching. Some of the more obvious

differences between OLAP and OLTP caches include:

1. The increased size of the cached objects
2. The multi-dimensional nature of the data

3. The requirement for multi-dimensional indexing support

34
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Taken as a whole, this makes OLAP caching a potentially rich area for new re-
search. Unfortunately, most of the research on OLAP caching thus far has concen-
trated on chunk-based caching (MOLAP) [10]. Not only are there limitations with
this style of caching but, as previously noted, no existing relational databases natively
support chunk-based disk storage. When ROLAP based caching has been examined,

it has typically been done on a very small scale and with trivial test environments [32].

3.2 Motivation

In Chapter 2, we discussed two of the most significant contributions in the area of
ROLAP/MOLAP caching. We noted that the work described in [32] was relatively
limited in scope, particularly in terms of its inability to support the partial match
paradigm so common in OLAP settings. Conversely, the research presented in {10] —
while being quite significant in terms of its breadth — had serious scalability issues
due to its reliance upon a MOLAP data structure that becomes increasingly sparse
in more realistic OLAP spaces.

Given this scenario, we identify the following “high level” objectives for our new

caching framework:

1. Provide support for both full match and partial match queries.

2. Design a tree structured cache/index that stores only those points actually

found in the space.
3. Minimize the number of leaf nodes that must be searched.

4. Augment the basic structure with efficient cache management techniques.
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In the following sections, we discuss how we approach the implementation of these

target objectives.

3.3 The Sidera Parallel OLAP DBMS

In the following section, we will present a concise overview of the R3-cache framework.
However, since that system is in fact fully integrated into the larger Sidera OLAP
DBMS, we begin with a brief description of the structure and function of the OLAP
server itself. As previously noted, Sidera has been designed from the ground up as
a parallel “shared nothing” platform for the resolution of complex multi-dimensional
analytic queries. The current system consists of approximately 70,000 lines of C++
code and runs on a 17-node, 34-processor HP Proliant Linux cluster. Subsystems
exist for data cube generation and distribution, as well as multi-dimensional selec-
tivity estimation, OLAP indexing, and the manipulation of dimensional hierarchies.
Concurrently running projects are extending the server with conceptual modeling
facilities, high availability and fault tolerance features, and native language object
oriented query interfaces. Figure 3.1 provides a simple illustration of the physical
architectural framework. Note that Sidera is essentially constructed as a series of
logically independent backend servers that are transparently bound together by a
Parallel Service Interface (constructed on top of the Message Passing Interface). In
essence, each server knows nothing of the existence of its sibling servers and oper-
ates solely on the cube fragments associated with its local resources. Each server
contributes equally to the resolution of every individual query.

Each of the local servers also supports its own OLAP stack, of which the caching

module is but one component. Figure 3.2 depicts the basic elements of the stack
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Figure 3.1: The Sidera architecture.

and the relationship between them. Note that the caching subsystem sits below the
query processor and hierarchy manager but above the low level indexing and storage
components. In fact, both the cache and storage engine are oblivious to the hierarchies
themselves and represent data solely at the base level of each dimension. It is the
job of the hierarchy manager to transparently map final result sets — with the aid
of the query processor — between arbitrary levels of the dimension hierarchies (i.e.,
roll-up and drill-down). This modular approach dramatically simplifies the processing
logic of both the caching and indexing subsystems. A full discussion of the Hierarchy
Manager is provided in [12]. Finally, we note that Sidera is designed specifically as
an analytics server, and does not attempt to function as an “all things to all people”
system. As such, detail-level ad hoc querying is (transparently) funneled to a local

data warehouse partner (i.e, a commodity DBMS).
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Figure 3.2: The OLAP stack.

3.4 Relational OLAP caching

Our new caching solution is physically based on a variation of the standard R-tree data
structure. An R-tree, by design, is an indexing structure that allows rapid retrieval
of selected records from disk based storage. In general, indexing mechanisms like
the B+-tree and Hash Table have been core components of database management
systems for decades. In multi-dimensional environments, mechanisms such as the
B+-tree and the Hash have been extended in various ways to try to support queries
on multiple attributes. Most of these methods have met with limited success but the
R-tree has been shown to be one of the few natively multi-dimensional indexes that
performs well in real-world environments.

As noted, however, the R-tree is traditionally associated with disk-based retrieval.
A cache on the other hand is memory-resident. Nevertheless, it is important to

understand that the ultimate purpose of an index is to provide efficient retrieval
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characteristics from a relatively large data store. OLAP caches represent just this
type of environment. They are natively multi-dimensional and possibly quite large.
Moreover, in order to provide the kind of performance that would be required from a
cache, records must be located within the cache extremely quickly. For this reason,
use of the R-tree as a fundamental component of a relational OLAP cache represents

an attractive starting point for the design of our physical architecture.

3.4.1 R-tree

Classical, one-dimensional indexes are not particularly effective when it comes to
searching a multi-dimensional spatial structure. Hash tables, for example, can be
used to identify all spatial data points in a d-dimensional space (i.e., “exact location”
queries). Unfortunately they are virtually worthless for the range queries commonly
used in OLAP settings. Conversely, one may utilize a set of B+-trees to support
searches of multiple attribute ranges [27, 4]. In this case, there are two problems.
First, maintenance of all these indexes becomes quite expensive. Second, because
the data can only be physically sorted on one of the B-tree dimensions, performance
deteriorates rapidly when this dimension is not part of the user query.

The R-tree was first proposed as a native multi-dimensional index by Guttman in
1984 [17]. An R-tree is a height balanced structure that consists of two kinds of nodes
— leaf nodes and non-leaf nodes. In an R-tree implementation, a node N corresponds
to a disk page. If a disk page allows a maximum number M of entries in node N,
then m < M/2 is the minimum number of entries permitted. In other words, nodes
must be at least half-filled.

According to Guttman, the R-tree supports the following properties:
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1. Every leaf node contains no less than m and and no more than A index records.

2. Every non-leaf node has no less than m and no more than M children boxes,

unless it is the root.

3. For each index record in a leaf node (I, L), I is the smallest possible boundary

that could hold these records.

4. For each child box in a non-leaf node entry (I,C), I is the smallest possible

bounding box that can encapsulate the child boxes.
5. The root node must have at least two nodes.

6. All R-tree leaves are at the same depth.

We can use the notation [I,L] to define a leaf node, with L pointing to the
d-dimensional records and I identifying a d-dimensional bounding box for the leaf
nodes. Further, I can be defined as I = (Iy, I}, I...1; — 1), where d is the number of
dimension and I; = [a, b], with a and b delimiting the boundary along the dimension <.
Non-leaf nodes can be defined as [I, C], where I identifies a d-dimensional bounding
box and C contains the pointers to all the child boxes bounded by that node. If the
data set has a point count of n and a minimum branching factor m, the height of
the R-tree is bounded as h = |log,, n|. Here, m < M/2, where M is the maximum
number of points that can be stored in a node. This arrangement gives considerable
flexibility to the R-tree. By changing the value of m, we can easily manipulate the
height and thus the performance of the tree.

Figure 3.3 provides a simple illustration of the logical structure of the R-tree.

Solid lines represent non-leaf nodes and dotted lines are leaf nodes. In this case, R5
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Figure 3.3: Logical structure of the R-tree

to R10 are leaf nodes containing pointers to the data elements. R1 to R4 are non-leaf
nodes housing pointers to the child boxes. As should be clear, nodes in an R-tree may
intersect each other. The physical, tree-based structure corresponding to the logical
model is provided in Figure 3.4.

Let us now look at a simple search on the R-tree. In Figure 3.3, the dark dotted line
S identifies the search space. All points encapsulated by S must be returned as part
of the query result. Note that the search space S = (S, Ss,...S4) is a d-dimensional
hyper-rectangular bounding box. S; denotes the range along the i** dimension, where
(1 <14 < d). S; can formally be represented as S; = [a,b], where a is the lowest
value along the dimension 7 for search space S and b is the highest value along the
dimension . Let us denote the root node as R and non-leaf nodes as [I,C], where I
is a multi-dimensional bounding box and C is the set of pointers for the child nodes.

Further let us denote leaf nodes as [/, L], where I is a multi-dimensional bounding
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Figure 3.4: Physical structure of R-tree

box and L is the pointers to the data blocks.

Searching the R-tree is similar to the process of searching any tree, with the major
difference being that, since the boxes can overlap each other, more than one sub-tree
may have to be searched. Algorithm 1 formalizes the logic of the search method.
The traversal begins at the root and propagates down to the child boxes. If we take
the R-tree example in Figure 3.3, Algorithm 1 initially finds that none of the child
nodes of R1 intersects with S. So we move on to the next non-leaf node R2. Here,
we find that leaf-nodes R8 and R9 intersects with S, so both boxes must be traversed
to find the data points in user-defined region. Because of the possibility of overlap, it
isn’t possible to provide a meaningful lower bound on the search algorithm. In fact,
post-Guttman variations of the R-trees have often focused on minimizing the degree

of bounding box overlap.
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Algorithm 1 Search algorithm

Input: S = (51,5, ...54) is the search space containing the number of dimensions d
R = the root node
M = (M, My, ...My) is the set of all leaf nodes

Output: L, a set of leaf nodes

1: if R ¢ M then
for each child-node C in node R do
if CNS #0 then
Search(C, S, M)
end if
end for
else
if CNS # 0 then
Insert C into L
10:  end if
11: end if

3.4.2 Non overlapping R-tree

Before describing the Non-overlapping R-tree, let us recap the purpose of our new
R-tree design. Our primary goal is to build a very fast, in-memory OLAP caching
system. It should of course be considerably faster than disk-based access and it
should scale well to higher dimensions. Because the R-tree has proven itself to be
quite effective in general purpose, multi-dimensional environments (i.e., disk-based),
it made a great deal of sense to try to adapt the block-based disk model to page-based
main memory. Given this target, one of the crucial objectives becomes the reduction
of box overlap, particularly at the wide, lower level of the tree. We achieved this goal
in the form of the NOR-tree (Non-overlapping R-tree).

Algorithm 2 describes how the search mechanism works for the NOR-tree. Simply

put, when a new query arrives and intersects with an already existing query, we
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decompose the query into two sets. The first set contains A, € A, where 0 <7 < d
and A = NNS, with N the node to be searched and S the search query. The second
set contains B; € B, where 0 <i < dand B=(NUS) -5, with N the node to be
searched and S the search query. Results from the query set A are returned directly
from the cache, while the query set B is sent to the backend data warehouse. Data
returned from the data warehouse is inserted into the corresponding queries in query

set B.

Algorithm 2 Search algorithm for NOR-tree

Input: S = (S;,S,,...54), is the search space containing d number of dimension.
M = (M, M,,...My), is a set of all boxes.
L = (Ly, Lo, ...Ly), is the set of newly created boxes.

Output: a set of data points

1: for each box m in set M do

2. if S Cm then

3 Return result from the box m
4. end if

5 if SNm # 0 then

6: insert ((SUm) — m)intoL

7: Return cached data in (S Nm)
8 end if

9: end for

10 if L = 0 then

11:  Return result for S from database
12: else

13:  Return result for L from database
14: end if

Figure 3.5 demonstrates how this would work with a simple example. In this case,

“Query 1” has already been executed and its contents are now stored in the cache.
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Figure 3.5: Query decomposition

When “Query 2" arrives, the cache manager determines a partial intersection with
the “Query 1”7 object in the cache. “Query 2” is now decomposed into a pair of
hyper-rectangular query sets, A and B. A is subsequently processed from the cache,
while B is delivered to the disk backend.

Figure 3.6 concisely illustrates the difference between the regular R-tree and the
Non-overlapping R-tree, in the context of a multi-dimensional caching system. In
both models, we begin at the same point. In Stage 1, the R-tree is empty; it has
no data points, child nodes, or bounding boxes. When the first query, “Query 17, is
executed, the R-tree is searched and no match is found. Subsequently, “Query 17 is
sent to the data warehouse. Query results returned from the data warehouse are then
stored in the root node. At this point, the root node is also the leaf node. In Stage
2, when “Query 2" is executed, the root node is searched and we find that “Query 2”

partially matches with the root node. The root node expands to hold both “Query
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Figure 3.6: Non-overlapping R-tree

1” and “Query 2”. At this stage, our data structure is essentially a standard R-tree
in that it houses overlapping leaf nodes. In the final stage, however, overlapping leaf
nodes in the NOR-tree are split into multiple leaf nodes (in this case, four). More
importantly, none of the cache objects — Q1, Q2, Q3, or Q4 — share any portion of
the space. Finally, we note that Figure 3.6 shows the most trivial example of a multi-
dimensional search. In reality, the R3-cache is far more complex. In the remainder of

this section, we will discuss the process in greater detail.
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3.4.3 Insertion and node partitioning

In this section, we describe how we populate the NOR-tree. Basically, this is a two-
step process. In Step 1, we add records by traversing the tree to find the appropriate
leaf node for insertion. Then, in Step 2, we evaluate the size of the leaf node and
partition the node accordingly.

In general, our insertion mechanism is similar to regular R-tree insertion. We
insert data points into leaf nodes. If the leaf node gets bigger than its maximum
allowed size, we split it recursively into two sub-nodes. Then the split is propagated
upwards. Figure 3.7 illustrates this process. At the beginning, root node A has a
set of data points, D = {d;,ds, ....d,}, with n being the number of points in the set
and n <M, where M is the maximum number of points that can be stored in a leaf
node. Next, we insert a set of data points, Dye, = {d1,ds,....d,} into D such that
M < (n+p) < 2M. At the next stage, node A splits into two equal-sized leaf nodes,
node B and node C, such that 1 < sizeof(B) < M and sizeof(B) = sizeof(C).
Thus we get two new leaf nodes and one non-leaf node. The following steps mirror
the previous two steps for each of the newly created leaf nodes B and C.

Recursive partitioning is one of the most important elements of the NOR-tree
approach. If the partitioning is badly skewed, it is likely that the R3-cache will
perform poorly. So it is important to provide a partitioning model that ensures
that records close to each other in the multi-dimensional space remain mostly in the
same leaf nodes. Our goal here is to reduce the number of intersections between the
leaf nodes and incoming range queries since the number of intersections negatively
impacts the R3-cache performance. The reason for this is not only that increased

intersections force the cache algorithm to traverse more boxes, but that intersections



Figure 3.7: Insertion and node splitting
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have the potential to generate a large number of split queries which, in turn, reduces
cache performance. Figure 3.8 is an example of a bad leaf node split. In this figure,
we show a leaf node A with a slightly skewed data-set, which is not unusual for a data
warehouse. A is subsequently split into a series of leaf nodes along the Y dimension.
As a result of the inherent data skew, we get very bad splits. Next, in Figure C, we
run “Query 1” over the leaf nodes to search for the cached data. Because of the less
than ideal partitioning, “Query 1" has to be processed against all of the leaf nodes.
Clearly, this makes the search quite inefficient.

Our partitioning approach, as illustrated in Figure 3.9, is similar to the mechanism
proposed by Muralikrishna and DeWitt [26]. There, a two-dimensional equi-depth
histogram called an hTree is used to partition the space. The model is much like
that of a Grid-file in that the data space is recursively divided in half by using
the value of one of the dimensions as a boundary at each step. The dimensions
are chosen in sequence. In our approach, we also divide the data space recursively,
each time in a different dimension. If our data space has dimension count d and
D = {d;,dy,....dy}, where D is the set of dimensions in our data space, then the root
node A will be partitioned along the sequence {d;,ds,....dq}. As Figure 3.9 shows,
the generation of an equi-depth tree results in B rectangles, such that each rectangle
encloses approximately g points within it, where R represents the total number of
points in the data space. As noted in [26], the sorting cost for the tree at each
stage of the partition is P * log, (g), with P representing the number of data pages,
b denoting the number of partitions at each stage of the algorithm. This modest
sorting cost lowers the construction cost and is particularly helpful during insertion

and node-splitting since sorting is necessary at those stages.



Figure 3.8: Bad Partition
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Figure 3.9: Good Partition
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In terms of query resolution, the division of the grid in alternate dimensions
removes the bias along a single dimension axis. This kind of bias tends to result
in a cache that performs well for a small number of queries but very poorly for vast
numbers of queries that do not benefit from the skewed partitioning. For example, in
Figure 3.8, “Query 2” — depicted in D — is perfectly suited to the poorly partitioned
cache. But for arbitrary queries of varying sizes and ranges, this cache will perform
very poorly because of the large number of intersections/seeks produced. “Query 1”
in C is such a case.

We note that the R3-cache page is essentially constructed as a user-defined multi-
ple of the OS page size. If the leaf-node size exceeds the current page size, leaves must
be split, and encapsulated by new parent level bounding boxes. Again, this is similar
to a conventional R-tree where a leaf level box is associated with a file system disk
block. In general, techniques for R-tree splitting seek to minimize the total area of the
constituent child boxes since unnecessarily large spatial divisions tend to encourage
excessive seeks at query resolution time. For in-memory access structures, however,
where seek time is irrelevant, our primary objective is to create a non-overlapping
leaf space in which points are definitively stored in a single leaf node.

Algorithm 3 formally describes the algorithm for insertion and node-splitting.

3.4.4 Deletion

The deletion mechanism works by identifying the leaf nodes from which data points
need to be removed. Once the data points are deleted from the leaves, the parent of
the leaf nodes is identified. If the size of the parent node is less than M, then we move

the data points of the child nodes to the parent node and remove all the children. We
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Algorithm 3 Insertion

Input: D,., = (d1,ds, ...dy), is a set of newly inserted items
N is the leaf node, where D,,.,, will be inserted.
M is the maximum size of a leaf node.

1: insert D, intoN

2: if sizeof (N) > M then

3:  split the node to get new leaf-nodes N1 an N2
4. if sizeof (N1) > M then

5: Insert (B, N1, M)

6: end if

7. if sizeof (N2) > M then

8: Insert (0, N2, M)

9:  end if

10: end if

designate the parent node as the new leaf and continue the same process up through
the tree.

Figure 3.10 illustrates the full process. In this case, the NOR-tree has four leaf-
nodes, D, E, F, and G. At first, n data points are removed from D and F, so that
sizeof (D) + sizeof(E) < M, where M is the maximum size of a leaf-node. The data
points Dremainingdata € D and Eremainingdata € E are inserted into B. Node D and F
are then removed from the tree and B is designated as a leaf node. Similarly, both
C and A are converted into leaf nodes.

Algorithm 4, and the supporting method described in Algorithm 5, formally de-

scribe the deletion process.

3.4.5 Complicating factors

One of the problems with the general partitioning model — at least as we have

described it thus far — is that it has the potential to create an exponential number



Figure 3.10: Deletion
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Algorithm 4 Deletion

Input: P = (py,p2,...pn) is a set of non-leaf-nodes

—
- O

I = (41,13, ...1,) is a set of items to be deleted
L = (l1,1s,...1,) is the set of leaf nodes
M is the maximum size of a leaf node.

L = FindLeafNodes (I)
for each leaf-node [; in set L do
Remove (1,1;)
p; = FindParentN ode (1)
if p; ¢ P then
InsertpanP
end if
end for
for each non-leaf-node p; in set P do

CHECKPARENT (p;)

- end for
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Algorithm 5 CHECKPARENT

Input: P = is the non-leaf-node
5tz€total = 0

for each child-node I; in P do
S12€401a1 = S12€404a1 + Size0f (1;)
end for
if sizeipa < M then
for each child-node [; in P do
insert all data points, d € [; into P
Remove {;
end for
Set p; as a leaf-node
CHECKPARENT (Parent (P))
- end if '

—_—
— O

of new cache elements. In the worst case, when a new query completely subsumes an
existing node, it can generate O (d®) new queries, where d is the number of dimensions.
So, for example, for a two-dimensional data structure, it might generate 2* = 8 new
queries that need to be retrieved from the data warehouse. Figure 3.11(B) illustrates
the problem. Here, a new query in the two-dimensional space subsumes the existing
node N. After the split process, 23 = 8 new backend queries are generated. For a
three-dimensional space this number would be as high as 3% = 27, and for a four-
dimensional space 4® = 64. These numbers are simply unsustainable in caching
scenarios.

To address this problem we devised the solution of merging adjacent query ele-
ments. Let us define d as the number of dimensions for queries A and B. Further,
the set of ranges R4 = (Ra1, Raz,...R4q4) defines the range-set for A, while the set of
ranges Rg = (Rp, Rp2,...Rpa) defines the range-set for B. For query A and query

B to be merged, we need to satisfy the following criteria. For j =d -1, R4 = Rp:



Figure 3.11: Query merging
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must hold for the dimension count j, where 1 < i < d, and R4« # Rpgr must hold true
for just one dimension k, which can be any dimension between 1 to d. In addition,
we must have R 1 >= Rgw — 1 and Ry <= Rgn and R0 < Rgeo, where R 4o
is the lower end for dimension R4k, R 4 is the higher end for dimension R4k, Rygeo
is the lower end for dimension Rpgx, Rpg is the higher end for dimension Rgk. In
other words, for two 3-dimensional queries to be merged they must satisfy these two
following criteria. First, 2 of their dimensions must be equal to one another. Second,
for the other dimension, one of the queries highervalue in that dimension must be
between the lowervalue — 1 and highervalue of the other query. In addition, its
lowervalue must be less than lowervalue of the other query.

Our solution solves the problem by reducing the number of new queries from O (d®)
to O (2d), as demonstrated in Figure 3.11(C). A somewhat more realistic example is
provided in Figure 3.12. Given Scenario 1, we see that the query box is totally
subsumed by the cache node. This is clearly the best scenario. In this case, no new
query boxes are generated and all results are returned from the cache. With Scenario
2, the query box now only partially intersects with the cache node. Only one edge
of the X-axis and Y-axis from the query box is within the area of the cache node.
This results in the generation of only three new boxes. We now examine Scenario
3. Here, the query box partially intersects with the cache node. Both edges of the
X-axis and one edge of the Y-axis from the query box is within the area of the cache
node. This results in the generation of five new boxes. Finally, Scenario 4 generates
the largest number of new boxes since the entire cache node is inside the query box.
Formally, the number of new boxes in the worst case is exactly d* — d + 2, where d

is the number of dimensions. For a two-dimensional cache, the worst case scenario
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Figure 3.12: Different query scenarios

generates 2° — 2 + 2 = 8 new boxes. For a three-dimensional cache, the worst case
scenario would be 3% — 3 + 2 = 26 new boxes.

In Figure 3.13, we demonstrate how we would get 26 new boxes in the worst
case scenario for a three-dimensional space. Specifically, (a) shows a cache node that
is completely subsumed by the query box. In the subsequent figures we describe
how we split the query box to get 26 new query boxes. (b) shows the front end of
the newly generated query boxes. There are nine boxes contained in this set. (c)
contains a set of boxes that are exact replica of the boxes contained in (b). (d) shows
the position of the query sets contained in (b) and (c), relative to the cache nodes.
As indicated, (b) and (c) are located opposite to each other, with the cache node in
the center. Similarly, the remaining query spaces are split into two halves — first
by the left-hand and right-hand sections and finally top and bottom. The reason

for this unusual split has to do with the position of the cache node in the center of
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Figure 3.13: Worst case scenario for 3-D Cache

the query box. (b) and (c¢) generated nine boxes each. (e) and (f) generate three
boxes each. (h) and (i) generates a box each. Combining these boxes together, we
get (9% 2)+ (3% 2)+ (1 x2) = 26 new boxes. We note that a similar pattern unfolds
in higher dimensions.

As indicated above, our query merging solution reduces the number of new queries
from O (d3) to O (2d). As such, we should have only 2x 3 = 6 new query boxes for the

previous example. In Figure 3.14, we show how we can reduce the number of query
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Figure 3.14: Query merging in 3-D cache

boxes to six by merging adjacent boxes. In (b), we have nine adjacent boxes. We can
therefore combine them and reduce the number of boxes to one. Similarly in (c), we
can combine the nine adjacent boxes and reduce them to one. Likewise in (d) and
(e), we merge the adjacent boxes to reduce six new boxes to only two. Finally, (h)
and (i) are single boxes themselves, so there is nothing to merge. Counting all these
merged boxes give us a total of six news boxes. By extension, a similar manipulation

of a four-dimensional cache space would produce at most 2 x 4 = 8 new boxes.
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We conclude this section with a more concrete discussion of the worst case bounds
on node splitting. We begin with the original partitioning process, which we indicated
had a worst case of d®> — d + 2. The splitting process works in three steps. In the
first step, it splits the box in any one direction. This creates d — 1 sets, with each set
consisting of d? adjacent boxes, where d is the number of dimensions. In Figure 3.13,
(b) and (c) represent these sets. This first step creates d? x (d — 1) boxes. During
the second step, the remaining area of the boxes are split again. But this time the
process creates d — 1 sets, each set consisting of d adjacent boxes. In Figure 3.13, (e)
and (f) represent these sets. This second step creates d x (d — 1) boxes. After the first
two steps of splitting, there will always be two boxes remaining. Combining all these
boxes gives us d? x (d — 1)+d x (d — 1)+2 boxes. Now, d*>x (d — 1)+dx(d — 1)+2 =
B-d?+d>—d+2=>d-d+2

Now, let’s take the equation d® X (d — 1) +d x (d — 1) + 2 and try implementing
our new query merging solution. Since our query merge combines the adjacent boxes
into a single box, this equation can be rewritten simply as 1 x (d — 1)+ 1x (d — 1)+2,

which gives us 2d.

3.5 Cache management

For every data warehouse caching system, cache management is a vital part of the
solution. Because the queries in the warehouse are complex in nature and potentially
very large, it is important to have a caching framework that is fast, efficient and reli-
able. Despite having a good underlying architecture, a caching system can degenerate
into a slow, inefficient bottleneck if proper methods are not followed to maintain its

contents.
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Managing the cache system is an integral part of our proposed solution. In this
section, we present two algorithms, one for cache object replacement and one for
admission into the cache system. We also describe how we define “hot spots” within
the cache and exploit low-use periods to fill up the space in the hot areas. The
general solution makes extensive use of meta data stored in the tree nodes. These
meta-data values include query size, frequency, and query response time. Given its
importance to the replacement and admission algorithms, we begin with a discussion

of the meta-data itself.

3.5.1 Meta-data

To effectively maintain the cache, we need node-related information to be stored in
a systematic fashion. Instead of creating a separate data structure, as was done
with the lattice described in [10], we store information directly within the tree nodes.
Doing so avoids a partial replication of the tree, which would have minimized the

amount of memory available to the cache. We describe our meta-data values below.

e Query size: The size of the query result-set is in bytes. For a leaf node, this will
be the space associated with all data points stored within it is boundary. For
non-leaf nodes, this will be the combined size of all data points stored within its
leaf-nodes. This information is gathered when the node is created. We denote

the Query Size as S in this section.

e Frequency: The frequency with which this cache is accessed. The Frequency
F can be defined as F = %, where T = amount of time (in seconds) that the
node has resided in the cache, and N is the number of times the node has been

accessed. Parent nodes are used to measure frequency for the nodes that have
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no previous records through which frequency can be measured. The Frequency

value is updated each time the cache is accessed.

e Query response time: The estimated time it will take for the particular node
to be queried from the actual data warehouse. It is calculated from the time
the query is sent to the data-warehouse to the time query results are returned
from the data warehouse. If a query g is sent to the database at time t1 and
the database returns the query result at time t2, query response time will be
calculated as T' = t2—t1. This information is particularly useful because it helps
the system reduce query response time by caching the nodes with high query
response time. Query response time is gathered when the query is physically
executed in the data warehouse. We will denote the Query Response Time as

T in this section.

e Cache value: This is used to decide whether a node is cache-able or replace-
able. The Cache Value is derived from a formula that uses the three previous
parameters. Its exact format will be discussed shortly. This value is updated
each time any of the above parameters are updated. The reason for keeping
the Cache Value with the node is to reduce the execution time during cache

processing. We’ll denote the Cache Value as V' in this section.

Figure 3.15 illustrates the process by which meta-data is stored and updated as
the nodes are accessed. At Stage 1, the user sends a query ). Since the cache does
not have any data required by query @, the query is sent to the data warehouse at
time t1. The data warehouse returns the query results of size S at time ¢2. At this

point, the query size is § and the query response time 7' = t2 — t1. Now, we measure
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frequency by the ratio between amount of time the node resided in the cache and
the number of hits for that node. If we take current time as t3, then the amount of

. At stage 2, query

node resided in the cache will be t3 — ¢2. So, Frequency F = 8=t

size and query response time remains the same as before. However, since the number
of node accesses N and the amount of cache time T changes, frequency F' = -tigt—Q
changes with them too.

Figure 3.16 shows the meta-data relationship that exists between parent and child
nodes. In this figure, P is a parent node, P1 and P2 are the child leaf nodes. Parent

node P itself does not house any data, so its meta-data is calculated using the meta-

data information of its child nodes.

3.5.2 Hotspots

Detecting hotspots in the R3-cache was one of our major challenges. By a hotspot,
we mean a high density area of the cache that is accessed very frequently by incoming
queries. We use the Cache Value of a node to detect the hotspot areas within the
cache. Generally, non-leaf nodes with the highest cache values are designated as
hotspots. These hotspots are consequently used to locate nodes for cache replacement
and cache updating during less active times. In Figure 3.17, we designate the R3 sub-
tree as a hot-spot area of the cache because the node R3 holds the highest cache value
amongst all the nodes.

Sometimes a designated hotspot area may grow too large to be easily managed
by the cache. For example, when we try to pre-fetch data for hot-spot area R3 from
the data-warehouse, the resultant data set is inadmissible to the cache because of its

large size. To counter this situation, we can drill-down to the child nodes. Essentially,



Figure 3.15: Meta-data for cache management
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Figure 3.16: Relationship between parent and child nodes in terms of meta-data
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we identify the non-leaf child nodes with the highest cache-value to be the designated
hot-spots. This process is repeated recursively until a desired hot-spot can be found.
For example, in Figure 3.17, R7 could be identified as the next hot-spot since it holds
the maximum cache value amongst all the child-nodes.

Algorithm 6 describes the mechanism used to locate the node with the highest
cache value. It uses a standard depth-first search method to find the node. Usually
the hot-spot found using this approach resides very high in the tree because the large
nodes at the top of the tree have the highest cache value. In Algorithm 7, we refine
the previous algorithm further to locate the hotspot areas more precisely. After
locating the initial hotspot node V with Algorithm 6, we pass V' as parameter to
the RefineHotSpot function. RefineHotSpot finds the child node with the highest
cache-value and recursively moves downwards until it reaches the lowest non-leaf level.

The algorithm terminates when it finds a node containing a child leaf-node.

Algorithm 6 LocateHotspot

Input: C; = The non-leaf-child-node with the highest Cache Value in ith iteration
NodeWithHighestCacheV alue = Highest cache value found so far
V = current node

. for each non-leaf-child-node V; in V do
C; = LocateHotspot(V;)
if (CacheValue(C;) > CacheValue(C;_1)) then
NodeWithHighestCacheValue = CacheV alue(C;)
else
NodeWithHighestCacheValue = CacheValue(C;i_1)
end if
end for
: RETURN NodeWithHighestCacheV alue




Figure 3.17: R3-tree and the meta-data
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Algorithm 7 RefineHotspot
Input: V = current node

1: Find child-node V; with the highest cache-value
2: if (Child (V;) = leaf — node) then

3:  RETURN V,

4: else

5. RETURN RefineHotspot(V;)

6: end if

3.5.3 Cache management policy

This section defines the policies that guide the cache management activities. In
particular, we look at the criteria used for replacement and admission of a node in
the cache. We also define the hotspot criteria we use for pre-fetching data during the

inactive cache periods.
Cache replacement

Cache replacement for database management systems has been extensively studied
[21, 29, 34]. In general, the idea behind these cache replacement techniques is to maxi- -
mize the hit-ratio of the cache. That being said, little or no attention has been paid to
minimizing the cost of querying from the disk backend. But data warehouse caches
differ from those in operational databases in a significant way. Operational cache
concern themselves with exact match retrievals. In other words, because there is no
notion of a multi-dimensional space, the concept of intersecting partial matches makes
no sense. This is a significant new opportunity for those designing new DW/OLAP
cache. However, it is very important to note that due to the enormous size of many
data warehouse queries, even small misses can eliminate most of the benefit of partial

match resolution. Put another way, if a DW/OLAP query obtains 90% of its data
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from the cache, there may be little performance benefit if the remaining 10% of the
data has to be retrieved from a very slow disk.

Given this fact, any cache replacement policy for data warehouses and/or OLAP
servers must include the reduction of disk access time as one of its prime objectives.
The WATCHMAN solution proposed by Scheuermann et al. [28] makes some progress
in this regard. Still, their solution is quite generic in nature and is not ideally suited
to the R3-cache architecture. For example, our own system benefits when the size of
the cache node is increased. Since larger cache nodes store more data points, traversal
and split costs can be reduced. This is something the WATCHMAN approach could
not exploit. Nevertheless, we are able to borrow some of the fundamental ideas from
the earlier paper and adapt them to our own requirements.

To begin, we define the Cache Value V = (F' + T + S). Before actually calculating
V for a given object, we normalize the values of F', T and S, so they range between 0
and 1. We do this with the meta-values since any one variable might otherwise have
an extreme impact upon the calculation of V. This would result in the inappropriate
influence of this one item of meta-data.

Now, as the cache value V gets lower, the probability for the node to be replaced
gets higher. The principle behind this formula is that we would like to cache a node
which has a higher frequency, lower query response time, and larger size. Thus, the
chance of a node getting cached is proportional to the frequency, query response time
and query size. So we can conclude that V oc F, V o T and V o S.

In Algorithm 8, we describe the cache replacement mechanism. size is the amount
of space needed to be freed. In each iteration of the algorithm we find the non-leaf

node with the ith-least cache value and insert it in set C. When the combined size
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of all the nodes in set C becomes greater or equal to that of size, we return set C
to the calling function. There are a few reasons for excluding the leaf nodes from
the set. Leaf nodes are small and limited in size. Thus, compared to the non-leaf
nodes, they are in a disadvantaged position, as shown in Figure 3.17. Another reason
is that removing a small leaf node from a set of adjacent leaf-nodes creates a gap in
the parent non-leaf nodes that, in turn, creates the potential to generate many split
nodes in a comparatively small space. Later, we will discuss how we can identify
hotspots in the R3-cache and pre-fetch data during inactive periods in order to fill-up

these holes in the cache.

Algorithm 8 Cache replacement algorithm

Input: size = space needed to insert new queries into the cache
NODECOUNT = number of the non-leaf nodes in the R-tree,
C; = non-leaf node with the least Cached Value,
C = set of non-leaf nodes to be returned,
nodesi,e = combined size of the non-leaf nodes to be returned

1: fori=0to NODECOUNT do

9. C; = FIND non-leaf node with i** least Cache Value
3 Insert C; into C

4:  nodege = nodeg,e + sizeof(C;)

5. if (nodesi,e > size) then

6 RETURN C

7. end if

8: end for

In Figure 3.17, we presented a small scale R-tree and its corresponding meta-data.
The first image shows the logical cache structure — the way cache nodes are placed
related to one another. The second image shows the tree structure of the cache —

how the parent-child nodes are connected to each other. This image also shows the
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meta-data stored in some of the selected nodes. Close observation of this data shows
us that parent nodes are basically the product of their child nodes. For example,
meta-data in the non-leaf node R7 is the product of its child nodes R7.1, R7.2, R7.3
and R7.4. This meta-data also helps us explain the decision to replace a node. If we
assume this R-tree is full — meaning the cache-size has reached its maximum size
limit — we have to select a set of low-performing nodes as candidates to be replaced.
As we have described earlier, the non-leaf nodes with the smallest cache values are
selected for replacement. Here, R10 and R11, with cache values of 1.30 and 1.20, are

the prime candidates for replacement.
Cache admission

For any other caching platform, a Cache Replacement policy alone is sufficient. But
for data warehouses, it is vital to verify the pages to be replaced and whether the
inserted nodes are admissible to the cache. Algorithm 9 describes the logic behind our
cache admission policy. If the result sets from the new query are R = (ry, 72, ..,Tn),
then the required size for the new results sets will be RS = "7 sizeof (r;). If
RS > FES, where ES is the remaining space in the cache, then the cache re-
placement algorithm is called. The replacement algorithm provides a set of nodes
C = (c,c¢,..,¢q) with least Cached Value, such that the size of the returned node
size will be RCS = Y| sizeof (¢;), where RCS > RC. Now, for each of the result
sets r; € R, if 3(CacheValue(c;)) < CacheValue (r;), then 7, is inserted into the
cache. Otherwise, r; is not permitted into the cache. At the end of this process, if
the entire result set R is admitted into the cache, then the set C is removed entirely
from the cache. If g entries from R are not permitted into the cache, then the top

q entries from C' with the highest Cache Value are left in the cache and the rest are
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removed.

Algorithm 9 Cache admission algorithm

Input: size = space needed to insert new queries into cache
C = set of nodes with Least Cache Value
R = set of query results to be inserted into Cache
nodeount = number of nodes in C

1: C = Cache replacement Algorithm(size)
2: nodeouns = sizeof (C)

3: count =0

4. for each result r; in result-set R do

5. bool = false

6: for each node ¢; in set C do

7: if CACHEVALUE(r;) >CACHEVALUE(¢;) then
8: bool = true

9: end if

10: end for

11:  if bool = false then

12: count = count + 1

13 remove r;

14:  end if

15: end for

16: for i =0 to nodesouns — count do

17:  remove node with 7** least Cache Value
18: end for

In Figure 3.18, we illustrate the cache admission and replacement process. We
begin with the same logical cache structure we described in Figure 3.17. Now, the
first image of this figure shows a new query @) overlapping box R7. The second image
shows a newly created leaf node. Let us assume the cache value of this new node to
be F+ T+ S = 1.5. Given the absence of any past history, we use the frequency

value of the parent node as the new node’s frequency value. So, in this case, we use
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the frequency value of the parent node R7 for our new node. For the new node to be
admissible in the cache, two criteria must be met first.

First, the cache must have enough space for the new node to be inserted. If
necessary, we need to replace low-performing nodes so that they make enough space
for the new nodes. As we have mentioned before, our assumption is that the cache
is full. We also previously identified R10 and R11 as the leading candidates to be
replaced. Let us assume the real size of the new node to be 1500 bytes and the
normalized cache value to be 0.9. So, for the new node to be admissible in the cache,
non-leaf nodes with a size of at least 1500 bytes must be replaced first. Let us also
assume that R10 and R11 have a combined size of 1600 bytes, which leaves enough
space for the new node to be placed in the cache.

Second, new nodes which are to replace the existing nodes must have a cache
value greater or equal to all the nodes to be replaced. If any of the new nodes fails
to pass the threshold, then that node will be inadmissible. In this figure, the cache
value for the new node is 1.5, which is larger than both R10 and R11. If any of the
chosen nodes which are to be replaced had a larger cache value, the new node would
have been inadmissible.

Since both the criteria are met in this case, we remove nodes R10 and R11 along
with all their child nodes. Since R2 is now left with no child nodes, R2 is deleted too.
The third image from Figure 3.18 illustrates this process. Finally, the fourth image
shows that the new node R10 is inserted into a newly expanded node R7. As a result
of the R7 expansion, its parent node R3 is also expanded. R10 is split into two halves

because the size of the node is greater than 1K = 1024 bytes.



Figure 3.18: Cache admission and replacement

75



76

Hot spot pre-fetching

As we have mentioned previously, DW/OLAP queries normally involve a small num-
ber of large queries. So, even if the queries themselves are more complex — which is
why we use dedicated OLAP servers — they are a lot less frequent than operational
database queries. In other words, there is usually a time lag between two consecutive
queries. This “window” gives data warehouse designers an interesting opportunity
to experiment with query resolution models. In our own research, we try to exploit
this window by pre-fetching data from the backend database into our cache. The
concept of data pre-fetching is not new and has been explored in various hardware
and/or software environments [26, 14, 23, 25, 30]. In each case, the goal is the same
— to improve performance by increasing the likelihood of a cache hit. In our case,

the benefit is twofold.

1. By pre-fetching data from the database, we increase the cache-hit ratio and

reduce the query execution time.

2. By filling up the empty spaces within the cache, we reduce the likelihood of
creating a large number of small nodes. This, in turns, helps the cache to be

more balanced and eflicient.

Of course, pre-fetching data is not very useful by itself (or might even be counter-
productive) if the pre-fetched data has a low probability of being queried. For this
reason, it is important to fetch only those data points that have a high probability of
eventual query access. The cache value is very useful in this regard. Specifically, we
can use the cache value to locate hotspots in the cache and then pre-fetch data to fill

up the empty spaces.
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Figure 3.19 provides an illustration of the process by which we do this. In Sec-
tion 3.5.2, we described how we detect a hotspot area of the cache. Initially, we
identified R3 as a potential hotspot. We further refined our search and located R7.
Again, our goal here is to fill up any empty spaces within the hotspot area. As we
can see in Figure 3.19, A and B are the two empty areas within the node R7. So we
define two cache-generated queries containing the areas A and B and sent them to
the data warehouse. Again, this would be executed as a background process while no
user queries are in the execution queue. If there is enough space available in the cache
to store the data sets from the resultant queries, we create two new nodes, R7.7 and
R7.8, and insert the data points accordingly. The third image shows the benefit of our
query merging technique. We merge nodes R7.5 and R7.7 to create R7.5, and R7.6
and R7.8 to create R7.6, since both of the new boxes satisfy the condition described
in Section 3.4.5.

Let us look at a graphical representation of the effectiveness of pre-fetching. Fig-
ure 3.20 starts with the same R-tree as the previous figure but without the pre-fetched
data. The first image shows a query () overlapping the nodes R7.3, R7.4, R7.5, R7.6,
and two empty areas. The resultant R-tree shows two new nodes R7.7 and R7.8. Not
only did these two nodes result in a cumbersome R-tree that has the potential to
create many small nodes along the narrow edges, but their results had to be fetched
from the backend database, which reduces cache efficiency. If we compare this out-
come to that of the second image, where the R-tree consists of pre-fetched data, we
see that the cache does not have to create any new nodes or fetch any data from the

disk. Thus, a significant increase in efficiency can be realized.



Figure 3.19: Cache pre-fetching during inactive time
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Figure 3.20: Comparison of R-tree with pre-fetching and without pre-fetching
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3.6 Review

In Section 3.2, we identified several critical objectives that we needed to achieve. In

this section, we briefly review our accomplishments.

1. Designing an efficient and effective data structure.

By modeling our data-structure as a R-tree, we have been able to effectively
handle the multi-dimensional nature of our problem space. The R-tree is one
of the most efficient data structures when it comes to dealing with spatial en-
vironments like ours. Moreover, we designed non-overlapping leaf nodes, using

the NOR-tree, to make searching and updating of records more efficient.

2. Minimizing the number of leaf nodes.

We presented a number of techniques to reduce or minimize leaf node generation.
The first dealt with query merging. Using 2D and 3D cube diagrams, we
demonstrated how to reduce the number of leaf nodes from O (d®) to O (2d) in
the worst-case. We also developed a technique to pre-fetch data from the data
warehouse to fill up the empty spaces in the hotspot areas and, if possible, to
merge them with existing nodes. This technique reduces the number of small

backend queries by making sure there are no empty spaces in the box.

3. Design adequate cache management policies.

Like all cache systems, cache management plays a large role in the efficiency of
our system. We identified various meta-data elements and defined the meta-
data relationships between the parents and their child nodes. We calculate a

“cache value” for each node and used this cache value to identify the hotspot
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area, find the low-performing cache objects, and calculate the admissibility of
the new nodes into the cache. We also described how to make use of inactive
periods by pre-fetching data from the database to fill up the empty spaces in

the cache.

3.7 Conclusions

In this chapter, we have presented the ROLAP based R3-cache. The fundamental data
structure of the R3-cache is largely based on the R-tree. That said, it differs from the
R-tree in the structure of its leaf nodes. Whereas the leaf nodes of a conventional R-
tree may overlap, our R3-cache eliminates overlapping nodes at the leaf level. Though
this makes our cache system more efficient, at the same time it presents us with a new
challenge of reducing the potentially large number of leaf nodes that are subsequently
generated. We solved this problem by employing the techniques of query merging
and hotspot pre-fetching.

As discussed in Section 3.2, some of the more significant previous cache research
uses MOLAP-based techniques. Since the underlying data warehouse framework
(Sidera) used for this research is based on ROLAP, we needed to develop a ROLAP
cache system to ensure seamless integration with the parent architecture. Unfor-
tunately, the few ROLAP based data warehouse caching frameworks that have been
proposed aren't large enough in their scope to deal with a system as big as Sidera. We
believe the caching model that we are proposing in this research makes a significant

contribution to the literature in this respect.



Chapter 4

Evaluation

4.1 Introduction

In the previous chapter we fully discussed our proposed caching architecture. We
described the design, algorithms, and policies employed by the R3-cache. In this
chapter, we give complete details of the experiments we have run on our system. We
describe the test environment, including the various parameters used during the eval-
uation. We define the experimental data and provide analysis of these test sets. We
also provide a comparative analysis with an alternative caching framework. Specifi-
cally, we contrast our system with the MOLAP framework proposed in [10], which we
described in detail in the previous chapter. It’s important to note that we have im-
plemented a fully functional version of the MOLAP system in order to provide a fair
and balanced comparison with our own architecture. We will discuss the comparative
analysis in more detail in Section 4.4.

This chapter is organized as follows. In Section 4.2, we describe the platform on
which the experiments were conducted. We specifically mention the hardware and

software used for the evaluation. In Section 4.3, we describe the test framework. We
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explain the parameters used for the experiments and provide the ranges of these pa-
rameters. We also briefly describe the tools that we used to generate the experimental
data. In Section 4.4, we provide the actual results, as well as the associated analy-
sis. We provide a comparative analysis with the aforementioned MOLAP model. In

Section 4.5, we conclude the chapter with a short review.

4.2 Physical platform

In this section, we give a brief description of the platform used for our experiments.
For the sake of consistency, we use the same physical framework for both our own
cache and the comparative system.

The following software components were used for performing experiments.

e Operating system: Fedora Core 5 (Red Hat Linux distribution)

¢ Programming Language: GNU C

C++ Compiler version 4.2.0
e Parallel processing: LAM (Local Area MultiComputer)/MPI version 7.1.3
The hardware consisted of the following components:
e RAM: 1 GB RAM
e Processor: Intel Pentium(R) 4 CPU 3.00GHz

e Hard-drive: 140 GB ATA disk drive

Beyond this, it’s important to note that although this system is built to run within

the parallel Sidera system, our caching framework can be most effectively evaluated by
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limiting the system to just a single backend node. Recall that while Sidera consists of p
nodes, each of these sibling servers is essentially identical. Moreover, each maintains
its own independent cache that is backed by its own local OLAP disk subsystem.
Therefore, interpretation of the experimental results is simply more intuitive if we

restrict ourselves to just a single cache.

4.3 The test environment

We use synthetic data sets exclusively for our test-case scenarios. Synthetic data sets
provide us with the flexibility to easily and effectively modify our test cases. It opens
up possibilities for testing the system from many different angles, using many different
parameters. We note that while real-world data sets are often used in database
test environments [6], they tend in general to be either surprisingly uniform or one-
dimensional in terms of what they can tell you about the systems being evaluated.
In data warehouse settings, caches tends to be very skewed in nature, if for no
other reason than that user query tends to be very biased in nature. In particular,
most users tend to iteratively query in one specific region of the space, to the exclusion
of other regions. This user behavior is reflected in the state of the data warehouse
caches, as they quickly come to favor a small number of key areas. To more accurately
reflect the real-world nature of data warehouse caches, we start by generating skewed
data sets, using a data set generator written specifically for Sidera’s multi-dimensional
spaces. The generator takes a variety of parameters including record count, dimension
count, dimension cardinalities, and a zipfian data skew measure [37]. In the current
case, we set the zipfian skew value in the range from 0.8 to 1.0, thereby giving fairly

pronounced skew patterns.
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To simulate the biased behavior of arbitrary users when submitting queries, we
first generate a batch of 600 queries. The first 300 of these queries are totally random
(on range and dimension), which helps to build up the initial cache contents. The
next 300 queries represent variations of many of the same queries executed in the
first block of queries. These queries are generated by a random query generator
called qGen which was again built in-house for the specific purpose of testing the
Sidera platform.

We tested with data sets ranging in size from 100,000 tuples to 10,000,000 tuples
with a maximum 10% cache limit. In other words, the cache was limited in size to
at most 10% of the size of the underlying database. Since dimension count plays a
major role in distinguishing the performance difference between MOLAP and ROLAP
systems, we ran tests using dimension counts between two to seven. We also used
cardinality ranges of 1 to 1000 to generate our data sets. We used large cardinalities
in particular to assess the performance of MOLAP systems, as these models tends to

deteriorate in this setting.

4.4 Experimental results

We begin this section by comparing results between the MOLAP-based solution [10]
and our own ROLAP-based model. We start with two batches of data sets. The
first batch is composed of sets with one million tuples, while the second batch houses
sets of ten million tuples. Both the batches are skewed with a maximum zipfian
value of 1.0. Each batch contains six data sets with dimensions ranging from two
to seven, the most common values in real world OLAP settings. As illustrated in

Figure 4.1, while the performance for the ROLAP cache improves with the higher
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dimension count, the performance for MOLAP[13] on the other hand deteriorates
with the higher number of dimensions. As we can see, initially for a dimension count
of two, MOLAP actually performs better than the ROLAP cache. But with increased
dimensions, we see the trend moving in the opposite direction. By seven dimensions
the difference in performance reaches a factor of 4-5. We can attribute the superior
performance of the ROLAP cache in higher dimension to two things.

First, our cache management policy works much better in higher dimensions as the
frequency rate begins to decline. Higher frequency values occur in lower dimensions
since there is little room to maneuver in this space. Consequently, a high number of
unintended boxes gets flagged as frequently hit. Conversely, cache efficiency improves
— with respect to the use of the frequency rate — with an increase in the number of
dimensions. Since the MOLAP system doesn’t have an advanced cache management
policy, it is very limited in how it is able to manipulate the cache in higher dimensions.

Second, lower dimension queries tend to return higher numbers of records, in
that data is compressed into a smaller area. Queries in larger dimensions reduce the
portion of the region to be searched. Data also tends to be more thinly distributed.
Because ROLAP cache objects only contain points that actually exist, it is well suited
to increased dimensionality. With MOLAP, however, this is not the case since, in
the absence of a complex array compression scheme, complete sub-grids must be
represented. So while an increased number of records does not significantly impact
MOLAP performance, the number of dimensions does.

In Figure 4.2, we present a similar analysis with different data sets. In this case,
we leave most data set parameters the same, except that we reduce the zipfian value

to 0.1. This produces relatively uniform data. The goal of this experiment is to show
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Figure 4.1: Comparative analysis with MOLAP system for (a) number of records =
1 million and (b) number of records = 10 million
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that our system has superior performance with data sets ranging from relatively
uniform to the most skewed. As was the case with previous experiments with highly
skewed data sets, our cache performs just as well with a uniform data set. In this
case, there is relatively little difference at two dimensions, but the ROLAP cache
improves performance by about a factor of four in higher dimensions.

In Figure 4.3, we used the same data sets as the ones in Figure 4.1. In this
case, however, we removed any limitation on cache-size for the MOLAP system.
We performed this test to simulate the original implementation in [10], where the
assumption was made that the entire base table could be cached. We can see from the
result depicted in (a), for example, that performance improves across all dimensions
uniformly. For the larger data set in (b), the benefit for the MOLAP framework is even
more pronounced (relative to the cache-limited version). This is expected, of course.
While an unlimited cache is obviously unrealistic for production data warehouses,
we note that Figure 4.3 also shows that the ROLAP system still beats the MOLAP
model in high dimensions by a ratio of two to one.

Now, in Figure 4.4 we performed a comparative analysis between the cache and
the backend DB. In other words, we are looking at the system with and without a
native multi-dimensional cache. Data sets in the first test batch are composed of
one million tuples and the second batch houses sets of ten million tuples. All sets
are skewed with a maximum zipfian value of 1.0. Each batch contains 6 data sets
with dimensions ranging from 2 to 7. This evaluation is particularly important as it
gives us a measure of real improvement over the current system. In short, it provides
analysis that can be used to decide if the new model can be viably included in the

current system. As we expected, the Cache works better than the cache-less database
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Figure 4.2: Comparative analysis with MOLAP system for (a) number of records =
1 million, zipfian = 0.1 and (b) number of records = 10 million, zipfian = 0.1
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Figure 4.3: Comparative analysis with MOLAP system (with no cache-size limit) for
(a) number of records = 1 million and (b) number of records = 10 million
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across all scenarios, though in lower dimensions the difference between the DB and
the Cache is significantly larger. Relatively speaking, the database is less ineffective
as dimension count increases, though this is primarily due to the fact that fewer
records are being retrieved for queries in this part of the space. Nevertheless, even in
seven dimensions, the raw database is roughly three times more expensive than the
cache. It should be clear, therefore, that our caching framework can be an important
addition to the current Sidera server.

Next, from Figure 4.5 to Figure 4.9, we break down the results from previous
experiments, based on the number of queries. Specifically, we use the data set from
Figure 4.1 with 10 million records. As one might expect, both caches demonstrate a
sub-linear cost increase as query batch size is increased. In other words, the use of the
cache allows query resolution times to grow at a slower rate than the increase in query
count. That being said, we can also see how the performance curve of the ROLAP
cache stabilizes more quickly and more dramatically with an increase in both query
count and dimension count. These results are consistent with the previous graphs
and underscore the strength of our new model for higher dimensional spaces.

Figure 4.10 to Figure 4.14 examine the caches from a different perspective. Here,
we explore the “hit ratio” of our cache system relative to that of the MOLAP system.
In other words, how often is the cache being accessed, versus the backend database.
We note that, all other things being equal, cache hits rates should be virtually identical
since both systems (any cache system, in fact) record the same query history. The
results, however, show that the hit ratio improvements for the MOLAP cache system
are very minimal, even as query count grows dramatically. Conversely, for our new

ROLAP system, the improvement in hit ratio is quite pronounced, more than doubling



Figure 4.4: Comparative analysis with DB
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Figure 4.5: Query breakdown for dimension 2

Figure 4.6: Query breakdown for dimension 3
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Figure 4.7: Query breakdown for dimension 4

Figure 4.8: Query breakdown for dimension 5
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Figure 4.9: Query breakdown for dimension 6

the MOLAP rate in higher dimensions. In short, this is due to the fact that the
ROLAP cache system includes a sophisticated update and replacement mechanism
that helps to pro-actively identify hotspots in the cache. This results in the database
being accessed a lot less during the execution of queries.

In Figure 4.15 to Figure 4.19, we ran experiments to further explore the effec-
tiveness of our update mechanism. Specifically, we tested our cache after “turning
off” the mechanism that ranked the nodes. In essence, this forces the cache manager
to treat all nodes equally and as a consequence, prevents the cache from finding the
hotspots. As we can see, the hit ratio drops significantly with the absence of a hotspot
detector. This underscores the point made earlier in the thesis. Multi-dimensional
caches are simply not effective unless the empty regions in hot areas can be filled in

during inactive query periods. Without this feature, even relatively infrequent trips



Figure 4.10: Cache hit ratio for dimension 2

Figure 4.11: Cache hit ratio for dimension 3
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Figure 4.12: Cache hit ratio for dimension 4

Figure 4.13: Cache hit ratio for dimension 5
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Figure 4.14: Cache hit ratio for dimension 6

to disk will minimize the effectiveness of the cache.

Finally, Figure 4.20 shows a comparison of the time spent to execute 600 queries
both with and without the update mechanism. In effect, the performance curves
mimic the previous set of results. In this case, we see query resolution times for the
hotspot version that are approximately a third of those of the more static cache in

higher dimensions.

4.5 Conclusions

In this chapter, we have presented experimental results which demonstrate that our
system performs much more effectively than the leading MOLAP based cache system.
We have evaluated the cache models with different dimension counts, data sets sizes,

and with extreme skew values. In almost all cases, our cache performance is superior
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Figure 4.15: Cache hit ratio comparison without update process for dimension 2

Figure 4.16: Cache hit ratio comparison without update process for dimension 3
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Figure 4.17: Cache hit ratio comparison without update process for dimension 4

Figure 4.18: Cache hit ratio comparison without update process for dimension 5
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Figure 4.19: Cache hit ratio comparison without update process for dimension 6

to that of the MOLAP based cache system. To simulate the environment described
in [10], we also examined the impact of eliminating size restrictions on the cache and
found that, although this indeed benefits the MOLAP system, our ROLAP framework
remains much more effective. Finally, we took a detailed look at both cache hit ratios
and query performance with and without the cache framework, and with and without
the hotspot detector. Again, significant performance gains were achieved by exploiting

the primary features of our new model.
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Figure 4.20: Comparative analysis of cache with update and without update



Chapter 5

Conclusions

5.1 Summary

We have described a new relational caching framework that has been integrated into
the Sidera parallel OLAP DBMS. The cache — based upon an in-memory variation on
the classic R-tree — has shown considerable promise in the low to medium dimensional
spaces commonly found in OLAP query environments. In particular, early work has
demonstrated the importance of incorporating pro-active insertion policies into cubic
caching schemes so as to mitigate the effects of extraneous disk accesses. Furthermore,
by exploiting the synergies that naturally exist between the R-tree based disk indexes,
the R-tree oriented caching subsystem, and the hierarchy translation facilities that
transparently operate on results returned from either the cache or the disk, we believe
that the current system represents a concrete blueprint for the design of practical high
performance OLAP servers.

To summarize the development of R3-cache, we focus on the following topics.

1. Design and development of non-overlapping R-tree

We developed the data-structure of our cache based on R-tree modeling. The
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major difference in our model is that our leaf nodes are non-overlapping. This
makes our R-tree more efficient by reducing the query search time and query
insertion time into the cache. We developed it by splitting the queries in two
different sets. Whenever, we found partial match between two nodes, we split

them apart to remove the overlapping part of the node.

. Node partition

Node partition is required when the size of a leaf node crosses the threshold
limit. For our system, this threshold limit is the size of the system page-size.
Keeping each individual nodes stored in a single page reduces the memory
seek which would have been required otherwise. We developed an efficient
node partitioning approach which closely resembles the partitioning approach
proposed by Muralikrishna and DeWitt in [3]. According to this approach,
nodes are divided into two equal child-nodes each containing exactly the same
amount of data. These nodes are partitioned recursively each time along an
alternate dimension until the size of the child-nodes are reduced to less or equal

to that of the page-size.

. Minimizing the node-generation

One of the by-products of making the child-nodes non-overlapping was it could
potentially generate large number of leaf-nodes. One of the ways, we handled
the problem was by merging the adjacent queries. We demonstrated that by
merging the adjacent queries, we could actually reduce the number of query in
the worst case from O (n®) to O (2n). We also handled the problem by pre-

fetching hotspace area data from the database during the inactive cache time.
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4. Cache management

We identified a set of metadata for each of the cache nodes and assigned a
“Cache-Value” for each of the nodes using those meta-data. We also identified
relationship of metadata that exist between a parent and a child-node. We use
the “Cache-Value” of a node to decide on the viability of that cache - whether
the cache should be allowed or rejected. We also use this “Cache-Value” to
identify the hotspot area among the cache. This feature is especially useful
when we pre-fetch data from the data warehouse. Because, we pre-fetch data

for the empty spaces within the hotspot area.

5.2 Future work

The research presented in this thesis is the basic framework for developing relational
caching model in the data warehouse environment. We identify few areas of future

research work which can improve this framework significantly.

1. Histogram

Though our current node-partitioning model(h-tree) performs quite adequately,
there is much room for improvement since there has been plenty of research done
on different histogram models. Some of these models (mHist, genHist, rK-Hist)
[24] are much more improved and they can be easily applied to our caching

model.

2. Hierarchies

In our model we use separate trees for separate hierarchies. Each dimension

set containing it’s own R3-tree. A new research can look into how R3-trees in
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different hierarchies can be connected and useful to each other.

3. Multi-threading cache update during inactive period

Currently, cache gets updated during the inactive period. Though the update
process is quite efficient, we can improve it further by making the update process
work in a separate thread. This will make sure no incoming queries have to wait

for the update process to complete, thus improving query response time.

5.3 Final thoughts

Our objective in this thesis has been to produce a data warehouse cache system which
can be seamlessly integrated into the Sidera platform. Since, Sidera was developed on
relational OLAP, we set out to develop a cache system based on relational OLAP. We
have presented the new R-tree model used for our research purpose. We discussed
different cache management techniques used to efficiently manage the cache. Our
caching model was tested with data from every spectrum and performed much better
than the other comparable caching model. Given the importance of caching sys-
tem in the data warehouse environment, we believe our research made a meaningful

contribution in this area of research.
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